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Abstract: Pure and Ag/AgCl-modified titania powders with anatase/rutile/brookite three-phase
mixed structure were prepared by one-step hydrothermal method. The effects of Ag/Ti atomic
percentages on the structure and photocatalytic performance of TiO2 were investigated. The results
showed that pure TiO2 consisted of three phases, anatase, rutile, and brookite, and that Ag addition
promoted the transformation from anatase to rutile. When the molar ratio of Ag/Ti reached 4%, the
AgCl phase appeared. The addition of Ag had little effect on the optical absorption of TiO2; however,
it did favor the separation of photogenerated electrons and holes. The results of photocatalytic
experiments showed that after Ag addition, the degradation degree of rhodamine B (RhB) was
enhanced. When the molar ratio of Ag/Ti was 4%, Ag/AgCl-modified TiO2 exhibited the highest
activity, and the first-order reaction rate constant was 1.67 times higher than that of pure TiO2.

Keywords: TiO2 ; three-phase mixed structure; Ag/AgCl modified; hydrothermal method;
photocatalytic performance

1. Introduction

Because of the relatively low utilization of sunlight and photogenerated charge separa-
tion rate of pure TiO2, the modification of TiO2 to improve its photocatalytic performance
is a research hotspot [1–5]. Reports have shown that ion doping [1,6–8], semiconductor
combination [4,9,10], noble metal modification [11–13], and other modification methods
can effectively enhance the photocatalytic properties of TiO2. Precious metal particles
deposit on the surface of TiO2 to form heterojunctions, which show a surface plasmon reso-
nance (SPR) effect due to the resonance between the electron on the surface of the precious
metal and the light wave under illumination, enhancing the visible region absorption and
improving the sunlight utilization [11,12]. On the other hand, as the Fermi level of noble
metal is lower than the position of the TiO2 conduction band, the electrons in the TiO2
conduction band migrate to the surface of noble metal particles, reducing the probability of
recombination with the valence band holes, which contributes to improvement in quantum
efficiency [13].

Among precious metals, Ag-modified TiO2 is a focus of research [2,14–18]. In recent
years, on the basis of Ag modification, Ag/AgX (X = Cl, Br, I)-modified TiO2 has been
developed. On one hand, the SPR effect of Ag can be used to improve the utilization
of visible light. On the other hand, the presence of AgX is conducive to the separation
of photogenerated charges [19–22]. Jing et al. [20] prepared Ag/AgI-modified TiO2 by a
solvothermal method and found that the activity of Ag/AgI@TiO2 was higher than that of
AgI@TiO2 and pure TiO2, regardless of whether it was irradiated by ultraviolet or visible
light. Yu et al. [21] synthesized Ag/AgCl@TiO2 by combining a precipitation method and
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a photoreduction method. After Ag/AgCl modification, the visible light absorption was
increased and the recombination of photogenerated electrons and holes was significantly
reduced. Thus, the photocatalytic performance was improved.

Generally, TiO2 shows three crystal structures: anatase, rutile, and brookite. When
they combine, a mixed-crystal effect results, and better photocatalytic activity than with
a single crystal can be achieved [23,24]. Anatase/rutile mixed crystals have been studied
widely [10,25–27]. On the basis of two-phase mixed crystals, anatase/rutile/brookite
three-phase mixed structures can be formed, which can further enhance the photocat-
alytic activity [28–30]. In the present study, a one-step hydrothermal method was used
to synthesize Ag/AgCl-modified anatase/rutile/brookite three-phase mixed crystal
photocatalytic materials. The effects of the Ag/Ti molar ratio on the crystal structure,
morphology, element chemical state, surface area, bonding, optical properties, and pho-
tocatalytic performance of the obtained photocatalysts powders under UV–visible light
were studied.

2. Experiment
2.1. Material Preparation

Polyethylene glycol (Analytical Reagent, AR), butyl titanate (AR), anhydrous ethanol
(AR), hydrochloric acid (AR), silver nitrate (AR), and rhodamine B (AR) were purchased
from Chengdu Chron Chemicals Co., Ltd. (Chengdu city, Sichuan province, China). All the
chemical reagents were used directly without further purification.

