# Thermal Transport in 2D Materials

^{*}

## Abstract

**:**

_{2}and MoS

_{2}), and h-BN have received illustrious consideration due to their promising properties. Increasingly, nanomaterial thermal properties have become a topic of research. Since nanodevices have to constantly be further miniaturized, thermal dissipation at the nanoscale has become one of the key issues in the nanotechnology field. Different techniques have been developed to measure the thermal conductivity of nanomaterials. A brief review of 2D material developments, thermal conductivity concepts, simulation methods, and recent research in heat conduction measurements is presented. Finally, recent research progress is summarized in this article.

## 1. Introduction

_{2}is a semiconductor with a large bandgap of $~$1.1–2 eV [7,8,9]. Low-temperature carrier mobility can be significantly enhanced by improving sample quality and using appropriate electrode materials [10]. Following these recent breakthroughs, it is highly expected that 2D materials will be used in integrated circuits (ICs) in the near future. Another example is stanene, a single-layer buckled honeycomb structure of tin atoms that exhibits near-room temperature quantum anomalous Hall effects [11] and ultra-low thermal conductivity [12], which makes it ideal for thermoelectric applications. This article discusses in detail the thermal conductivity of 2D materials.

## 2. Two-Dimensional (2D) Materials

_{2}), hexagonal boron nitride (h-BN), and black phosphorus (BP) (or phosphorene). There is a wide range of physical properties available within the 2D materials family, from conducting graphene to semiconducting MoS

_{2}to insulating h-BN. As an added advantage, 2D crystal structures exhibit superior mechanical properties, exhibiting a high in-plane stiffness and strength, as well as an extremely low flexural rigidity. Together, the 2D materials have a wide range of potential applications [14,15].

_{2}transitions from an indirect to a direct bandgap as the monolayer limit is reached.

_{2}, where M is a transition metal (such as tungsten (W) or molybdenum (Mo)), and X represents a chalcogen (like selenium (Se), sulfur (S), or tellurium (Te)). A TMDC is made up of a metal layer sandwiched between two chalcogenide layers, with each layer being three atoms thick. The crystal structure of TDMCs can vary. A 2H-phase with trigonal symmetry is the most common, resulting in semiconducting properties like MoS

_{2}, WS

_{2}, and MoSe

_{2}. The bulk form of these semiconductors has an indirect bandgap. It is interesting for optoelectronics to use monolayers because their bandgap becomes direct and visible. The metallic 1T phase, the most stable polymorph of WTe

_{2}, is another example of such structures.

## 3. Thermal Conductivity

_{2}has a thermal conductivity of about 26 W/m·K, according to Wei et al. [35]. WS

_{2}CVD-grown monolayer and bilayer thermal conductivity was determined by Peimyoo et al. For monolayer and bilayer WS

_{2}, the measured values are 32 and 53 W/m·K, respectively [36]. Theoretically, the thermal conductivity of phosphorene indicates low thermal conductivity. For instance, Qin et al. studied the simulated thermal conductivity along zigzag (ZZ) and armchair (AC) directions and found it to be 15.33 and 4.59 W/m·K, respectively [37]. However, during the manufacturing of 2D nanomaterials, structural defects such as voids, grain boundaries, and dislocations could be formed. A brief review of the thermal conductivity concept is provided in this section.

#### 3.1. General Considerations and Solution Techniques

^{3}) and k is the thermal conductivity (W/m⋅K). In Cartesian coordinates, Equation (1) is the general form of heat diffusion. There are two primary objectives that are usually attached to any conduction analysis. Known as the heat equation, it provides the basic tool for analyzing heat conduction. T (x, y, z) can be calculated as a function of time from its solution. For the present problem, the first objective is to detect the distribution of temperature in the medium and in order to do so, it is necessary to determine T (x, y). Solving the heat equation in the appropriate form is the key to obtaining this objective. It is found that in two-dimensional steady-state conditions with no generation and constant thermal conductivity, this form can be calculated from Equation (1) as follows:

#### 3.2. The Method of Separation of Variables

#### 3.3. The Conduction Shape Factor

#### 3.4. Thermal Transport at the Nanoscale

## 4. Simulation Methods

#### 4.1. Atomistic Simulations of Thermal Transport

#### 4.2. Introduction to Simulation Approaches

#### 4.3. A Mento Carlo Simulation Method

#### 4.4. First Principles Method

_{2}) [56,57], and silicene [34,58]. More detailed explanations of this method can be found in a number of outstanding review papers [59,60] or books [61].

#### 4.5. Molecular Dynamics Simulations Method

#### 4.6. Equilibrium Green−Kubo Approach

_{B}is the Boltzmann constant, and V is the system volume.

#### 4.7. Atomistic Green’s Functions

_{2}/metal [78] interfaces, and others [79].

## 5. Experimental Measurement

#### 5.1. Suspended Thermal Bridge Method

_{x}) that are patterned with thin metal lines (Pt resistors). Figure 5 illustrates how the resistors are electrically connected to contact pads via four Pt leads and used as microheaters and thermometers, providing Joule heating and four-probe resistance measurements, respectively. The heat transfer in the suspended sample is extracted by considering the generated Joule heating on the heated membrane and the temperature change on the sensing membrane while the sample is held between the two membranes and bonded to Pt electrodes. As a result of the high accuracy of Pt thermometers and direct temperature calibration, this method can provide a high temperature resolution of ~0.05 K in a range from 4 to 400 K [80,84]. The experimentally measured thermal conductance G and thermal conductivity k are calculated from the equations $G=1/{R}_{tot}$ and $K=L/\left(A{R}_{tot}\right)$, respectively. Here, ${R}_{tot}$ is the total measured thermal resistance, L is known as the length of the sample, and A is the cross-sectional area of the sample. As mentioned, ${R}_{tot}$ is the total thermal resistance of the entire system, including the thermal resistance of the suspended sample, the thermal resistance contribution from the membrane-connected parts of the sample, the internal thermal resistances of the two membranes, and the additional thermal resistance contribution from the part of the membranes which are linked with the heaters/thermometers.

_{x}membranes [88,89]. Various studies have shown the need for a fin resistance model to estimate this resistance [90,91]. The thermal contact resistance between the sample−membrane interface and the thermometer ${R}_{c,m}$ is another component of ${R}_{tot}$, as it results from a non-uniform temperature distribution on the heating membrane. The ${R}_{c,m}$ factor can be ignored if the membrane has a uniform temperature distribution, i.e., when the thermal resistance of the suspended sample is greater than the internal thermal resistance of the membrane. A high thermal conductivity material, such as graphene or carbon nanotubes, however, is not the case. By re-analyzing heat transport results in CVD single-layer graphene samples, Jo et al. concluded that these extrinsic thermal contact resistances contribute up to 20% of the measured thermal resistance [91]. Recently, several studies found that resistance line thermometers can be employed as a replacement for serpentine Pt thermometers to reduce the size of the temperature measurement resistance (between heater/sensor and contact point) [92,93]. It has been determined that by employing numerical heat conduction calculations, the contribution of ${R}_{c,m}$ decreases to about 30–40% compared to the values that correspond to the serpentine resistance thermometer [91]. The device fabrication and sample transfer are also time-consuming and complex with this technique. In most cases, exfoliated 2D materials are transferred to the thermal bridge structure using a dry transfer method, causing polymer residues, defects, and rough edges on the sample surface that greatly affect the measured total thermal resistance [32,94]. Within the temperature range of 4 to 400 K, the suspended thermal bridge method can be applied. An advanced method based on the tunnel current in a metal−insulator−superconductor junction has been proposed for sub-Kelvin measurements [95]. This allows measurements to be made down to 1 m·K

#### 5.2. Electron Beam Self-Heating Method

_{2}ribbons [105,106,107]. Also, this method has been employed to measure the interfacial thermal resistance between few-layer MoS

_{2}and Pt electrodes [102].

#### 5.3. Raman Method

#### 5.4. Time-Domain Thermoreflectance Method

_{d}). A schematic is illustrated in Figure 8. The temperature change process is related to the thermophysical properties of the material.

_{in}) and the inverted signal (V

_{out}) based on the modulation frequency, which contains the information of the temperature change of the sample surface, and then the in-phase signal and the inverted signal can be obtained. Finally, the thermal conductivity model is derived and the experimental data is fitted to extract the correlation of the thermal properties of the sample data. Measurements of the thermophysical properties of 2D materials, such as graphene [123], black phosphorus [55], molybdenum sulfide [92,93], and tungsten selenide [124], including thermal interface resistance between the graphene and SiO

_{2}[125], have been conducted using the TDTR method.

