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Abstract: It is proposed that nanosized graphene aggregation could facilitate coherent neutron
scattering under particle size conditions similar to nanodiamonds to enhance neutron intensity below
cold neutrons. Using the RIKEN accelerator-driven compact neutron source and iMATERIA at J-
PARC, we performed neutron measurement experiments, total neutron cross-section and small-angle
neutron scattering on nanosized graphene aggregation. For the first time, the measured data revealed
that nanosized graphene aggregation increased the total neutron cross-sections and small-angle
scattering in the cold neutron energy region. This is most likely due to coherent scattering, resulting
in higher neutron intensities, similar to nanodiamonds.

Keywords: nanosized material; graphene aggregation; neutron reflector; below cold neutrons;
neutron source

1. Introduction

Slow neutrons, such as cold neutrons, are excellent for observing light elements such
as hydrogen. They are also important nondestructive probes not only for basic physics
but also for the structural genomics advancements in the life sciences and the battery
technology advancements needed for the transition to a hydrogen society. Neutron-based
science, also known as high-intensity-dependent science, demands that we increase the
source’s intensity as high as possible. Cold neutrons are generally generated by cooling
neutrons produced by nuclear reactions, spallation reactions based on accelerators, and
fission reactions in nuclear reactors to a thermal equilibrium state with a hydrogenous
material such as solid methane.

However, it is not easy to obtain slow neutrons below thermal equilibrium using
this method, such as ultra-cold neutrons or very-cold neutrons. A new unique method
focusing on nanosized particle aggregation has been proposed to increase neutron intensity
in that energy region [1–5]. The method is based on intensity enhancement by multiple
coherent scatterings of neutrons with nanosized particles. The aggregation of nanosized
particles matches the wavelength of below cold neutrons, resulting in a similar effect to
coherent scattering, or so-called Bragg scattering, leading to higher neutron intensities.
Nanodiamonds [6–10] and magnesium hydride (MgH2) [11] have recently been reported
numerically and experimentally, with the potential to increase neutron intensity by several
orders of magnitude. The major challenge with nanodiamonds in practical applications is
the molding method.

We focused on another carbon structure, graphene, to find a solution to this problem.
Graphene [12–14] is expected to be the lightest and strongest material in the world due
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to its geometric structure. It is being scaled up for practical applications such as aircraft
materials, as well as for studies on the synthesis and applications of graphene-based
nanomaterials [15].

Conversely, in its development progress, large amounts of nanosized end materials
are also being produced.

We hypothesized that nanosized graphene could aid coherent neutron scattering under
particle size conditions similar to nanodiamonds. Moreover, it might be possible to use it in
high neutron radiation conditions due to graphene’s strong sp2 bonds. Using the RIKEN
accelerator-driven compact neutron source (RANS) [16] and iMATERIA at J-PARC [17,18],
we performed neutron measurement experiments such as total neutron cross-section and
small-angle neutron scattering on nanosized graphene using the same method as we used
for nanodiamond cross-section measurements [8].

It is also difficult to determine how much useful information can be obtained from a
700 W RANS small power source, such as total cross-section and small-angle scattering
measurements, when the source intensity is overwhelmingly disadvantageous compared
to MW class high-power sources like those at J-PARC [19]. As a result, the moderator
arrangement system was reviewed and experimentally improved with new ideas, such
as selecting a slab-type moderator arrangement and incorporating slit-type collimators to
increase available neutrons [20], as one way of finding out the potential of small sources [21].

In this paper, we report the potential of nanosized graphene as a reflector material
below cold neutrons, together with experimental results.