First, 10 mL butyl titanate was dissolved into 30 mL anhydrous ethanol to obtain
solution A. Then, 1 mL hydrochloric acid and 1 mL polyethylene glycol were dissolved into
30 mL deionized water to acquire solution B, which was added dropwise into solution A.
After continuous stirring, the mixed solution was transferred to the hydrothermal reaction
kettle for hydrothermal treatment at 190 ◦C for 20 h. After precipitation and washing, the
pure TiO2 powder photocatalyst was obtained by drying in the oven at 80 ◦C.

Quantities of 0.0482 g, 0.0964 g, 0.1928 g and 0.2892 g AgNO3 were added to solution
B, and the other preparation steps were the same to gain Ag- and Ag/AgCl-modified TiO2.
The Ag/Ti atomic percentages were 1%, 2%, 4%, and 6%, respectively. The modified TiO2
were marked as x%Ag-TiO2 (x = 1, 2, 4, and 6).

2.2. Characterization Techniques

A DX-2700 X-ray diffractometer (XRD, Dandong Haoyuan Instrument Co. Ltd.,
Dandong, China) was used to characterize the crystal structure of the sample. A Hitachi
SU8220 scanning electron microscope (SEM) and JEM-F200 transmission electron micro-
scope (TEM and HRTEM) were employed to observe the surface morphology (FEI Company,
Hillsboro, OR, USA). An XSAM800 multifunctional surface analysis system (XPS, Thermo
Scientific K-Alpha, Kratos Ltd., Manchester, UK) was used to analyze the composition and
valence of elements. A Mike ASAP2460 analyzer (BET, Mike Instrument Company, Atlanta,
GA, USA) was used to measure the specific surface area. An F-4600 fluorescence spectrum
analyzer with an excitation wavelength of 320 nm (PL, Shimadzu Group Company, Kyoto,
Japan) was used to detect the recombination of photogenerated electrons and holes. A
UV-3600 ultraviolet–visible spectrophotometer was used to analyze optical absorption
(DRS, Shimadzu Group Company, Kyoto, Japan). An Agilent Cary630 Fourier transform
infrared spectrometer (FTIR, Shanghai Weiyi Biotechnology Co. Ltd., Shanghai, China) was
used to analyze the bonding condition. The electrochemical impedance spectroscopy (EIS)
was carried out using an electrochemical workstation (Donghua Test Technology Co. Ltd.,
Taizhou, China) to investigate the catalyst interfacial charge transfer resistance.

2.3. Photocatalytic and Electrochemical Experiment

The photocatalytic performance of the samples was evaluated by taking RhB aqueous
solution as the target pollutant. First, 0.1 g photocatalyst was dispersed in 100 mL (10 mg/L)
RhB solution to form a mixture. After stirring for 30 min, a 250 W xenon lamp (300–800 nm)
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was turned on as the UV–visible light source. The lamp was placed 7.5 cm above the liquid
level. The mixture was taken every 10 min to measure the absorbance (A) at 553 nm. The
degradation degree was computed by the formula (A0 − At)/A0 × 100%.

After the conductive adhesive was evenly coated on the indium tin oxide (ITO) conduc-
tive glass, the sample as dispersed by ethanol ultrasonication was added to the conductive
glass and dried in a 100 ◦C oven to prepare the working electrode. A Ag/AgCl electrode
was used as reference electrode, a platinum electrode as auxiliary electrode, and 0.1 mol/L
Na2SO4 aqueous solution as electrolyte. The electrochemical impedance spectroscopy of
the catalysts was tested via the electrochemical workstation.