#### 5.5. Micro-Suspended-Pad Method

_{2}[129]. Due to the accuracy of this method, the electrical signal can be very precisely derived. In addition, the interpretation of the data is very clear. The input current can accurately control the heat flux, and the temperature can be precisely measured via temperature-dependent electrical resistance. Thermal conductivity can therefore be accurately measured with the heat flux across the pads and the temperature on both pads (usually the uncertainty level is under 5%). A few factors limit its application, despite its effectiveness in measuring the thermal transport properties of nanostructures. First, it is heavily dependent on intricate manufacturing. There is also the possibility of defects arising from sample preparation as a second factor. This includes the polymer residues on BN samples [43] or the defects in black phosphorus [128]. Before using this method, it is important to take into account these factors.

## 6. Research Progress on 2D Thermal Conductivity

#### 6.1. Graphene

_{2}−graphene−SiO

_{2}sandwich structure and found that the thermal conductivity will be further reduced, especially the single-layer sandwich graphene structure. Iits room temperature thermal conductivity is far below 160 W/m·K (the specific value in this article is too low to be measured and only an upper limit is given), indicating that the substrate has a very significant inhibitory effect on the thermal conductivity of graphene.

#### 6.2. Boron Nitride

#### 6.3. Molybdenum Sulfide and Other Transition Metal Sulfides

_{2}, where M is transition metal elements such as Mo, W, Ti, and X represents chalcogen elements, including S, Se, and Te) are a very important group of two-dimensional materials and their crystal structure is a “sandwich”-like layered structure [150]. Unlike single-layer graphene, single-layer boron nitride, and other two-dimensional materials that only contain one atomic layer, a single-layer transition metal sulfide contains three atomic layers (the transition metal atomic layer is sulfurized). The atomic layer of group elements is “sandwiched” in the middle, as shown in Figure 9.

