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Abstract: This study reports a simple new technique for the preparation of novel hexagonal-shaped
mixed metal oxides (MMO) nanorods using Zn/Al-layered double hydroxide (LDH) as a precursor
for dye-sensitized solar cell (DSSC) application. The effect of the Zn to Al molar ratio demonstrated
a sound correlation between the obtained nanorods’ diameter and the fabricated DSSCs efficiency.
Additionally, the optical behavior of the fabricated MMO film as well as the absorption enhancement
due to the utilized dye are also demonstrated; a cut-off phenomenon at around 376 nm corresponds
to the attained hexagonal nanorods. The open-circuit voltage augmented noticeably from 0.6 to
0.64 V alongside an increase in the diameter of nanorods from 64 to 80 nm. The results indicated
that an increment in the diameter of the nanorods is desirable due to the enhanced surface area
through which a higher amount of dye N719 was loaded (0.35 mM/cm2). This, in turn, expedited
the transport of electrons within the MMO matrix resulting in an advanced short-circuit current.
Of the devices fabricated, ZA-8 exhibited the highest fill factor and efficiency of 0.37% and 0.69%,
respectively, because of its boosted short-circuit current and open-circuit voltage.

Keywords: mixed metal oxides nanorods; dye-sensitized solar cell; Zn/Al-layered double hydroxide;
fill factor

1. Introduction

Dye-sensitized solar cells (DSSCs) are considered a perfect forthcoming alternative for
solar energy applications due to their attractive features such as simple preparation process,
environmentally friendly, cost-effective, and relatively high conversion efficiency [1,2].
However, the demands for lower cost, more green, and simple preparation techniques
of semiconductor electrodes are of crucial importance for higher DSSCs consideration.
Recently, mixed metal oxides (MMOs) obtained from layered double hydroxides (LDHs) as
precursors are considered promising photo-anode materials for DSSCs because of their low-
cost and straightforward synthesis techniques [1,3,4]. LDHs are two-dimensional (2D) class
layered anionic clays which consist of binary metallic ions. LDHs have demonstrated a num-
ber of interesting properties in which a wide range of prospective applications are attained,
for instance, drug delivery, catalyst, photodetectors, and dye-sensitized solar cells [5–10].
The thermal treatment of LDHs results in 2D layer collapse and consequently leads to the
formation of MMOs structure [11]. Herein, MMOs have attracted considerable interest
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among researchers for a wide range of applications, such as anode materials, supercapaci-
tors, and photo-catalysts in both ultraviolet and visible light wavelength regions [12–14].
In optoelectronic applications, DSSC in particular, MMOs are newly exhibited as promising
photo-electrode materials due to their substantially high surface area, sufficient electron
injection efficiency, fast photo-responsive behavior as well as similar energy band gap to
that of TiO2 and ZnO, the most widely-used materials in DSSC applications [15–18].

A number of reports in the literature report the utilization of MMOs-based Zn/Al-
LDHs nanostructures for DSSC applications. Zhang et al. demonstrated the occurrence
of hexagonal plate-like MMO particles through which the highest efficiency obtained
was 0.0129% [19]. The same research group also investigated the effect of annealing
temperatures on MMO plate-like structures for DSSC application, in which a 0.015%
conversion efficiency was acquired [20]. Foruzin et al. reported the fabrication of DSSC
using “TiO2@MMO” with plate-like morphology; a conversion efficiency of 1.5% was
attained due to the active role of TiO2 in the MMO matrix [21]. Additionally, plate-like
MMO particles were synthesized at a maximum conversion efficiency of 0.22%, with
respect to the dye employed [22]. Hexagonal sheet-like MMO particles were reported by
Xu et al., wherein the highest efficiency obtained was found to be 1.02% [23]. Wang et al.
revealed the effect of graphene oxide on plate-like MMO structure for DSSC application
with a conversion efficiency of 0.55% [24]. Despite the relatively high conversion efficiency
reported in the literature, simple and straightforward photo-electrode materials with
hexagonal MMO nanorods morphology were not found.