2. Nanosized Graphene Flower Aggregation

A combination of phenolic formaldehyde resin carbonization and the hot isostatic
pressing (HIP) process produces a distinctive graphene called a “graphene flower” with
a “sunflower” shape [22,23]. Note that this graphene flower is far away from how we
imagine graphene as a two-dimensional material. The produced graphene flower, as shown
in Figure 1, was composed of multiple petal-like graphene layers of less than 20 nm thick
growing from the carbonized sphere surface. Seed-like graphene was composed of many
1–100 nm sized graphenes inside the sphere, forming a concave–convex structure. Finally,
graphene flowers combined to form a nanosized graphene aggregate.

For this study, two graphene sample types, namely, graphene 1 and 2, were prepared
under different HIP conditions. First, a phenol formaldehyde resin, BellPearl S870, man-
ufactured by Air Water Co., Ltd., with an average particle size of 15 µm, was prebaked
in a constant flow of nitrogen gas at a maximum temperature of 650 ◦C. The heat-treated
powder was placed in a graphite crucible and subjected to HIP in argon gas at a maximum
ultimate pressure of 70 MPa. Graphene 1 was heated to a maximum temperature of 1390 ◦C
at a rate of 900 ◦C/h, held there for 1 h, and then cooled. Graphene 2 was heated to a
maximum temperature of 1300 ◦C at a rate of 200 ◦C/h and then cooled immediately
without any retention time.

As shown in Figure 2a, graphene 1 produced petal-like graphene on the surface and
granular seed-like graphene inside the sphere. Graphene 2 formed petal-like graphene
but almost no seed-like graphene, as shown in Figure 2b. The samples were shaped to
20 mm in diameter × 2 mm in thickness. The samples were irradiated with neutrons after
being wrapped in a single layer of commercially available aluminum foil (12 µm thick). For
comparison, the nanodiamond used in the literature [8] and the graphite were similarly
irradiated. Table 1 summarizes the samples used in the experiments.
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Figure 1. The SEM image of a graphene flower produced by the HIP treatment. As indicated by the 
arrows in the figure, the graphene flower is composed of multiple petal-like graphene and seed-like 
graphene. Petal-like graphene forms multiple layers of petals less than 20 nm thick growing from 
the carbonized sphere surface. The seed-like graphene is composed of many 1–100 nm sized 
graphenes inside the sphere, forming a concave–convex structure. 

3. Experiment 
3.1. Neutron Transmission 

The experiment was carried out using the RANS neutron source, which was 
generated by the p-Be reaction of a 7 MeV proton bombardment, as shown in Figure 3. 
The neutron transmission experiment’s basic experimental methods and data processing 
were based on the literature [8]. Neutron transmission experiments generally use parallel 
neutron beams to determine the total neutron cross-section. However, in the presence of 
a low-intensity source of RANS and to improve statistical accuracy in a short-time 
measurement at the expense of spatial resolution, the “slit-type collimator” concept was 
developed, in which the neutron beam emitted from the moderator surface was gradually 
focused by placing boron carbide (B4C) slits in the locations shown in Figure 3. The beam 
was gradually narrowed down to a final diameter of 10 mm using this collimator. The 
sample was placed at the exit of the final slit, corresponding to a position of approximately 
1.4 m from the mesitylene moderator emission surface. 

Figure 1. The SEM image of a graphene flower produced by the HIP treatment. As indicated by the
arrows in the figure, the graphene flower is composed of multiple petal-like graphene and seed-like
graphene. Petal-like graphene forms multiple layers of petals less than 20 nm thick growing from the
carbonized sphere surface. The seed-like graphene is composed of many 1–100 nm sized graphenes
inside the sphere, forming a concave–convex structure.
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neutron beamline, a slit-type collimator was installed to increase available neutron intensity at the 
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Figure 2. Photographs of graphene materials prepared under various HIP conditions. (a) Graphene
1, which formed petal-like graphene and nm-sized granular seeds, called “seed-like graphene”, was
fabricated under HIP conditions with a maximum temperature of 1390 ◦C at a rate of 900 ◦C/h,
1 h holding time, then cooled naturally; (b) Graphene 2, which formed petal-like graphene, but no
seed-like graphene, was fabricated under HIP conditions with a maximum temperature of 1300 ◦C at
a rate of 200 ◦C/h and then cooled immediately without any retention time.
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Table 1. Shape, thickness, and density of graphene, graphite, and nanodiamond materials.