#### 6.4. Black Phosphorus, Black Arsenic

#### 6.5. Telluride

#### 6.6. Silicene

#### 6.7. Other 2D Materials

## 7. Summary

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics Based on Two-Dimensional Materials. Nat. Nanotechnol.
**2014**, 9, 768–779. [Google Scholar] [CrossRef] [PubMed] - Kobayashi, M. More than Moore. Kyokai Joho Imeji Zasshi/J. Inst. Image Inf. Telev. Eng.
**2016**, 70, 324–327. [Google Scholar] [CrossRef][Green Version] - Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic Thermoelectric Materials for Energy Harvesting and Temperature Control. Nat. Rev. Mater.
**2016**, 1, 16050. [Google Scholar] [CrossRef] - Saraiva, E.F.; Milan, L.A. Clustering Gene Expression Data Using a Posterior Split-Merge-Birth Procedure. Scand. J. Stat.
**2012**, 39, 399–415. [Google Scholar] [CrossRef] - Xu, X.; Zhou, J.; Chen, J. Thermal Transport in Conductive Polymer–Based Materials. Adv. Funct. Mater.
**2020**, 30, 1904704. [Google Scholar] [CrossRef] - Moore, A.L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today
**2014**, 17, 163–174. [Google Scholar] [CrossRef] - Qiu, H.; Xu, T.; Wang, Z.; Ren, W.; Nan, H.; Ni, Z.; Chen, Q.; Yuan, S.; Miao, F.; Song, F.; et al. Hopping Transport through Defect-Induced Localized States in Molybdenum Disulphide. Nat. Commun.
**2013**, 4, 2642. [Google Scholar] [CrossRef][Green Version] - Qiu, H.; Pan, L.; Yao, Z.; Li, J.; Shi, Y.; Wang, X. Electrical Characterization of Back-Gated Bi-Layer MoS
_{2}Field-Effect Transistors and the Effect of Ambient on Their Performances. Appl. Phys. Lett.**2012**, 100, 67–70. [Google Scholar] [CrossRef] - Yu, Z.; Pan, Y.; Shen, Y.; Wang, Z.; Ong, Z.Y.; Xu, T.; Xin, R.; Pan, L.; Wang, B.; Sun, L.; et al. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering. Nat. Commun.
**2014**, 5, 5290. [Google Scholar] [CrossRef][Green Version] - Liu, Y.; Wu, H.; Cheng, H.C.; Yang, S.; Zhu, E.; He, Q.; Ding, M.; Li, D.; Guo, J.; Weiss, N.O.; et al. Toward Barrier Free Contact to Molybdenum Disulfide Using Graphene Electrodes. Nano Lett.
**2015**, 15, 3030–3034. [Google Scholar] [CrossRef] - Wu, S.C.; Shan, G.; Yan, B. Prediction of Near-Room-Temperature Quantum Anomalous Hall Effect on Honeycomb Materials. Phys. Rev. Lett.
**2014**, 113, 256401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cherukara, M.J.; Narayanan, B.; Kinaci, A.; Sasikumar, K.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Ab Initio-Based Bond Order Potential to Investigate Low Thermal Conductivity of Stanene Nanostructures. J. Phys. Chem. Lett.
**2016**, 7, 3752–3759. [Google Scholar] [CrossRef] [PubMed] - Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov, S.V.; Geim, A.K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA
**2005**, 102, 10451–10453. [Google Scholar] [CrossRef][Green Version] - Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano
**2013**, 7, 2898–2926. [Google Scholar] [CrossRef] - Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano
**2015**, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed] - Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science
**2004**, 306, 666–669. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G.; et al. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol.
**2018**, 13, 246–252. [Google Scholar] [CrossRef][Green Version] - Kasirga, T.S. Thermal Conductivity Measurements in Atomically Thin Materials and Devices; Springer Nature: Gateway East, Singapore, 2020; ISBN 9811553483. [Google Scholar]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science
**2008**, 321, 385–388. [Google Scholar] [CrossRef] - Wu, X.; Shao, Y.; Liu, H.; Feng, Z.; Wang, Y.-L.; Sun, J.-T.; Liu, C.; Wang, J.-O.; Liu, Z.-L.; Zhu, S.-Y.; et al. Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe2. Adv. Mater.
**2017**, 29, 1605407. [Google Scholar] [CrossRef] - Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schäfer, J.; Claessen, R. Bismuthene on a SiC Substrate: A Candidate for a High-Temperature Quantum Spin Hall Material. Science
**2017**, 357, 287–290. [Google Scholar] [CrossRef] - Chen, S.C.; Wu, J.Y.; Lin, M.F. Feature-Rich Magneto-Electronic Properties of Bismuthene. New J. Phys.
**2018**, 20, 062001. [Google Scholar] [CrossRef] - Wang, L.; Li, B. Phononics Gets Hot. Phys. World
**2008**, 21, 27–29. [Google Scholar] [CrossRef] - Hu, B.; Yang, L.; Zhang, Y. Asymmetric Heat Conduction in Nonlinear Lattices. Phys. Rev. Lett.
**2006**, 97, 2–5. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xie, Z.X.; Li, K.M.; Tang, L.M.; Pan, C.N.; Chen, K.Q. Nonlinear Phonon Transport and Ballistic Thermal Rectification in Asymmetric Graphene-Based Three Terminal Junctions. Appl. Phys. Lett.
**2012**, 100, 183110. [Google Scholar] [CrossRef] - Lo, W.C.; Wang, L.; Li, B. Thermal Transistor: Heat Flux Switching and Modulating. J. Phys. Soc. Jpn.
**2008**, 77, 54402. [Google Scholar] - Wang, L.; Li, B. Thermal Logic Gates: Computation with Phonons. Phys. Rev. Lett.
**2007**, 99, 177208. [Google Scholar] [CrossRef][Green Version] - Wang, L.; Li, B. Thermal Memory: A Storage of Phononic Information. Phys. Rev. Lett.
**2008**, 101, 267203. [Google Scholar] [CrossRef][Green Version] - Madelung, O.; Klemens, P.G.; Neuer, G.; White, G.K.; Sundqvist, B.; Uher, C. Thermal Conductivity of Pure Metals and Alloys/Wärmeleitfähigkeit von Reinen Metallen Und Legierungen; Springer: Berlin/Heidelberg, Germany, 1991; Volume 3. [Google Scholar]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.
**2008**, 8, 902–907. [Google Scholar] [CrossRef] - Geick, R.; Perry, C.H.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. Phys. Rev.
**1966**, 146, 543–547. [Google Scholar] [CrossRef] - Jo, I.; Pettes, M.T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal Conductivity and Phonon Transport in Suspended Few-Layer Hexagonal Boron Nitride. Nano Lett.
**2013**, 13, 550–554. [Google Scholar] [CrossRef][Green Version] - Liu, B.; Reddy, C.D.; Jiang, J.; Zhu, H.; Baimova, J.A.; Dmitriev, S.V.; Zhou, K. Thermal Conductivity of Silicene Nanosheets and the Effect of Isotopic Doping. J. Phys. D Appl. Phys.
**2014**, 47, 165301. [Google Scholar] [CrossRef] - Zhang, X.; Xie, H.; Hu, M.; Bao, H.; Yue, S.; Qin, G.; Su, G. Thermal Conductivity of Silicene Calculated Using an Optimized Stillinger-Weber Potential. Phys. Rev. B Condens. Matter Mater. Phys.
**2014**, 89, 054310. [Google Scholar] [CrossRef][Green Version] - Wei, X.; Wang, Y.; Shen, Y.; Xie, G.; Xiao, H.; Zhong, J.; Zhang, G. Phonon Thermal Conductivity of Monolayer MoS
_{2}: A Comparison with Single Layer Graphene. Appl. Phys. Lett.**2014**, 105, 2–7. [Google Scholar] [CrossRef] - Peimyoo, N.; Shang, J.; Yang, W.; Wang, Y.; Cong, C.; Yu, T. Thermal Conductivity Determination of Suspended Mono- and Bilayer WS
_{2}by Raman Spectroscopy. Nano Res.**2015**, 8, 1210–1221. [Google Scholar] [CrossRef] - Qin, G.; Zhang, X.; Yue, S.-Y.; Qin, Z.; Wang, H.; Han, Y.; Hu, M. Resonant Bonding Driven Giant Phonon Anharmonicity and Low Thermal Conductivity of Phosphorene. Phys. Rev. B
**2016**, 94, 165445. [Google Scholar] [CrossRef] - Bergman, T.L.; Incropera, F.P.; DeWitt, D.P.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York, NY, USA, 2011; ISBN 0470501979. [Google Scholar]
- Poulikakos, D. Conduction Heat Transfer; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: London, UK, 1959. [Google Scholar]
- Kutateladze, S.S. Fundamentals of Heat Transfer; Edward Arnold: London, UK, 1964; p. 294. [Google Scholar]
- Hahne, E.; Grigull, U. Formfaktor Und Formwiderstand Der Stationären Mehrdimensionalen Wärmeleitung. Int. J. Heat Mass Transf.
**1975**, 18, 751–767. [Google Scholar] [CrossRef] - General Electric Company. Research and Development Center. Heat Transfer Data Book; Heat Transfer and Fluid Flow Data Books; General Electric Company: New York, NY, USA, 1980. [Google Scholar]
- Chen, X.K.; Zeng, Y.J.; Chen, K.Q. Thermal Transport in Two-Dimensional Heterostructures. Front. Mater.