3. Results and Discussion
3.1. Crystal Structure

Figure 1 displays the XRD patterns of pure TiO2 and Ag-TiO2. The diffraction peaks of
pure TiO2 at 25.4◦, 36.1◦, and 48.0◦ correspond to the (101), (004), and (200) crystal planes
of anatase. The diffraction peaks appearing at 27.4◦, 54.4◦, and 55.0◦ correspond to the
(110), (105), and (211) crystal planes of rutile. A diffraction peak corresponding to the
brookite (121) crystal plane appeared at 30.8◦, indicating that the three phases of anatase,
rutile, and brookite coexisted in pure TiO2 [28–30]. In addition to the diffraction peaks
of anatase, rutile, and brookite, in the patterns of 1% and 2%Ag-TiO2, new diffraction
peaks appeared at 38.1◦ and 44.3◦ corresponding to the (111) and (200) crystal planes of
elemental Ag. As the Ag/Ti molar ratio increased, the diffraction peaks in 4%Ag-TiO2 and
6%Ag-TiO2 at 27.8◦, 32.3◦, 46.3◦, 55.0◦, and 57.1◦ correspond to the (111), (200), (220), (311),
and (222) crystal planes of AgCl [31]. When the Ag/Ti atomic percentages were 1% and 2%,
Ag@anatase/rutile/brookite composite heterojunctions formed, and when the percentages
were 4% and 6%, Ag/AgCl-modified anatase/rutile/brookite composites formed.
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The average grain size was calculated by Scherrer’s formula [32] as follows:

D =
0.89λ

B cos θ
(1)

where D is the average grain size, B is the full width at half maximum (fwhm), 2θ is the
diffraction angle, and λ is the X-ray wavelength (0.15418 nm for Cu target).
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The mass fractions of anatase, rutile, and brookite were calculated with Equations (2)–(4):

Wa =
ka Aa

ka Aa + Ar + kb Ab
(2)

Wr =
Ar

ka Aa + Ar + kb Ab
(3)

Wb =
kb Ab

ka Aa + Ar + kb Ab
(4)

where ka (0.886) and kb (2.721) are correction coefficients and Aa, Ar, and Ab represent the
relative intensities of the diffraction peaks of anatase (101), rutile (110), and brookite (121)
crystal planes, respectively. The phase composition and average grain size of samples are
summarized in Table 1. The effect of Ag addition on the phase transition from anatase to
rutile is controversial. Both inhibition and promotion have been reported. Some studies
have demonstrated that the deposition of Ag and AgCl particles on the surface of TiO2
hinders the migration of Ti and O atoms and delays the nucleation and growth of rutile,
showing an inhibitory effect [33,34]. Correspondingly, it has also been reported that the
addition of Ag promotes the transformation of anatase to rutile. Scholars have held that
the appearance of Ag and AgCl causes lattice distortion of TiO2, forms surface defects,
and weakens the surface tension of grains, thus promoting phase transformation [35,36].
The content of anatase decreased and rutile content increased after Ag addition, indicating
that the transformation of anatase to rutile was promoted by Ag modification, in line
with [35,36].

Table 1. Phase composition and average crystallite size of pure TiO2 and Ag-TiO2.

Samples
Phase Composition (%)/Crystallite Size (nm)

Anatase/Crystallite Size Rutile/Crystallite Size Brookite/Crystallite Size

pure TiO2 70.0%/9.8 ± 0.4 9.0%/46.2 ± 1.1 21.0%/11.4 ± 1.8
1%Ag-TiO2 53.1%/10.2 ± 0.1 25.4%/25.7 ± 6.4 21.5%/9.9 ± 1.5
2%Ag-TiO2 46.3%/9.6 ± 0.7 22.6%/29.5 ± 6.5 31.1%/12.4 ± 1.2
4%Ag-TiO2 50.0%/10.1 ± 0.2 24.3%/29.3 ± 6.1 25.7%/13.3 ± 0.7
6%Ag-TiO2 52.2%/9.7 ± 0.3 28.0%/35.3 ± 3.8 19.8%/14.1 ± 2.9

3.2. Morphology

Figure 2 depicts SEM images of pure TiO2 (a) and 4%Ag-TiO2 (b). Both samples
showed inconformity in particle size. The agglomerate shape was irregular, and the sizes
of agglomerations ranged from tens to hundreds of nanometers. Figure 2c–g is the SEM
mapping of 4%Ag-TiO2. There were four elements, Ti, O, Ag, and Cl, in the sample, which
were basically evenly distributed in the matrix.
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Figure 3 shows TEM and HRTEM images of pure TiO2 (a,c) and 4%Ag-TiO2 (b,d).
The single-crystal grain sizes of pure TiO2 and 4%Ag-TiO2 were both around 10–20 nm.
The interplanar spacings in Figure 3c, 0.35 nm, 0.32 nm, and 0.29 nm, correspond to the
(101) crystal plane of anatase, the (110) crystal plane of rutile, and the (121) crystal plane
of brookite [28,30,37]. Consistently with the XRD results, the pure TiO2 was a three-phase
coexisting structure of anatase, rutile, and brookite. The interplanar spacing marked in
Figure 3d was 0.35 nm, which corresponds to the (101) crystal plane of anatase. The
interplanar spacings of 0.23 nm and 0.28 nm were indexed to the (111) crystal plane of
elemental Ag and the (200) crystal plane of AgCl [38].