Sample Graphene 1 Graphene 2 Graphite Nanodiamond

Shape φ20 mm Disk 10 × 10 mm Plate
Thickness (mm) 2.6 3.2 1.9 1.2

Bulk density (g/cm3) 1.09 0.91 1.77 0.65

3. Experiment
3.1. Neutron Transmission

The experiment was carried out using the RANS neutron source, which was generated
by the p-Be reaction of a 7 MeV proton bombardment, as shown in Figure 3. The neutron
transmission experiment’s basic experimental methods and data processing were based on
the literature [8]. Neutron transmission experiments generally use parallel neutron beams
to determine the total neutron cross-section. However, in the presence of a low-intensity
source of RANS and to improve statistical accuracy in a short-time measurement at the
expense of spatial resolution, the “slit-type collimator” concept was developed, in which
the neutron beam emitted from the moderator surface was gradually focused by placing
boron carbide (B4C) slits in the locations shown in Figure 3. The beam was gradually
narrowed down to a final diameter of 10 mm using this collimator. The sample was placed
at the exit of the final slit, corresponding to a position of approximately 1.4 m from the
mesitylene moderator emission surface.
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Figure 3. RANS target system cross-section. In a slab-type mesitylene moderator arrangement
neutron beamline, a slit-type collimator was installed to increase available neutron intensity at the
sample position.

Neutron transmission was measured using the two-dimensional neutron detector with
Gas Electron Multiplier, called an n-GEM [24] detector, which was installed approximately
80 mm from the sample. The resulting neutron intensity was approximately two orders of
magnitude higher than that in the parallel beam case. The neutron spectral intensities at
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the detector positions of the J-PARC BL-10 [8] and RANS through slit-type collimators are
shown in Figure 4 for comparison.
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Figure 4. Neutron spectral intensity from slab-type mesitylene moderator at the sample position at
RANS. The sample is 1.49 m away from the moderator. The neutron spectral intensity from decoupled
liquid hydrogen moderator at the J-PARC BL10 at the detector position, which was approximately
14.7 m from the moderator, is also shown for reference.

Although this is only a relative comparison due to the different moderator and detector
positions, the mesitylene moderator’s cold neutron component, forming a peak at 3–5 meV,
was confirmed.

3.2. Small-Angle Neutron Scattering (SANS) Experiment

SANS experiments were performed at the J-PARC iMATERIA [17,18]. Measurements
were also performed on a small-angle scattering instrument [25] under development at
RANS as a comparison.

4. Results and Discussions
4.1. Neutron Transmission

Figure 5 depicts the transmission measurement results. Each measured data was nor-
malized per atom from sample volume, density, and composition. Compared to graphite,
nanodiamond had a lower transmission below the meV region. Graphene 1 showed low
transmittance, close to that of the nanodiamond. Graphene 2 had somewhat higher trans-
mission than graphene 1. This may be due to different sample fabrication conditions.
However, graphite Bragg cutoff peaks at approximately 1.6 meV were also measured in
graphenes 1 and 2. This is because during the HIP treatment of the carbonized phenolic
resin to form graphene, the formation of the graphite surface into nanosized graphene was
not always sufficient, and the graphite components remaining in the material were detected,
leaving room to find the optimum nanosized graphene formation conditions. Total neutron
cross-sections were calculated using the transmission data, as shown in Figure 6, where
coherent scattering predominated for the 0.5–2 meV region, concerning the nanodiamond
literature [8].
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Figure 6. Total neutron cross-section. In comparison with graphite, nanodiamond had several
hundred higher total neutron cross-sections below meV region. Graphene 1 was approximately
one-third of the total neutron cross-section data of nanodiamond. Conversely, it was several tens of
times higher than graphite.