**2020**, 7, 578791. [Google Scholar] [CrossRef] - Goddard, W.A., III; Brenner, D.; Lyshevski, S.E.; Iafrate, G.J. Handbook of Nanoscience, Engineering, and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Lukes, J.R.; Majumdar, A. Monte Carlo Simulation of Silicon Nanowire Thermal Conductivity. J. Heat Transf.
**2005**, 127, 1129–1137. [Google Scholar] [CrossRef][Green Version] - Lacroix, D.; Joulain, K.; Lemonnier, D. Monte Carlo Transient Phonon Transport in Silicon and Germanium at Nanoscales. Phys. Rev. B Condens. Matter Mater. Phys.
**2005**, 72, 064305. [Google Scholar] [CrossRef][Green Version] - Mazumder, S.; Majumdar, A. Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization. J. Heat Transf.
**2001**, 123, 749–759. [Google Scholar] [CrossRef] - Aksamija, Z.; Knezevic, I. Anisotropy and Boundary Scattering in the Lattice Thermal Conductivity of Silicon Nanomembranes. Phys. Rev. B Condens. Matter Mater. Phys.
**2010**, 82, 045319. [Google Scholar] [CrossRef] - Ramayya, E.B.; Maurer, L.N.; Davoody, A.H.; Knezevic, I. Thermoelectric Properties of Ultrathin Silicon Nanowires. Phys. Rev. B Condens. Matter Mater. Phys.
**2012**, 86, 115328. [Google Scholar] [CrossRef][Green Version] - Jeng, M.-S.; Yang, R.; Song, D.; Chen, G. Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation. J. Heat Transf.
**2008**, 130, 042410. [Google Scholar] [CrossRef] - Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Two-Dimensional Phonon Transport in Supported Graphene. Science
**2010**, 328, 213–216. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lindsay, L.; Broido, D.A.; Mingo, N. Flexural Phonons and Thermal Transport in Graphene. Phys. Rev. B Condens. Matter Mater. Phys.
**2010**, 82, 2–7. [Google Scholar] [CrossRef] - Zhu, J.; Park, H.; Chen, J.Y.; Gu, X.; Zhang, H.; Karthikeyan, S.; Wendel, N.; Campbell, S.A.; Dawber, M.; Du, X.; et al. Revealing the Origins of 3D Anisotropic Thermal Conductivities of Black Phosphorus. Adv. Electron. Mater.
**2016**, 2, 1600040. [Google Scholar] [CrossRef][Green Version] - Jang, H.; Wood, J.D.; Ryder, C.R.; Hersam, M.C.; Cahill, D.G. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus. Adv. Mater.
**2015**, 27, 8017–8022. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yan, R.; Simpson, J.R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A.R.; Xing, H.G. Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy. ACS Nano
**2014**, 8, 986–993. [Google Scholar] [CrossRef] - Gu, X.; Li, B.; Yang, R. Layer Thickness-Dependent Phonon Properties and Thermal Conductivity of MoS
_{2}. J. Appl. Phys.**2016**, 119, 085106. [Google Scholar] [CrossRef][Green Version] - Xie, H.; Hu, M.; Bao, H. Thermal Conductivity of Silicene from First-Principles. Appl. Phys. Lett.
**2014**, 104, 131906. [Google Scholar] [CrossRef] - Narayanan, B.; Kinaci, A.; Sen, F.G.; Davis, M.J.; Gray, S.K.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S. Describing the Diverse Geometries of Gold from Nanoclusters to Bulk—A First-Principles-Based Hybrid Bond-Order Potential. J. Phys. Chem. C
**2016**, 120, 13787–13800. [Google Scholar] [CrossRef][Green Version] - Schelling, P.K.; Phillpot, S.R.; Keblinski, P. Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity. Phys. Rev. B Condens. Matter Mater. Phys.
**2002**, 65, 144306. [Google Scholar] [CrossRef][Green Version] - Deng, Y.X.; Chen, S.Z.; Zeng, Y.; Feng, Y.; Zhou, W.X.; Tang, L.M.; Chen, K.Q. Spin Gapless Semiconductor and Half-Metal Properties in Magnetic Penta-Hexa-Graphene Nanotubes. Org. Electron.
**2018**, 63, 310–317. [Google Scholar] [CrossRef] - Rowe, P.; Csányi, G.; Alfè, D.; Michaelides, A. Development of a Machine Learning Potential for Graphene. Phys. Rev. B
**2018**, 97, 054303. [Google Scholar] [CrossRef][Green Version] - Sellan, D.P.; Landry, E.S.; Turney, J.E.; McGaughey, A.J.H.; Amon, C.H. Size Effects in Molecular Dynamics Thermal Conductivity Predictions. Phys. Rev. B Condens. Matter Mater. Phys.
**2010**, 81, 214305. [Google Scholar] [CrossRef][Green Version] - Sevik, C.; Kinaci, A.; Haskins, J.B.; ÇaǧIn, T. Characterization of Thermal Transport in Low-Dimensional Boron Nitride Nanostructures. Phys. Rev. B Condens. Matter Mater. Phys.
**2011**, 84, 085409. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Vallabhaneni, A.; Hu, J.; Qiu, B.; Chen, Y.P.; Ruan, X. Phonon Lateral Confinement Enables Thermal Rectification in Asymmetric Single-Material Nanostructures. Nano Lett.
**2014**, 14, 592–596. [Google Scholar] [CrossRef][Green Version] - Zeng, J.; Chen, K.Q.; Tong, Y.X. Covalent Coupling of Porphines to Graphene Edges: Quantum Transport Properties and Their Applications in Electronics. Carbon
**2018**, 127, 611–617. [Google Scholar] [CrossRef] - Chen, T.; Xu, L.; Li, Q.; Li, X.; Long, M. Direction and Strain Controlled Anisotropic Transport Behaviors of 2D GeSe-Phosphorene VdW Heterojunctions. Nanotechnology
**2019**, 30, 445703. [Google Scholar] [CrossRef] - Zhou, Y.; Zheng, X.; Cheng, Z.Q.; Chen, K.Q. Current Superposition Law Realized in Molecular Devices Connected in Parallel. J. Phys. Chem. C
**2019**, 123, 10462–10468. [Google Scholar] [CrossRef] - Fan, Z.Q.; Zhang, Z.H.; Yang, S.Y. High-Performance 5.1 Nm in-Plane Janus WSeTe Schottky Barrier Field Effect Transistors. Nanoscale
**2020**, 12, 21750–21756. [Google Scholar] [CrossRef] [PubMed] - Fan, Z.Q.; Chen, K.Q. Negative Differential Resistance and Rectifying Behaviors in Phenalenyl Molecular Device with Different Contact Geometries. Appl. Phys. Lett.
**2010**, 96, 23–26. [Google Scholar] [CrossRef] - Chen, T.; Guo, C.; Xu, L.; Li, Q.; Luo, K.; Liu, D.; Wang, L.; Long, M. Modulating the Properties of Multi-Functional Molecular Devices Consisting of Zigzag Gallium Nitride Nanoribbons by Different Magnetic Orderings: A First-Principles Study. Phys. Chem. Chem. Phys.
**2018**, 20, 5726–5733. [Google Scholar] [CrossRef] [PubMed] - Xu, Y.; Chen, X.; Gu, B.L.; Duan, W. Intrinsic Anisotropy of Thermal Conductance in Graphene Nanoribbons. Appl. Phys. Lett.
**2009**, 95, 10–13. [Google Scholar] [CrossRef][Green Version] - He, J.; Li, D.; Ying, Y.; Feng, C.; He, J.; Zhong, C.; Zhou, H.; Zhou, P.; Zhang, G. Orbitally Driven Giant Thermal Conductance Associated with Abnormal Strain Dependence in Hydrogenated Graphene-like Borophene. NPJ Comput. Mater.
**2019**, 5, 47. [Google Scholar] [CrossRef][Green Version] - Zhou, Y.H.; Zhang, X.; Ji, C.; Liu, Z.M.; Chen, K.Q. The Length and Hydrogenation Effects on Electronic Transport Properties of Carbon-Based Molecular Wires. Org. Electron.
**2017**, 51, 332–340. [Google Scholar] [CrossRef] - Peng, X.F.; Chen, K.Q. Thermal Transport for Flexural and In-Plane Phonons in Graphene Nanoribbons. Carbon
**2014**, 77, 360–365. [Google Scholar] [CrossRef] - Tian, Z.; Esfarjani, K.; Chen, G. Enhancing Phonon Transmission across a Si/Ge Interface by Atomic Roughness: First-Principles Study with the Green’s Function Method. Phys. Rev. B Condens. Matter Mater. Phys.
**2012**, 86, 235304. [Google Scholar] [CrossRef][Green Version] - Peng, X.F.; Zhou, X.; Tan, S.H.; Wang, X.J.; Chen, L.Q.; Chen, K.Q. Thermal Conductance in Graphene Nanoribbons Modulated by Defects and Alternating Boron-Nitride Structures. Carbon
**2017**, 113, 334–339. [Google Scholar] [CrossRef] - Yan, Z.; Chen, L.; Yoon, M.; Kumar, S. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS
_{2}on Metal Substrates. ACS Appl. Mater. Interfaces**2016**, 8, 33299–33306. [Google Scholar] [CrossRef] - Ma, D.; Ding, H.; Meng, H.; Feng, L.; Wu, Y.; Shiomi, J.; Yang, N. Nano-Cross-Junction Effect on Phonon Transport in Silicon Nanowire Cages. Phys. Rev. B
**2016**, 94, 165434. [Google Scholar] [CrossRef][Green Version] - Kim, P.; Shi, L.; Majumdar, A.; McEuen, P.L. Thermal Transport Measurements of Individual Multiwalled Nanotubes. Phys. Rev. Lett.
**2001**, 87, 215502. [Google Scholar] [CrossRef][Green Version] - Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single-Walled Carbon Nanotubes. Phys. Rev. B
**1999**, 59, R2514–R2516. [Google Scholar] [CrossRef] - Hochbaum, A.I.; Chen, R.; Delgado, R.D.; Liang, W.; Garnett, E.C.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced Thermoelectric Performance of Rough Silicon Nanowires. Nature
**2008**, 451, 163–167. [Google Scholar] [CrossRef] [PubMed] - Guo, J.; Huang, Y.; Wu, X.; Wang, Q.; Zhou, X.; Xu, X.; Li, B. Thickness-Dependent In-Plane Thermal Conductivity and Enhanced Thermoelectric Performance in p-Type ZrTe
_{5}Nanoribbons. Phys. Status Solidi RRL**2019**, 13, 1800529. [Google Scholar] [CrossRef] - Shi, L.; Li, D.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device. J. Heat Transf.
