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Figure S1. (a) TGA and (b) DSC curves of Fe(acac)3-0.1@ZIF-8. The weight loss was 
attributed to the decomposition of ZIF-8 and the release of Zn species. That is, the Zn nodes 
with a low boiling point of 907°C would evaporate at such high temperatures, leaving the 
N rich defects. 

 

Figure S2. TEM image of Fe(acac)3-0.1@ZIF-8. 
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Figure S3. (a) and (b) are representative HAADF-STEM images of FeSA-NC/CNTs at 
different areas. 

 

Figure S4. (a) N2 sorption isotherms of FeSA-NC/CNTs. (b) Corresponding pore size 
distribution curve calculated using the DFT methods. 
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Figure S5. (a) TEM and (b) HAADF-STEM images of FeNP-NC/CNTs, where typical iron 
single atoms are marked by red circles. 

 
Figure S6. (a) TEM and (b) HAADF-STEM images of FeSA-NC, where typical iron single 
atoms are marked by red circles. 
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Figure S7. XRD patterns of FeSA-NC/CNTs and FeNP-NC/CNTs. 

 
Figure S8. (a) High resolution XPS C 1s spectra of FeSA-NC/CNTs. (b) High resolution 
XPS Fe 2p spectra of FeSA-NC/CNTs. 
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Figure S9. CV curves of FeSA-NC/CNTs in O2-saturated 0.1 M KOH with a sweep rate of 
50 mV/s. 
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Figure S10. Nyquist plots of (a) FeSA-NC/CNTs, (b) FeSA-NC and (c) FeNP-NC/CNTs, 
where the inset is the equivalent circuit model for impedance spectra fitting. Bode plots of 
(d) FeSA-NC/CNTs, (e) FeSA-NC and (f) FeNP-NC/CNTs. 
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Table S1. Fitting results of Fe foil EXAFS 

Sample Shell N R σ2 R factor (%) 

Fe foil 
Fe-Fe 8 2.48 0.008 

1.68 
Fe-Fe 6 2.83 0.008 

Fitting range: 3.09≤k (Å−1)≤12.15 and 1.34≤R (Å)≤3.00 
 
 
Table S2. Fitting results of sample-Fe EXAFS 

Sample Shell N R σ2 R factor (%) 

FeSA-
NC/CNTs 

Fe-N 4.2±0.2 2.01 0.007 0.48 

Fitting range: FeSA-NC/CNTs:2.71≤k (Å−1)≤8.98 and 1.00≤R (Å)≤2.00 
 
 
Table S3. Comparison of ORR performance with some reported non-precious catalysts in 
0.1 M KOH. 

Catalysts 
E1/2 (V 

vs.  
RHE) 

E1/2 relative to  
Pt/C (mV vs.  

RHE) 

JK at 0.85 
V (mV 
cm−2 ) 

Tafel 
slope 
(mV 

dec−1) 

Stability Ref. 

FeSA-
NC/CNTs 

0.86 14 
39.3 (@0.8 

V) 
74.4 

1 mV loss 
after 5000 

cycles 

This 
wor

k 

SA-Fe-
NHPC 

0.93 80 6 (@0.7 V) 57.2 
1 mV loss 

after 10000 
cycles 

[1]  

Fe SAs/N-C 0.91 - - 67 
no decay after 
10000 cycles 

[2] 

Fe/N-G-SAC 0.89 - 
3.837 

(@0.9 V) 
50 

3 mV loss 
after 10000 

cycles 
[3]  

Fe SAC-
MIL101-

1000 
0.94 50 

37.14 
(@0.9 V) 

48.8 

a current 
retention of 

94.3% at 0.7 V 
after 40 000 s 

[4]  

Fe-Nx-C 0.91 90 14.7 69 
a current 

retention of 
99% at 0.3 V 

[5]  
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after 15 h 

Fe-SA/Meso-
C 

0.926 - 92.5 60.8 
6 mV loss 
after 5000 

cycles 
[6] 

FeSA/NSC 0.91 40 19.83 55.9 
3 mV loss 
after 5000 

cycles 
[7] 

Fe-SA/NCS 0.91 60 26.65 53.6 
a current 

retention of 
95% after 20 h 

[8] 

Fe-ISAS/CN 0.861 21 5.74 78 
4 mV loss 
after 5000 

cycles 
[9] 

Fe-N-C/N-
OMC 

0.93 70 87.4 75 
5 mV loss 
after 5000 

cycles 
[10] 

Co/S,N-C 0.84 0 - 76 
no decay after 

3000 cycles 
[11] 

Co-SAC/NC 0.884 28 
3.48 (@0.9 

V) 
- 

a current 
retention of 

90% after 
30000 s 

[12] 

S-Co/N/C 0.86 - - - 

a current 
retention of 
94.9% after 

100 h 

[13] 

Co-N/ZIF-2 0.861 42 
26 (@0.8 

V) 
37.9 

a current 
retention of 

90% at 0.861 V 
after 2 h 

[14] 

Co-
SAs@NHOP

C 
0.851 19 - 51 

no decay after 
5000 cycles 

[15] 

Mn-N-C 0.944 - 96.96 64.24 
no decay after 

5000 cycles 
[16] 

Ca-N, O/C 0.90 30 - - 

a current 
retention of 

83.2% at 0.7 V 
after 28 h 

[17] 

Re SAC 0.72 -80 - - 
a current 

retention of 
80.3% at 0.5 V 

[18] 
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after 80000 s 
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