In this attempt, this study reports a simple technique for the preparation of novel
hexagonal-shaped MMO nanorods using Zn/Al-LDH as a precursor. The obtained MMO
nanorod layers were used for the fabrication of photo-electrode for DSSC application.
Subsequently, a robust correlation between the diameter of the nanorods, Zn to Al molar
ratio, and dye loading amount was established.

2. Materials and Methods
2.1. Synthesis of Photo-Electrode Materials

Hexagonal-shaped Zn(Al)O-MMO nanorods derived from Zn/Al-LDH were syn-
thesized via a combination of co-precipitation and hydrothermal methods. In particular,
Zn/Al-LDH precursor was synthesized as a function of the molar ratio of Zn2+ to Al3+ (m),
whereby m = 6, 7, and 8. In this attempt, an aqueous solution was prepared, containing
x M of Zn(NO3)2·6H2O and y M of Al(NO3)3·9H2O under an ambient environment and
a constant stirring rate of 750 rpm. Essentially, the pH of the growth solution was pre-
served at 7 throughout the experiment (under the presence of dropwise addition of sodium
hydroxide, 1.25 M) for the conservancy of a homogeneous growth matrix. Subsequently,
the obtained white precipitate was processed in an autoclave at 65 ◦C for 8 h to confirm
a successful structure growth. Herein, the subsequent solution was later spin-coated on
fluorine-doped tin oxide (FTO, Solaronix, Aubonne, Switzerland) substrate to form a 1 cm2

layer. The deposition process was repeated for three cycles in which each cycle was subject
to an annealing process at 90 ◦C for 30 min. Phase transformation of the fabricated layers
from LDH to MMO was obtained via a thermal treatment process at 350 ◦C for 1 h with a
heating rate of 5 ◦C/min. Finally, the fabricated layers were denoted as ZA-m, where m
designates the molar ratio.

2.2. Fabrication of Photo-Electrode Based DSSC

In this study, the Pt electrode (50 nm) was deposited on the FTO substrate using a
sputtering technique on the counter electrode. Concurrently, the fabricated ZA-m layers
were immersed in a dye solution containing 5 mM of Ruthenizer 535-bisTBA (Solaronix,
N719) for 3 h; the resultant layers were used as the photo-electrode. Afterwards, both
the photo-electrode and the counter-electrode were assembled together using an adhesive
polymer film (Solaronix, 100 µm), which acts as a sealing and separator element. Hereinafter,
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electrolyte Iodolyte Z50 redox couple: iodide/triiodide (Solaronix) was fully captivated
onto the fabricated electrodes via capillarity.

2.3. Characterizations

The thermal stability of the Zn/Al-LDH precursor was investigated via thermogravi-
metric and differential thermal analysis (Mettler Toledo TGA/SBTA851, Columbus, OH,
USA) with a heating rate of 5 ◦C/min. The structural and morphological features of the
fabricated layers were, respectively, studied using X-ray diffraction (XRD, Bruker AXS D8,
Beijing, China) under CuKα radiation and 40 kV, as well as field emission scanning electron
microscopy (FESEM, Hitachi, SU8030, Tokyo, Japan) operated using 1.20 kV accelerating
voltage in conjunction with energy dispersive X-ray analysis (EDX). The optical analysis
of the fabricated layers was evaluated using UV–vis spectrometry (Shimadzu, UV- 3600,
Kyoto, Japan). Finally, the photovoltaic behavior was performed using Keithley 237 SMU
(Cleveland, OH, USA) with an output intensity of 100 mW/cm−2 under simulated AM
1.5 G sunlight.

3. Results and Discussion

Figure 1 depicts the TGA/DTG analysis of the prepared LDH nanorods with a molar
ratio of 8:1, in which three main weight loss stages were attained in the TGA curve; these
are due to water evaporation (~37–150 ◦C), dehydration of brucite-like material in the
2D layers (~150–380 ◦C), carbonate decomposition, and ZnO formation (~380–620 ◦C),
respectively [25,26]. The addressed weight loss stages exhibited a total of ~38% weight
loss. In conjunction, the DTG curve exhibited similar behavior to that obtained in the TGA
pattern. Specifically, three foremost DTG peaks can be observed at ~99 ◦C, 196 ◦C, and
480 ◦C due to water release, ZA-LDH dehydration, and ZnO recrystallization as well as
carbonate decomposition.
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Figure 1. Thermal analysis of pristine LDH with molar ratio of 8:1.