**2003**, 125, 881–888. [Google Scholar] [CrossRef] - Wingert, M.C.; Chen, Z.C.Y.; Kwon, S.; Xiang, J.; Chen, R. Ultra-Sensitive Thermal Conductance Measurement of One-Dimensional Nanostructures Enhanced by Differential Bridge. Rev. Sci. Instrum.
**2012**, 83, 24901. [Google Scholar] [CrossRef] - Dong, L.; Xi, Q.; Chen, D.; Guo, J.; Nakayama, T.; Li, Y.; Liang, Z.; Zhou, J.; Xu, X.; Li, B. Dimensional Crossover of Heat Conduction in Amorphous Polyimide Nanofibers. Natl. Sci. Rev.
**2018**, 5, 500–506. [Google Scholar] [CrossRef][Green Version] - Zheng, J.; Wingert, M.C.; Dechaumphai, E.; Chen, R. Sub-Picowatt/Kelvin Resistive Thermometry for Probing Nanoscale Thermal Transport. Rev. Sci. Instrum.
**2013**, 84, 114901. [Google Scholar] [CrossRef] - Mavrokefalos, A.; Pettes, M.T.; Zhou, F.; Shi, L. Four-Probe Measurements of the in-Plane Thermoelectric Properties of Nanofilms. Rev. Sci. Instrum.
**2007**, 78, 34901. [Google Scholar] [CrossRef] - Alaie, S.; Goettler, D.F.; Abbas, K.; Su, M.F.; Reinke, C.M.; El-Kady, I.; Leseman, Z.C. Microfabricated Suspended Island Platform for the Measurement of In-Plane Thermal Conductivity of Thin Films and Nanostructured Materials with Consideration of Contact Resistance. Rev. Sci. Instrum.
**2013**, 84, 105003. [Google Scholar] [CrossRef] [PubMed] - Yu, C.; Saha, S.; Zhou, J.; Shi, L.; Cassell, A.M.; Cruden, B.A.; Ngo, Q.; Li, J. Thermal Contact Resistance and Thermal Conductivity of a Carbon Nanofiber. J. Heat Transf.
**2005**, 128, 234–239. [Google Scholar] [CrossRef] - Jo, I.; Pettes, M.T.; Lindsay, L.; Ou, E.; Weathers, A.; Moore, A.L.; Yao, Z.; Shi, L. Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods. AIP Adv.
**2015**, 5, 53206. [Google Scholar] [CrossRef][Green Version] - Sood, A.; Xiong, F.; Chen, S.; Cheaito, R.; Lian, F.; Asheghi, M.; Cui, Y.; Donadio, D.; Goodson, K.E.; Pop, E. Quasi-Ballistic Thermal Transport Across MoS
_{2}Thin Films. Nano Lett.**2019**, 19, 2434–2442. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jiang, P.; Qian, X.; Gu, X.; Yang, R. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX
_{2}(M = Mo, W and X = S, Se) Using Time-Domain Thermoreflectance. Adv. Mater.**2017**, 29, 1701068. [Google Scholar] [CrossRef] - Sadeghi, M.M.; Jo, I.; Shi, L. Phonon-Interface Scattering in Multilayer Graphene on an Amorphous Support. Proc. Natl. Acad. Sci. USA
**2013**, 110, 16321–16326. [Google Scholar] [CrossRef][Green Version] - Feshchenko, A.V.; Casparis, L.; Khaymovich, I.M.; Maradan, D.; Saira, O.-P.; Palma, M.; Meschke, M.; Pekola, J.P.; Zumbühl, D.M. Tunnel-Junction Thermometry Down to Millikelvin Temperatures. Phys. Rev. Appl.
**2015**, 4, 34001. [Google Scholar] [CrossRef][Green Version] - Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale Thermal Transport. II. 2003–2012. Appl. Phys. Rev.
**2014**, 1, 11305. [Google Scholar] [CrossRef][Green Version] - Xu, X.; Pereira, L.F.C.; Wang, Y.; Wu, J.; Zhang, K.; Zhao, X.; Bae, S.; Tinh Bui, C.; Xie, R.; Thong, J.T.L.; et al. Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene. Nat. Commun.
**2014**, 5, 3689. [Google Scholar] [CrossRef][Green Version] - Pettes, M.T.; Jo, I.; Yao, Z.; Shi, L. Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene. Nano Lett.
**2011**, 11, 1195–1200. [Google Scholar] [CrossRef] - Wang, J.; Zhu, L.; Chen, J.; Li, B.; Thong, J.T.L. Suppressing Thermal Conductivity of Suspended Tri-Layer Graphene by Gold Deposition. Adv. Mater.
**2013**, 25, 6884–6888. [Google Scholar] [CrossRef] - Wang, C.; Guo, J.; Dong, L.; Aiyiti, A.; Xu, X.; Li, B. Superior Thermal Conductivity in Suspended Bilayer Hexagonal Boron Nitride. Sci. Rep.
**2016**, 6, 25334. [Google Scholar] [CrossRef] [PubMed] - Yarali, M.; Wu, X.; Gupta, T.; Ghoshal, D.; Xie, L.; Zhu, Z.; Brahmi, H.; Bao, J.; Chen, S.; Luo, T.; et al. Effects of Defects on the Temperature-Dependent Thermal Conductivity of Suspended Monolayer Molybdenum Disulfide Grown by Chemical Vapor Deposition. Adv. Funct. Mater.
**2017**, 27, 1704357. [Google Scholar] [CrossRef] - Aiyiti, A.; Hu, S.; Wang, C.; Xi, Q.; Cheng, Z.; Xia, M.; Ma, Y.; Wu, J.; Guo, J.; Wang, Q.; et al. Thermal Conductivity of Suspended Few-Layer MoS
_{2}. Nanoscale**2018**, 10, 2727–2734. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, Z.; Xie, R.; Bui, C.T.; Liu, D.; Ni, X.; Li, B.; Thong, J.T.L. Thermal Transport in Suspended and Supported Few-Layer Graphene. Nano Lett.
**2011**, 11, 113–118. [Google Scholar] [CrossRef] - Aiyiti, A.; Bai, X.; Wu, J.; Xu, X.; Li, B. Measuring the Thermal Conductivity and Interfacial Thermal Resistance of Suspended MoS2 Using Electron Beam Self-Heating Technique. Sci. Bull.
**2018**, 63, 452–458. [Google Scholar] [CrossRef][Green Version] - Liu, D.; Xie, R.; Yang, N.; Li, B.; Thong, J.T.L. Profiling Nanowire Thermal Resistance with a Spatial Resolution of Nanometers. Nano Lett.
**2014**, 14, 806–812. [Google Scholar] [CrossRef] [PubMed] - Zhao, Y.; Liu, X.; Rath, A.; Wu, J.; Li, B.; Zhou, W.X.; Xie, G.; Zhang, G.; Thong, J.T.L. Probing Thermal Transport across Amorphous Region Embedded in a Single Crystalline Silicon Nanowire. Sci. Rep.
**2020**, 10, 821. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhao, Y.; Liu, D.; Chen, J.; Zhu, L.; Belianinov, A.; Ovchinnikova, O.S.; Unocic, R.R.; Burch, M.J.; Kim, S.; Hao, H.; et al. Engineering the Thermal Conductivity along an Individual Silicon Nanowire by Selective Helium Ion Irradiation. Nat. Commun.
**2017**, 8, 15919. [Google Scholar] [CrossRef][Green Version] - Lin, Z.; Liu, C.; Chai, Y. High Thermally Conductive and Electrically Insulating 2D Boron Nitride Nanosheet for Efficient Heat Dissipation of High-Power Transistors. 2D Mater.
**2016**, 3, 041009. [Google Scholar] [CrossRef] - Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E.J.G.; Li, L.H. High Thermal Conductivity of High-Quality Monolayer Boron Nitride and Its Thermal Expansion. Sci. Adv.
**2022**, 5, eaav0129. [Google Scholar] [CrossRef] [PubMed][Green Version] - Luo, Z.; Maassen, J.; Deng, Y.; Du, Y.; Garrelts, R.P.; Lundstrom, M.S.; Ye, P.D.; Xu, X. Anisotropic In-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus. Nat. Commun.
**2015**, 6, 8572. [Google Scholar] [CrossRef] [PubMed][Green Version] - Yu, Y.; Minhaj, T.; Huang, L.; Yu, Y.; Cao, L. In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides. Phys. Rev. Appl.
**2020**, 13, 034059. [Google Scholar] [CrossRef] - Sahoo, S.; Gaur, A.P.S.; Ahmadi, M.; Guinel, M.J.F.; Katiyar, R.S. Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS
_{2}. J. Phys. Chem. C**2013**, 117, 9042–9047. [Google Scholar] [CrossRef][Green Version] - Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High Thermal Conductivity of Suspended Few-Layer Hexagonal Boron Nitride Sheets. Nano Res.
**2014**, 7, 1232–1240. [Google Scholar] [CrossRef] - Balandin, A.A. Thermal Properties of Graphene and Nanostructured Carbon Materials. Nat. Mater.
**2011**, 10, 569–581. [Google Scholar] [CrossRef][Green Version] - Camassel, J.; Falkovsky, L.A.; Planes, N. Strain Effect in Silicon-on-Insulator Materials: Investigation with Optical Phonons. Phys. Rev. B Condens. Matter Mater. Phys.
**2001**, 63, 353091–3530911. [Google Scholar] [CrossRef][Green Version] - Campbell, I.H.; Fauchet, P.M. The Effects of Microcrystal Size and Shape on the One Phonon Raman Spectra of Crystalline Semiconductors. Solid State Commun.
**1986**, 58, 739–741. [Google Scholar] [CrossRef] - Chávez, E.; Fuentes, S.; Zarate, R.A.; Padilla-Campos, L. Structural Analysis of Nanocrystalline BaTiO
_{3}. J. Mol. Struct.**2010**, 984, 131–136. [Google Scholar] [CrossRef] - Mishra, P.; Jain, K.P. Temperature-Dependent Raman Scattering Studies in Nanocrystalline Silicon and Finite-Size Effects. Phys. Rev. B Condens. Matter Mater. Phys.