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

   

  
Figure 2. SEM images of (a) pure TiO2 and (b) 4%Ag-TiO2 and SEM mapping of (c–g) 4%Ag-TiO2. 

Figure 3 shows TEM and HRTEM images of pure TiO2 (a,c) and 4%Ag-TiO2 (b,d). 
The single-crystal grain sizes of pure TiO2 and 4%Ag-TiO2 were both around 10–20 nm. 
The interplanar spacings in Figure 3c, 0.35 nm, 0.32 nm, and 0.29 nm, correspond to the 
(101) crystal plane of anatase, the (110) crystal plane of rutile, and the (121) crystal plane 
of brookite [28,30,37]. Consistently with the XRD results, the pure TiO2 was a three-phase 
coexisting structure of anatase, rutile, and brookite. The interplanar spacing marked in 
Figure 3d was 0.35 nm, which corresponds to the (101) crystal plane of anatase. The inter-
planar spacings of 0.23 nm and 0.28 nm were indexed to the (111) crystal plane of ele-
mental Ag and the (200) crystal plane of AgCl [38]. 

  

Figure 3. Cont.



Nanomaterials 2022, 12, 1599 6 of 13Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

  
Figure 3. TEM and HRTEM images of (a,c) pure TiO2 and (b,d) 4%Ag-TiO2. 

3.3. Element Composition 
The XPS spectra of pure TiO2 and 4%Ag-TiO2 are shown in Figure 4. The high-reso-

lution spectra of the 2p peak of Ti are shown in Figure 4b. The binding energies of Ti 2p3/2 
and Ti 2p1/2 of pure TiO2 were 458.5 eV and 464.2 eV, respectively. Meanwhile, the binding 
energies of Ti 2p3/2 and Ti 2p1/2 of 4%Ag-TiO2 were 458.4 eV and 464.2 eV, respectively, 
indicating that the Ti element had +4 valence [39]. Figure 4c shows the O 1s high-resolu-
tion spectra. Pure TiO2 showed two characteristic peaks at 529.4 eV and 530.0 eV, corre-
sponding to lattice oxygen (O2−) and surface hydroxyl (OH−), respectively. The peaks cor-
responding to lattice oxygen (O2−) and surface hydroxyl (OH−) were at 529.3 eV and 530.6 
eV, respectively, in the 4%Ag-TiO2 sample [40]. The high-resolution spectrum of Cl 2p is 
shown in Figure 4d. The binding energies of the Cl 2p3/2 and Cl 2p1/2 orbitals of 4%Ag-TiO2 
were 197.7 eV and 199.0 eV, respectively, indicating that the Cl element had –1 valence 
[39]. The high-resolution spectrum of Ag 3d (Figure 4e) showed two characteristic peaks 
at 366.7 eV and 372.9 eV, which were between the standard values of Ag0 and Ag+ binding 
energy. Binding energies in the middle of Ag0 and Ag+ standard values may have been 
caused by the strong interaction between Ag and AgCl [41–44]. 

  

Figure 3. TEM and HRTEM images of (a,c) pure TiO2 and (b,d) 4%Ag-TiO2.