Figure 2a presents the obtained XRD patterns of the prepared LDH samples wherein
four main peaks were noticed corresponding to basal planes (003), (006), and (009) and
non-basal planes (110) and (015) similar to the brucite Mg(OH)2 structure; this was found to
be in accordance with (JCPDS-No:38-0486). Subsequently, the 2D layers structure of LDH
collapse, as well as the ZnO crystal formation, can be seen in Figure 2b. A trinary crystal
formation was mainly perceived, which can be indexed to the growth of the ZnO structure
(JCPDS No: 36-1451). Interestingly, there was no occurrence of Al oxide or Al ions which
evidences the substitution of Al3+ within the MMO matrix [27]. However, the presence of
Al3+ in the MMO matrix was confirmed using the EDX technique (Figure 3d). It is generally
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accepted that the FWHM and crystallite size, obtained using the Debye–Scherer equation
can be utilized as crystal quality indicators. Herein, the demonstrated FWHM (Table 1)
indicated higher crystal quality at a higher molar ratio. The values obtained for FWHM are
0.309, 0.298, and 0.277 for ZA-6, ZA-7, and ZA-8, respectively.
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Table 1. In-depth XRD parameters of the prepared Zn(Al)O-MMO Nanorods (hkl = 101).

Sample 2θ FWHM (deg.)
Crystallite Size

(nm)

ZA-6 36.51 0.309 26.8
ZA-7 36.49 0.298 27.8
ZA-8 36.58 0.277 29.9

The top-prospective of the deposited hexagonal ZA-m-MMO nanorods at different
molar ratios is illustrated in Figure 3. The FESEM indicated that the relative diameter
of the hexagonal nanorods alters along with the utilized molar ratio, in which a higher
molar ratio resulted in higher average hexagonal-nanorod diameters. In particular, sample
ZA-6 exhibited the lowest diameter value (64 nm), while samples ZA-7 and ZA-8 revealed
relatively longer hexagonal-nanorods diameters of 75 and 80 nm, respectively. Hence,
it is equitable to suggest that there is a direct correlation between the nanorods crystal
variation of the deposited MMO and the molar ratio used in this study. The FESEM
images also indicate the occurrence of a nanopencil-like morphology, inset in Figure 3c.
Additionally, the detection of Al3+ within the MMO matrix was confirmed through EDX
analysis Figure 3d. The attained FESEM analysis was found to be in an upright agreement
with the corresponded XRD analysis, FWHM in particular.

The absorbance spectra of the deposited MMO layers are elucidated in Figure 4a.
A cut-off wavelength was noticed at 376 nm, which could be attributed to the attained
hexagonal MMO nanorods structure. This phenomenon was observed along with a slight
bathochromic shift at a high molar ratio (ZA-8), shifting of absorption edge towards a higher
wavelength, the so-called red-shift. Continuously, the absorption spectrum of ZA-8 together
with ZA-8 containing N79 sensitizer is demonstrated in Figure 4b, in which an additional
cut-off phenomenon was perceived at 530 nm. The latter is mainly due to N719′s molecules
that correspond to the transition between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) energy levels; the electromagnetic
radiation absorption creates an excited state through electron excitation [28,29]. This, in
turn, clearly indicates the essential role of N719 in widening the absorption towards a
higher wavelength range. The absorption spectra of the deposited MMO layers containing
dye N719 are depicted in Figure 4c, wherein different intensities were obtained. It is
suggested, therefore, that the amount of N719 loaded on the MMO layers is directly
proportional to the acquired intensities. In conjunction, the amount of N719 loaded was
estimated using the UV-Vis technique, wherein the λ max of five N719 concentrations
were considered, and a linear fitting equation was created. The resultant linear regression
formula (y = 4.057x − 0.245) was used to calculate the loading amount. Henceforth, a
robust relationship between the molar ratio utilized and the amount of N719 loaded was
established (Figure 4d). Particularly, the high molar ratio of the deposited MMO resulted in
a higher amount of N719 loading on the addressed layer/s. These outcomes were expected
from the estimated diameter of the attained hexagonal ZA-m nanorods evidencing that a
larger nanorod diameter leads to advanced N719 loading (Figure 4d). Such a singularity
results in favorable harvesting of light caused by an enlarged surface area and multiple
scattering within the nanorods hexagonal structure.