**2000**, 62, 14790–14795. [Google Scholar] [CrossRef] - Yuan, P.; Wang, R.; Tan, H.; Wang, T.; Wang, X. Energy Transport State Resolved Raman for Probing Interface Energy Transport and Hot Carrier Diffusion in Few-Layered MoS
_{2}. ACS Photonics**2017**, 4, 3115–3129. [Google Scholar] [CrossRef] - Tripp, R.; Ferro-Luzzi, M.; Glashow, S.; Rosenfeld, A. Physical Review Letters. Nature
**1958**, 182, 227–228. [Google Scholar] [CrossRef][Green Version] - Islam, A.; Van Den Akker, A.; Feng, P.X.L. Anisotropic Thermal Conductivity of Suspended Black Phosphorus Probed by Opto-Thermomechanical Resonance Spectromicroscopy. Nano Lett.
**2018**, 18, 7683–7691. [Google Scholar] [CrossRef] [PubMed] - Jiang, P.; Qian, X.; Yang, R. Tutorial: Time-Domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials. J. Appl. Phys.
**2018**, 124, 161103. [Google Scholar] [CrossRef][Green Version] - Schmidt, A.J.; Collins, K.C.; Minnich, A.J.; Chen, G. Thermal Conductance and Phonon Transmissivity of Metal-Graphite Interfaces. J. Appl. Phys.
**2010**, 107, 104907. [Google Scholar] [CrossRef] - Costescu, R.M.; Cahill, D.G.; Fabreguette, F.H.; Sechrist, Z.A.; George, S.M. Ultra-Low Thermal Conductivity in W/Al
_{2}O_{3}Nanolaminates. Science**2004**, 303, 989–990. [Google Scholar] [CrossRef] - Koh, Y.K.; Bae, M.H.; Cahill, D.G.; Pop, E. Heat Conduction across Monolayer and Few-Layer Graphenes. Nano Lett.
**2010**, 10, 4363–4368. [Google Scholar] [CrossRef] - Cahill, D.G. Thermal-Conductivity Measurement by Time-Domain Thermoreflectance. MRS Bull.
**2018**, 43, 768–774. [Google Scholar] [CrossRef] - Li, D.; Wu, Y.; Kim, P.; Shi, L.; Yang, P.; Majumdar, A. Thermal Conductivity of Individual Silicon Nanowires. Appl. Phys. Lett.
**2003**, 83, 2934–2936. [Google Scholar] [CrossRef] - Lee, S.; Yang, F.; Suh, J.; Yang, S.; Lee, Y.; Li, G.; Choe, H.S.; Suslu, A.; Chen, Y.; Ko, C.; et al. Anisotropic In-Plane Thermal Conductivity of Black Phosphorus Nanoribbons at Temperatures Higher than 100 K. Nat. Commun.
**2015**, 6, 8573. [Google Scholar] [CrossRef] - Jo, I.; Pettes, M.T.; Ou, E.; Wu, W.; Shi, L. Basal-Plane Thermal Conductivity of Few-Layer Molybdenum Disulfide. Appl. Phys. Lett.
**2014**, 104, 201902. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature
**2005**, 438, 201–204. [Google Scholar] [CrossRef] [PubMed][Green Version] - Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature
**2005**, 438, 197–200. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Appl. Phys. Lett.
**2008**, 92, 151911. [Google Scholar] [CrossRef][Green Version] - Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition. Nano Lett.
**2010**, 10, 1645–1651. [Google Scholar] [CrossRef] - Chen, S.; Moore, A.L.; Cai, W.; Suk, J.W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.W.; Kang, J.; Shi, L.; et al. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano
**2011**, 5, 321–328. [Google Scholar] [CrossRef] - Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R.R.; Geim, A.K. Thermal Conductivity of Graphene in Corbino Membrane Geometry. ACS Nano
**2010**, 4, 1889–1892. [Google Scholar] [CrossRef][Green Version] - Lee, J.U.; Yoon, D.; Kim, H.; Lee, S.W.; Cheong, H. Thermal Conductivity of Suspended Pristine Graphene Measured by Raman Spectroscopy. Phys. Rev. B Condens. Matter Mater. Phys.
**2011**, 83, 081419. [Google Scholar] [CrossRef][Green Version] - Li, Q.Y.; Xia, K.; Zhang, J.; Zhang, Y.; Li, Q.; Takahashi, K.; Zhang, X. Measurement of Specific Heat and Thermal Conductivity of Supported and Suspended Graphene by a Comprehensive Raman Optothermal Method. Nanoscale
**2017**, 9, 10784–10793. [Google Scholar] [CrossRef] - Xu, X.; Wang, Y.; Zhang, K.; Zhao, X.; Bae, S.; Heinrich, M.; Bui, C.T.; Xie, R.; Thong, J.T.L.; Hong, B.H. Phonon Transport in Suspended Single Layer Graphene. arXiv
**2010**, arXiv:1012.2937. [Google Scholar] - Yoon, K.; Hwang, G.; Chung, J.; Kim, H.G.; Kwon, O.; Kihm, K.D.; Lee, J.S. Measuring the Thermal Conductivity of Residue-Free Suspended Graphene Bridge Using Null Point Scanning Thermal Microscopy. Carbon
**2014**, 76, 77–83. [Google Scholar] [CrossRef] - Nika, D.L.; Ghosh, S.; Pokatilov, E.P.; Balandin, A.A. Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite. Appl. Phys. Lett.
**2009**, 94, 203103. [Google Scholar] [CrossRef][Green Version] - Mei, S.; Maurer, L.N.; Aksamija, Z.; Knezevic, I. Full-Dispersion Monte Carlo Simulation of Phonon Transport in Micron-Sized Graphene Nanoribbons. J. Appl. Phys.
**2014**, 116, 164307. [Google Scholar] [CrossRef][Green Version] - Feng, T.; Lindsay, L.; Ruan, X. Four-Phonon Scattering Significantly Reduces Intrinsic Thermal Conductivity of Solids. Phys. Rev. B
**2017**, 96, 161201. [Google Scholar] [CrossRef][Green Version] - Gu, X.; Fan, Z.; Bao, H.; Zhao, C.Y. Revisiting Phonon-Phonon Scattering in Single-Layer Graphene. Phys. Rev. B
**2019**, 100, 64306. [Google Scholar] [CrossRef][Green Version] - Jang, W.; Chen, Z.; Bao, W.; Lau, C.N.; Dames, C. Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite. Nano Lett.
**2010**, 10, 3909–3913. [Google Scholar] [CrossRef] - Duclaux, L.; Nysten, B.; Issi, J.-P.; Moore, A.W. Structure and Low-Temperature Thermal Conductivity of Pyrolytic Boron Nitride. Phys. Rev. B
**1992**, 46, 3362–3367. [Google Scholar] [CrossRef] - Simpson, A.; Stuckes, A.D. The Thermal Conductivity of Highly Oriented Pyrolytic Boron Nitride. J. Phys. C Solid State Phys.
**1971**, 4, 1710–1718. [Google Scholar] [CrossRef] - Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M.D.; Gannett, W.; Zettl, A. Atomically Thin Hexagonal Boron Nitride Probed by Ultrahigh-Resolution Transmission Electron Microscopy. Phys. Rev. B
**2009**, 80, 155425. [Google Scholar] [CrossRef] - Lindsay, L.; Broido, D.A. Theory of Thermal Transport in Multilayer Hexagonal Boron Nitride and Nanotubes. Phys. Rev. B
**2012**, 85, 35436. [Google Scholar] [CrossRef][Green Version] - Alam, M.T.; Bresnehan, M.S.; Robinson, J.A.; Haque, M.A. Thermal Conductivity of Ultra-Thin Chemical Vapor Deposited Hexagonal Boron Nitride Films. Appl. Phys. Lett.
**2014**, 104, 13113. [Google Scholar] [CrossRef] - Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS
_{2}: A New Direct-Gap Semiconductor. Phys. Rev. Lett.**2010**, 105, 2–5. [Google Scholar] [CrossRef] [PubMed][Green Version] - Liu, X.; Zhang, G.; Pei, Q.X.; Zhang, Y.W. Phonon Thermal Conductivity of Monolayer MoS
_{2}Sheet and Nanoribbons. Appl. Phys. Lett.**2013**, 103, 133113. [Google Scholar] [CrossRef] - Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS
_{2}Transistors. Nat. Nanotechnol.**2011**, 6, 147–150. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Zhang, Y.W. Thermal Properties of Transition-Metal Dichalcogenide. Chin. Phys. B
**2018**, 27, 034402. [Google Scholar] [CrossRef] - Zhang, X.; Sun, D.; Li, Y.; Lee, G.H.; Cui, X.; Chenet, D.; You, Y.; Heinz, T.F.; Hone, J.C. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS
_{2}and MoSe_{2}Using Refined Optothermal Raman Technique. ACS Appl. Mater. Interfaces**2015**, 7, 25923–25929. [Google Scholar] [CrossRef][Green Version] - Bae, J.J.; Jeong, H.Y.; Han, G.H.; Kim, J.; Kim, H.; Kim, M.S.; Moon, B.H.; Lim, S.C.; Lee, Y.H. Thickness-Dependent in-Plane Thermal Conductivity of Suspended MoS
_{2}Grown by Chemical Vapor Deposition. Nanoscale**2017**, 9, 2541–2547. [Google Scholar] [CrossRef] - Zhao, Y.; Zheng, M.; Wu, J.; Huang, B.; Thong, J.T.L. Studying Thermal Transport in Suspended Monolayer Molybdenum Disulfide Prepared by a Nano-Manipulator-Assisted Transfer Method. Nanotechnology
**2020**, 31, 225702. [Google Scholar] [CrossRef] - Taube, A.; Judek, J.; Łapińska, A.; Zdrojek, M. Temperature-Dependent Thermal Properties of Supported MoS
_{2}Monolayers. ACS Appl. Mater. Interfaces**2015**, 7, 5061–5065. [Google Scholar] [CrossRef] - Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Xie, Y. Nonmonotonic Thickness-Dependence of in-Plane Thermal Conductivity of Few-Layered MoS