3.3. Element Composition

The XPS spectra of pure TiO2 and 4%Ag-TiO2 are shown in Figure 4. The high-
resolution spectra of the 2p peak of Ti are shown in Figure 4b. The binding energies of
Ti 2p3/2 and Ti 2p1/2 of pure TiO2 were 458.5 eV and 464.2 eV, respectively. Meanwhile,
the binding energies of Ti 2p3/2 and Ti 2p1/2 of 4%Ag-TiO2 were 458.4 eV and 464.2 eV,
respectively, indicating that the Ti element had +4 valence [39]. Figure 4c shows the O 1s
high-resolution spectra. Pure TiO2 showed two characteristic peaks at 529.4 eV and 530.0 eV,
corresponding to lattice oxygen (O2−) and surface hydroxyl (OH−), respectively. The peaks
corresponding to lattice oxygen (O2−) and surface hydroxyl (OH−) were at 529.3 eV and
530.6 eV, respectively, in the 4%Ag-TiO2 sample [40]. The high-resolution spectrum of
Cl 2p is shown in Figure 4d. The binding energies of the Cl 2p3/2 and Cl 2p1/2 orbitals
of 4%Ag-TiO2 were 197.7 eV and 199.0 eV, respectively, indicating that the Cl element
had −1 valence [39]. The high-resolution spectrum of Ag 3d (Figure 4e) showed two
characteristic peaks at 366.7 eV and 372.9 eV, which were between the standard values of
Ag0 and Ag+ binding energy. Binding energies in the middle of Ag0 and Ag+ standard
values may have been caused by the strong interaction between Ag and AgCl [41–44].
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Figure 4. XPS spectra of pure TiO2 and 4%Ag-TiO2: total spectra (a), Ti 2p (b), O 1s (c), Cl 2p (d) and
Ag 3d (e).

3.4. Surface Area

The specific surface area of photocatalyst is closely related to its photocatalytic activity,
as larger specific surface area can provide more active sites, improving the photocatalytic
properties. Figure 5 shows the N2 adsorption–desorption isotherms and pore size dis-
tributions of pure TiO2 (a) and 4%Ag-TiO2 (b). The pore diameters of the two samples
were concentrated between 5 and 20 nm, indicating that the Ag/AgCl modification had
little effect on the pore diameter. Plenty of studies have shown that the specific surface
area decreases after Ag/AgCl modification. Ag and AgCl nanoparticles occupy part of
the pores of TiO2, reducing pore volume, which leads to a decrease in surface area. The
specific surface area of pure TiO2 was 165.9 m2/g, which was larger that of 4%Ag-TiO2
(149.9 m2/g). After Ag/AgCl modification, the specific surface area of TiO2 decreased
slightly. The results were consistent with the reported literature [20,21,43].

3.5. FTIR Analysis

Figure 6 shows the FTIR spectra of pure TiO2 and 4%Ag-TiO2. The broad absorp-
tion band at 3435.07 cm−1 was attributed to the O-H stretching vibration, and the broad
absorption band at 1635.07 cm−1 was attributed to O-H bending vibration [17,45]. The
position of the stretching vibration peaks of water and the hydroxyl group hardly shifted
after modification, indicating that the structure did not obviously change after Ag addition.
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3.6. Optical Property

Figure 7 shows the PL spectra of samples. The peak intensity of Ag-TiO2 was lower
than that of pure TiO2, indicating that Ag addition was beneficial for inhibiting the recombi-
nation of photoinduced electrons and holes. As the Fermi level of Ag particles is lower than
the conduction band of TiO2, the photogenerated electrons in the TiO2 conduction band mi-
grate to the surface of Ag particles, reducing the recombination probability of photoinduced
electron-hole pairs [31,43]. Some studies have shown that there is an optimal concentration
for noble metal modification. New recombination centers are formed when the concen-
tration is exorbitant, resulting in an increase in PL peak intensity [17]. On the other hand,
Yang et al. [12] found that PL peak intensity declined as Au content increased. In this work,
the recombination of 6% Ag-TiO2 was the lowest, implying that in a certain range, the
higher the Ag/Ti molar ratio was, the higher the photogenerated charge separation of the
Ag/AgCl-modified anatase/rutile/brookite composite photocatalysts was.

Figure 8 presents the ultraviolet–visible absorption spectra of pure TiO2 and Ag-TiO2.
Numerous studies have shown that the absorption of visible light increases after Ag
modification [11,12,18]. In the present study, the spectra of pure TiO2 and Ag-TiO2 were
substantially identical, indicating that Ag or Ag/AgCl modification did not significantly
improve the absorption in visible region. It is worth noting that the UV absorption de-
creased after the addition of Ag and that the higher the Ag/Ti mole ratio was, the greater
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the decrease was. The decreased absorption in the UV region can be attributed to the fact
that excessive Ag particles covered the surface of TiO2 and blocked the light absorption [13].
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3.7. Photocatalytic Activity