Compared to graphite, nanodiamond had several hundred higher total neutron cross-
sections below the meV region. Graphene 1 was approximately one-third of the total
neutron cross-section data of nanodiamonds. Conversely, it was several tens of times
higher than graphite. The findings indicate that nanosized graphene, which is still in the
early development stages, has the potential to rival or even surpass nanodiamonds with
further fabrication process optimization, including nanosized graphene aggregation.
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4.2. SANS
4.2.1. SANS Results

Figure 7 shows SANS, measured on the diffractometer iMATERIA at J-PARC [17,18].
We recognized Bragg’s scattering peaks in the q range of 1–10 Å−1 for SANS obtained for
graphenes 1 and 2, originating from interlayer interference. The SANS profiles obtained
for graphenes 1 and 2 showed broad shoulders at q = 0.15 Å−1, attributed to a graphite
primary particle sheet [26]. The shoulder q-positions were translated to 4.8 nm (=2π/q).
For nanodiamonds, the primary particle sheet size was evaluated at approximately 10 nm.
According to Porod’s law [26], the tail of the shoulders decays according to q−4, indicating
a smooth surface. Compared to nanodiamonds, and graphenes 1 and 2, the SANS obtained
for graphite showed a strong upturn obeying q−4 toward lower q = 0.01 Å−1, indicating a
larger particle sheet size. It should be denoted that for graphenes 1 and 2, we could not
recognize the fringes or oscillations in the q-behavior. This is due to the large inhomogeneity
in shape and size of the graphenes.
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Figure 7. Small-angle neutron scattering measurements using iMATERIA at J-PARC. Bragg’s scat-
tering peaks were recognized in the q range of 1–10 Å−1 for graphenes 1 and 2, originating from
interlayer interference. Compared to nanodiamond, and graphenes 1 and 2, the SANS obtained for
graphite shows a strong upturn obeying q−4 toward lower q = 0.01 Å−1, indicating a larger particle
sheet size. It should be denoted that for graphenes 1 and 2, we cannot recognize the fringes or
oscillations in the q-behavior, indicating the large inhomogeneity in shape and size of the graphenes.
Open circles in the figure show measured data using the RANS-developed small-angle scattering
instrument, ib-SAS.

The SANS profile of graphene 1 was also measured using the RANS-developed small-
angle scattering instrument (ib-SAS [25]) (see open circles in Figure 7). Even though the
SANS for graphene 1 obtained at RANS had a narrow q-region ranging from 0.02 to 0.2 Å−1,
the q-behavior was consistent with that obtained at the iMATERIA. The ib-SAS instrument
is still being developed to reduce the noise background.
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4.2.2. Invariant Q for SANS Data

Invariant Q, representing the scattering cross-section due to small-angle scattering [27],
was evaluated as follows,

Q =
1

2π2

∫
q2 I(q) dq (1)

by using iMATERIA and the q-region of 0.007–0.45 Å−1. Table 2 shows the Q values. In
particular, nanodiamond and graphene 1 showed a larger Q. These findings agree with the
scattering cross-section values determined by transmission experiments.

Table 2. Calculated invariant Q.

Sample Graphene 1 Graphene 2 Graphite Nanodiamond

Invariant Q 0.0213 0.0114 0.0081 0.0164

5. Conclusions

We concentrated on nanosized graphene aggregation to intensify below cold neutrons,
which are similar to those of nanodiamonds. Using the RANS, we performed neutron
measurement experiments, total neutron cross-section, and SANS on nanosized graphene
aggregation. For the first time, the measured data revealed that nanosized graphene
aggregation increased total neutron cross-sections and small-angle scattering in the cold
neutron energy region, most likely due to coherent scattering, implying the possibility
of below cold neutron applications. We will go on to focus on the radiation resistance of
graphene, which is expected from the strong sp2 bond.
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