_{2}: 2.4 to 37.8 Nm. Phys. Chem. Chem. Phys.**2018**, 20, 25752–25761. [Google Scholar] [CrossRef] - Muratore, C.; Varshney, V.; Gengler, J.J.; Hu, J.J.; Bultman, J.E.; Smith, T.M.; Shamberger, P.J.; Qiu, B.; Ruan, X.; Roy, A.K.; et al. Cross-Plane Thermal Properties of Transition Metal Dichalcogenides. Appl. Phys. Lett.
**2013**, 102, 5–9. [Google Scholar] [CrossRef] - Liu, J.; Choi, G.M.; Cahill, D.G. Measurement of the Anisotropic Thermal Conductivity of Molybdenum Disulfide by the Time-Resolved Magneto-Optic Kerr Effect. J. Appl. Phys.
**2014**, 116, 233107. [Google Scholar] [CrossRef][Green Version] - Wang, R.; Wang, T.; Zobeiri, H.; Yuan, P.; Deng, C.; Yue, Y.; Xu, S.; Wang, X. Measurement of the Thermal Conductivities of Suspended MoS
_{2}and MoSe_{2}by Nanosecond ET-Raman without Temperature Calibration and Laser Absorption Evaluation. Nanoscale**2018**, 10, 23087–23102. [Google Scholar] [CrossRef] [PubMed] - Zobeiri, H.; Wang, R.; Wang, T.; Lin, H.; Deng, C.; Wang, X. Frequency-Domain Energy Transport State-Resolved Raman for Measuring the Thermal Conductivity of Suspended Nm-Thick MoSe
_{2}. Int. J. Heat Mass Transf.**2019**, 133, 1074–1085. [Google Scholar] [CrossRef] - Yan, Z.; Jiang, C.; Pope, T.R.; Tsang, C.F.; Stickney, J.L.; Goli, P.; Renteria, J.; Salguero, T.T.; Balandin, A.A. Phonon and Thermal Properties of Exfoliated TaSe
_{2}Thin Films. J. Appl. Phys.**2013**, 114, 204301. [Google Scholar] [CrossRef][Green Version] - Wang, Y.; Gao, Y.; Easy, E.; Yang, E.H.; Xu, B.; Zhang, X. Thermal Conductivities and Interfacial Thermal Conductance of 2D WSe
_{2}. In Proceedings of the 15th IEEE International Conference on Nano/Micro Engineered and Molecular System, NEMS 2020, San Diego, CA, USA, 27–30 September 2020; pp. 575–579. [Google Scholar] [CrossRef] - Zhou, Y.; Jang, H.; Woods, J.M.; Xie, Y.; Kumaravadivel, P.; Pan, G.A.; Liu, J.; Liu, Y.; Cahill, D.G.; Cha, J.J. Direct Synthesis of Large-Scale WTe
_{2}Thin Films with Low Thermal Conductivity. Adv. Funct. Mater.**2017**, 27, 1605928. [Google Scholar] [CrossRef] - Chen, Y.; Peng, B.; Cong, C.; Shang, J.; Wu, L.; Yang, W.; Zhou, J.; Yu, P.; Zhang, H.; Wang, Y.; et al. In-Plane Anisotropic Thermal Conductivity of Few-Layered Transition Metal Dichalcogenide Td-WTe
_{2}. Adv. Mater.**2019**, 31, 1804979. [Google Scholar] [CrossRef] - Jang, H.; Ryder, C.R.; Wood, J.D.; Hersam, M.C.; Cahill, D.G. 3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide. Adv. Mater.
**2017**, 29, 1700650. [Google Scholar] [CrossRef] [PubMed] - Villegas, C.E.P.; Rocha, A.R.; Marini, A. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus. Nano Lett.
**2016**, 16, 5095–5101. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Zheng, Y.; Rui, K.; Hng, H.H.; Hippalgaonkar, K.; Xu, J.; Sun, W.; Zhu, J.; Yan, Q.; Huang, W. 2D Black Phosphorus for Energy Storage and Thermoelectric Applications. Small
**2017**, 13, 1700661. [Google Scholar] [CrossRef] - Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol.
**2014**, 9, 372–377. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hong, Y.; Zhang, J.; Cheng Zeng, X. Thermal Transport in Phosphorene and Phosphorene-Based Materials: A Review on Numerical Studies. Chin. Phys. B
**2018**, 27, 36501. [Google Scholar] [CrossRef] - Qin, G.; Yan, Q.-B.; Qin, Z.; Yue, S.-Y.; Hu, M.; Su, G. Anisotropic Intrinsic Lattice Thermal Conductivity of Phosphorene from First Principles. Phys. Chem. Chem. Phys.
**2015**, 17, 4854–4858. [Google Scholar] [CrossRef][Green Version] - Chen, Y.; Chen, C.; Kealhofer, R.; Liu, H.; Yuan, Z.; Jiang, L.; Suh, J.; Park, J.; Ko, C.; Choe, H.S.; et al. Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy. Adv. Mater.
**2018**, 30, 1800754. [Google Scholar] [CrossRef] [PubMed][Green Version] - Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Tellurium as a High-Performance Elemental Thermoelectric. Nat. Commun.
**2016**, 7, 10287. [Google Scholar] [CrossRef] [PubMed][Green Version] - Reed, E.J. Two-Dimensional Tellurium. Nature
**2017**, 552, 40–41. [Google Scholar] [CrossRef][Green Version] - Du, Y.; Qiu, G.; Wang, Y.; Si, M.; Xu, X.; Wu, W.; Ye, P.D. One-Dimensional van Der Waals Material Tellurium: Raman Spectroscopy under Strain and Magneto-Transport. Nano Lett.
**2017**, 17, 3965–3973. [Google Scholar] [CrossRef][Green Version] - Qiao, J.; Pan, Y.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-Layer Tellurium: One-Dimensional-like Layered Elementary Semiconductor with Striking Physical Properties. Sci. Bull.
**2018**, 63, 159–168. [Google Scholar] [CrossRef][Green Version] - Gao, Z.; Tao, F.; Ren, J. Unusually Low Thermal Conductivity of Atomically Thin 2D Tellurium. Nanoscale
**2018**, 10, 12997–13003. [Google Scholar] [CrossRef][Green Version] - Gao, Z.; Liu, G.; Ren, J. High Thermoelectric Performance in Two-Dimensional Tellurium: An Ab Initio Study. ACS Appl. Mater. Interfaces
**2018**, 10, 40702–40709. [Google Scholar] [CrossRef] - Chen, J.; Dai, Y.; Ma, Y.; Dai, X.; Ho, W.; Xie, M. Ultrathin β-Tellurium Layers Grown on Highly Oriented Pyrolytic Graphite by Molecular-Beam Epitaxy. Nanoscale
**2017**, 9, 15945–15948. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhu, Z.; Cai, X.; Yi, S.; Chen, J.; Dai, Y.; Niu, C.; Guo, Z.; Xie, M.; Liu, F.; Cho, J.-H.; et al. Multivalency-Driven Formation of Te-Based Monolayer Materials: A Combined First-Principles and Experimental Study. Phys. Rev. Lett.
**2017**, 119, 106101. [Google Scholar] [CrossRef] [PubMed][Green Version] - Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W.A.; Kim, M.J.; Xu, X. Field-Effect Transistors Made from Solution-Grown Two-Dimensional Tellurene. Nat. Electron.
**2018**, 1, 228–236. [Google Scholar] [CrossRef][Green Version] - Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental Evidence for Epitaxial Silicene on Diboride Thin Films. Phys. Rev. Lett.
**2012**, 108, 245501. [Google Scholar] [CrossRef] [PubMed] - Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett.
**2012**, 108, 155501. [Google Scholar] [CrossRef] [PubMed] - Pettes, M.T.; Maassen, J.; Jo, I.; Lundstrom, M.S.; Shi, L. Effects of Surface Band Bending and Scattering on Thermoelectric Transport in Suspended Bismuth Telluride Nanoplates. Nano Lett.
**2013**, 13, 5316–5322. [Google Scholar] [CrossRef] [PubMed] - Zhou, S.; Tao, X.; Gu, Y. Thickness-Dependent Thermal Conductivity of Suspended Two-Dimensional Single-Crystal In
_{2}Se_{3}Layers Grown by Chemical Vapor Deposition. J. Phys. Chem. C**2016**, 120, 4753–4758. [Google Scholar] [CrossRef] - Lee, M.-J.; Ahn, J.-H.; Sung, J.H.; Heo, H.; Jeon, S.G.; Lee, W.; Song, J.Y.; Hong, K.-H.; Choi, B.; Lee, S.-H.; et al. Thermoelectric Materials by Using Two-Dimensional Materials with Negative Correlation between Electrical and Thermal Conductivity. Nat. Commun.
**2016**, 7, 12011. [Google Scholar] [CrossRef][Green Version] - Yang, F.; Wang, R.; Zhao, W.; Jiang, J.; Wei, X.; Zheng, T.; Yang, Y.; Wang, X.; Lu, J.; Ni, Z. Thermal Transport and Energy Dissipation in Two-Dimensional Bi
_{2}O_{2}Se. Appl. Phys. Lett.**2019**, 115, 193103. [Google Scholar] [CrossRef] - Qin, Z.; Qin, G.; Zuo, X.; Xiong, Z.; Hu, M. Orbitally Driven Low Thermal Conductivity of Monolayer Gallium Nitride (GaN) with Planar Honeycomb Structure: A Comparative Study. Nanoscale
**2017**, 9, 4295–4309. [Google Scholar] [CrossRef] - Li, D.; Gao, J.; Cheng, P.; He, J.; Yin, Y.; Hu, Y.; Chen, L.; Cheng, Y.; Zhao, J. 2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties. Adv. Funct. Mater.
**2020**, 30, 1904349. [Google Scholar] [CrossRef] - Mortazavi, B.; Shahrokhi, M.; Raeisi, M.; Zhuang, X.; Pereira, L.F.C.; Rabczuk, T. Outstanding Strength, Optical Characteristics and Thermal Conductivity of Graphene-like BC
_{3}and BC_{6}N Semiconductors. Carbon**2019**, 149, 733–742. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.-Y.; Pei, Q.-X.; Liu, H.-Y.; Wei, N. Thermal Conductivity of a H-BCN Monolayer. Phys. Chem. Chem. Phys.
**2017**, 19, 27326–27331. [Google Scholar] [CrossRef] [PubMed]