Figure 9 presents the degradation degree curves (a) and kinetics curves (b) of RhB
by pure TiO2 and Ag-TiO2. After illumination for 40 min, the degradation degree of RhB
by pure TiO2 was 62.2%. The degradation degrees of 1%, 2%, 4%, and 6%Ag-TiO2 were
75.2%, 73.2%, 79.6%, and 75.4%, respectively. The degradation degrees of modified TiO2
were higher than that of pure TiO2, as the addition of Ag was beneficial for improving
the separation of photogenerated charges. In particular, 4%Ag-TiO2 exhibited the highest
degradation degree. XRD results showed that a AgCl phase formed when the molar ratio
of Ag/Ti reached 4%. AgCl is able to generate Cl0 radicals, which favor photocatalytic
activity [20,43]. It is worth mentioning that the degradation degree of 6%Ag-TiO2 was less
than that of 4%Ag-TiO2. An excessive Ag/Ti molar ratio may lead to more Ag particles
covering the TiO2 surface and hinder the absorption of the light source [13], which was
confirmed by the ultraviolet–visible absorption spectra.
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Figure 9. (a) Degradation degree curves and (b) kinetics curves of pure TiO2 and Ag-TiO2.

Per Figure 9b, time t presented a linear relationship with –ln(C/C0), suggesting that the
photodegradation reaction conformed to a first-order reaction [44]. The first-order reaction
rate constant of pure TiO2 was 0.024 min−1, and those of 1%, 2%, 4%, and 6%Ag-TiO2 were
0.035 min−1, 0.033 min−1, 0.040 min−1, and 0.034 min−1, respectively.

Figure 10 exhibits the electrochemical impedance spectroscopy of pure TiO2 and
4%Ag-TiO2. According to the Nyquist theorem, the diameter of 4%Ag-TiO2 is smaller
than that of TiO2, indicating that it has lower charge movement resistance [46–48]. There-
fore, 4%Ag-TiO2 photocatalyst should exhibit higher photogenerated charge separation
efficiency, which was consistent with the PL spectra.
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It is documented that Ag nanoparticles exhibit an SPR effect under visible light,
resulting in the generation of thermal electrons on Ag particles, some of which cross
the energy barrier and transfer to TiO2 and AgCl conduction bands to participate in the
photocatalytic reaction, improving the photocatalytic performance [39,40,43]. However,
in the present work, the ultraviolet–visible absorption spectra showed that there was no
obvious SPR effect in Ag-TiO2. Therefore, based on characterization and photocatalytic
experimental results, we propose a photodegradation mechanism of Ag/AgCl-modified
anatase/rutile/brookite composite photocatalysts. A schematic diagram of energy band
structure and photogenerated charge transfer of 4%Ag-TiO2 is shown in Figure 11 [21,43].
When TiO2 is excited by light, generating photoinduced charges, as TiO2 is composed of
three phases, anatase, rutile, and brookite, photogenerated electrons can migrate rapidly at
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the phase interfaces, which reduces the probability of recombination with holes. because
of the existence of Ag particles, the Fermi level of which is lower than that of the TiO2
conduction band, the photogenerated electrons in the TiO2 conduction band are injected
into the surface of Ag particles to further reduce the recombination with holes [44]. Not
only that, the surfaces of AgCl particles are enriched with Cl−, and the holes in the AgCl
valence band can oxidize Cl− to form Cl0 radicals, which process is conducive to increasing
the photocatalytic efficiency [43]. Free radicals such as ·OH, ·O2

−, and Cl0 can decompose
RhB into inorganic small molecules, degrading the target pollutants.
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4. Conclusions

Pure and Ag/AgCl-modified anatase/rutile/brookite three-phase mixed crystal TiO2
composites were prepared by a one-step hydrothermal method. The addition of Ag pro-
moted the transformation from anatase to rutile. The addition of Ag did not improve
visible light absorption but was conducive to the separation of photogenerated charges;
therefore, the photocatalytic activity increased. When the Ag/Ti molar ratio was 4%, the
Ag/AgCl@TiO2 exhibited the highest photocatalytic activity. The reaction rate constant k
of 4%Ag-TiO2 was 0.040 min−1, which was higher than that of pure TiO2 (0.024 min−1).
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