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Electrochemical Test

To prepare the working electrode, 3.5 mg of MnO/PC nanohybrid mixed with 1.5 mg
Cabot Vulcan XC-72 carbon (Vc-72) were dispersed in a solution containing 500 pL of
mixed solution (2-propanol mixed with water (Vc3ngo: Vizo= 1:1) and 0.5 wt % Nafion
solution). The suspension was ultrasonically dispersed to form a homogeneous ink.
After that, the ink was pipetted onto the GC electrode and then was naturally drying to
form a thin catalyst layer on the GC electrode. The tests were conducted on a computer-
controlled potentionstat/galvanostat workstation at room temperature. The supporting
electrolyte was 0.1 M KOH aqueous solution, which was purged with N> or Oz (purity
99.995%) for at least 30 min prior to testing and maintained under N> or O atmosphere
during the test. Cyclic voltammograms were recorded from 0.2 to -0.8 V versus
Ag/AgCl in Nz (or) Oz-staurated 0.1 M KOH electrolyte solutions with a scan rate of
20 mV s, All potentials were reported with reference to the reversible hydrogen
electrode (RHE) potential scale. In 0.1 mol L"! KOH solution, the potential of Ag/AgCl

was calibrated as +0.965 V with respect to RHE.
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Figure S1. (A, B) SEM images of porous carbon with different magnifications. (C) XRD patterns
of porous carbon.
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Figure S2. Raman spectra of MnO/PC nanohybrid.
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Figure S3. High-resolution O1s XPS spectra of MnO/PC nanohybrid.



Figure S4. SEM images MnO/PC nanohybrid obtained at 700 °C with different magnifications.
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Figure S5. Typical UV-vis spectra of the oxidation of ABTS by MnO/PC nanohybrid obtained at
700 and 800 <C.
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Figure S6. The influence of pH (A) and temperature (B) on the relative activity of the MnO/PC
nanohybrid.
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Figure S7. LSV curves of PC and MnO/PC nanohybrid at 1600 rpm in O»-saturated 0.1 M KOH.
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Figure S8. (A) Chronoamperometric curves of MnO/PC nanohybrid and Pt/C in O,-saturated 0.1M
KOH with a constant potential 0.65 V (vs. RHE). (B) Chronoamperometric curves of MnO/PC
nanohybrid by adding of 3 M methanol after 330 s in O.-saturated 0.1 M KOH with a constant
potential 0.65 V (vs. RHE).
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Figure S9. Effect of different phenols and ions on HQ sensing with adding the equal amount of

phenols and 10-fold other compounds.
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Table S1. Comparison of the ORR electrochemical performances of MnO/PC nanohybrid with the
reported catalysts and Pt/C.

Catalyst Eonser Electron transfer Limiting current Reference
(V vs. RHE) number density (mA cm™)
MnO - 2.18 1.1 1
MnO/NG 0.89 3.70 4.17 2
MnO 0.70 - 1.1 3
3D-N-RGO/MnO 0.83 3.03 1.62 3
MnO - 2.94-3.14 1.0 4
MnO/RGO - 3.98-4.02 4.72 4
MnO/NC-2 0.987 4 5.4 5
CNTs@MnO - 3.84.0 1.6 6
CNTs@MnOy - 3.2-34 1.4 6
Laccase-mimicking 0.78 3.7 -- 7
Cu—DPA

MnO,/C - 3.54 - 8

Pt/C-20% 0.93 3.9 5.96 This work

MnO/PC nanohybrid 0.83 3.9 5.87 This work
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Table S2. Determination of HQ in real sample using the present colorimetrical method (n= 3).

Sample Added (uM) Found (uM) Recovery (%) RSD (n=3, %)

Tap water 15.0 15.0 100.0 4.0
30.0 28.8 96.0 3.0

Lake water 15.0 14.5 96.7 2.7
30.0 31.9 106.3 4.6
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