**Table 1.**Experimental detail of thermal conductivity in suspended single-/few-layer graphene from different studies.

Preparation Method | Graphene Layers | Thermal Conductivity k/W (m·K)^{−1} |
---|---|---|

Raman Method | ||

Mechanical exfoliation [30] | 1 | ~4840–5300 (Room temperature) |

Mechanical exfoliation [132] | 1 | ~3080–5150 (Room temperature) |

CVD [133] | 1 | ~2500 +1100/−1050 (T = 350 K) |

CVD [133] | 1 | ~1400 +500/−480 (T = 500 K) |

CVD [134] | 1 | ~2600–3100 (T = 350 K) |

Mechanical exfoliation [135] | 1 | ~630 (T = 660 K) |

Mechanical exfoliation [136] | 1 | ~1800 (T = 325 K) |

Mechanical exfoliation [136] | 1 | ~710 (T = 500 K) |

CVD [137] | 1 | ~850–1100 (T = 303–644 K) |

Mechanical exfoliation [137] | 1 | ~1500 (T = 330–445 K) |

Mechanical exfoliation [137] | 2 | ~970 (T = 303–630 K) |

Suspended thermal bridge method | ||

CVD [138] | 1 | ~190 (T = 280 K, L = 0.5 µm) |

CVD [98] | 2 | ~560–620 (Room temperature, L = 5 µm) |

CVD [97] | 1 | ~1689–1831 (T = 300 K, L = 9 µm) |

Scanning thermal microscopy (SThM) | ||

CVD [139] | 1 | ~2100–2430 (T = 335 K) |

**Table 2.**Experimental results of thermal conductivity of suspended single-/few-layer h-BN in different kinds of studies.

Number of Boron Nitride Film Layers | Preparation Method | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K) ^{–1}) |
---|---|---|---|

5 | Mechanical exfoliation [32] | Microbridge thermometer | ~250 |

11 | Mechanical exfoliation [32] | Microbridge thermometer | ~360 |

9 | CVD [113] | Raman method | ~227–280 |

2.1 nm | CVD [108] | Raman method | ~223 |

10 nm/20 nm | CVD [149] | Steady/transient state | ~100 |

2 | Mechanical exfoliation [100] | Thermal bridge method | ~484 +141/−24 |

4 | Mechanical exfoliation [44] | Thermal bridge method | ~286 |

1 | Mechanical exfoliation [109] | Raman method | 751 ± 340 |

2 | Mechanical exfoliation [109] | Raman method | 646 ± 242 |

3 | Mechanical exfoliation [109] | Raman method | 602 ± 247 |

**Table 3.**Experimental results of thermal conductivity of single-/few-layer MoS

_{2}in different kinds of studies.

Preparation Method | Molybdenum Sulfide Film Layers | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K) ^{–1}) |
---|---|---|---|

CVD [112] | 11 | Raman method | ~52 |

Mechanical exfoliation [56] | 1 | Raman method | 34.5 ± 4 |

Mechanical exfoliation [129] | 4 | Thermal bridge method | ~44–45 |

Mechanical exfoliation [129] | 7 | Thermal bridge method | ~48–52 |

Mechanical exfoliation [154] | 1 | Raman method | 84 ± 17 |

Mechanical exfoliation [154] | 2 | Raman method | 77 ± 25 |

Mechanical exfoliation [104] | 4 | Electron beam self-heating | 34 ± 6 |

Mechanical exfoliation [104] | 5 | Electron beam self-heating | 30 ± 3 |

CVD [155] | 1 | Raman method | 13.3 ± 1.4 |

CVD [155] | 2 | Raman method | 15.6 ± 1.5 |

CVD [156] | 1 | Thermal bridge method | ~21–24 |

CVD [111] | 1 | Raman method | 60.3 ± 5.2 |

CVD [111] | 2 | Raman method | 38.4 ± 3.1 |

CVD [111] | 3 | Raman method | 44.8 ± 5.9 |

CVD [111] | 4 | Raman method | 36.9 ± 4.9 |

Mechanical exfoliation [157] | 1 | Raman method | ~62.2 |

Mechanical exfoliation [158] | 4 | Raman method | 60.3 ± 5 |

**Table 4.**Experimental detail of thermal conductivity of single-/few-layer transition metal dichalcogenides in different literatures.

Preparation Method | Number of Film Layers | Measurement Methods | Thermal Conductivity (Room Temperature/300 K) k/(W(m·K) ^{−1}) |
---|---|---|---|

Molybdenum Selenide (MoSe_{2}) | |||

Mechanical exfoliation [154] | 1 | Raman method | 59 ± 18 |

Mechanical exfoliation [154] | 2 | Raman method | 42 ± 13 |

Mechanical exfoliation [161] | 45 nm | Raman method | 11.1 ± 0.4 |

Mechanical exfoliation [161] | 140 nm | Raman method | 20.3 ± 0.9 |

Mechanical exfoliation [162] | 5 nm | Raman method | 6.2 ± 0.9 |

Mechanical exfoliation [162] | 36 nm | Raman method | 10.8 ± 1.7 |

Tantalum Selenide (TaSe_{2}) | |||

Mechanical exfoliation [163] | 45 nm | Raman method | ~9 |

Mechanical exfoliation [163] | 55 nm | Raman method | ~11 |

Tungsten Sulfide (WS_{2}) | |||

CVD [36] | 1 | Raman method | ~32 |

CVD [36] | 2 | Raman method | ~53 |

CVD [111] | 1 | Raman method | 74.8 ± 17.2 |

Tungsten Selenide (Wse_{2}) | |||

CVD [111] | 1 | Raman method | 66 ± 20.9 |

Mechanical exfoliation [164] | 1 | Raman method | 36 ± 12 |

Tungsten Telluride (Wte_{2}) | |||

Mechanical exfoliation [165] | 220 nm | TDTR | ~2 |

Mechanical exfoliation [166] | 11.2 nm | Raman method | ~0.639–0.743 |

Rhenium sulfide (ReS_{2}) | |||

Mechanical exfoliation [167] | 150 nm | TDTR | ~50–70 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kalantari, M.H.; Zhang, X.
Thermal Transport in 2D Materials. *Nanomaterials* **2023**, *13*, 117.
https://doi.org/10.3390/nano13010117

**AMA Style**

Kalantari MH, Zhang X.
Thermal Transport in 2D Materials. *Nanomaterials*. 2023; 13(1):117.
https://doi.org/10.3390/nano13010117

**Chicago/Turabian Style**

Kalantari, Mohammad Hassan, and Xian Zhang.
2023. "Thermal Transport in 2D Materials" *Nanomaterials* 13, no. 1: 117.
https://doi.org/10.3390/nano13010117