The energy band diagram of the deposited MMO layers and the utilized N719 are
presented in Figure 5. Upon illumination, light photons are captured via N719 molecules
whereby an electron is excited from HOMO to LUMO in N719, which in turn results in
electron injection from the LUMO of N719 into CB of MMO [23]. This, in turn, expedited
the transport of electrons within the MMO matrix.
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Figure 5. Energy band diagram of MMO and dye N719.

Continuously, the current density (J)–voltage (V) characteristic curves of the fabricated
DSSCs are demonstrated in Figure 6, while the calculated photovoltaic parameters are
presented in Table 2. It can be clearly observed that the applied molar ratio has a positive
impact on the J-V curve displayed. Specifically, the fabricated DSSC based on ZA-8 exhib-
ited the highest Jsc (1.47), Voc (0.64), fill factor (0.73%), and efficiency (0.69%) as compared
to other devices (ZA-6 and ZA-7). DSSCs fabricated based on ZA-6 and ZA-7 showed an
efficiency of 0.41% and 0.59%, respectively, showing a 20% efficiency enhancement. The
demonstrated outcomes agree well with the discussed analysis (FESEM and estimation
of dye loading) that a high molar ratio delivers high DSSC performance (Figure 6). Con-
tinuously, the stability test of the fabricated ZA-8 DSSC was confirmed using a switching
behavior test for a period of 5 min, through which the addressed device showed a stable
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behavior at two different applied voltages (inset in Figure 6). Table 3 shows the current
study’s maximum J−V characteristics as compared to other reported DSSCs-based Zn/Al-
LDH performance; the morphologies reported are demonstrated as well. Our fabricated
ZA-8 DSSCs demonstrated a considerable efficiency (0.69%); however, an efficiency of
1.02% was reported by Xu et al. using the same materials. It should be mentioned that the
aforementioned research group proposed a different structure, sheet-like hexagonal MMO
particles. Furthermore, Foruzin et al. revealed the occurrence of efficiency as high as 1.5%,
which is mainly due to the active role of TiO2 within the MMO matrix.
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Figure 6. J-V characteristic curves of hexagonal MMO nanorods DSSC.

Table 2. In-depth XRD parameters of the prepared Zn(Al)O-MMO Nanorods (hkl = 101).

Sample Dye (mM/cm2) Dia. (nm) Jsc (mA cm−2) Voc (V) FF (%) η (%)

ZA-6 0.28 64 1.17 0.60 0.58 0.41
ZA-7 0.31 75 1.40 0.61 0.69 0.59
ZA-8 0.35 80 1.47 0.64 0.73 0.69

Table 3. J-V characteristics as compared to other studies.

Materials Structure Jsc
(mAcm−2)

Voc
(V)

FF
(%)

η
(%) Ref.

Zn/Al-LDH hexagonal nanorods 1.47 0.64 0.73 0.69 This study
Zn/Al-LDH hexagonal plate-like 0.073 0.43 0.42 0.013 [19]

TiO2@Zn/Al-LDH plate-like 2.63 0.81 0.7 4.50 [21]
Zn/Al-LDH plate-like 1.22 0.49 0.37 0.22 [22]
Zn/Al-LDH hexagonal sheet-like 2.03 0.69 0.72 1.02 [23]
Zn/Al-LDH plate-like 4.46 0.37 0.34 0.55 [24]

4. Conclusions

An easy and new approach for the synthesis of hexagonal MMO nanorods utiliz-
ing LDH as a precursor was successfully proposed for DSSC application. The deposited
MMO films were characterized using TGA/DTG, XRD, FESEM, and UV-Vis techniques.
In particular, the UV-Vis analysis revealed a cut-off phenomenon at 376 nm, which corre-
sponds to the attained hexagonal MMO nanorods. Herein, the effect of the molar ratio
between the employed metals (Zn and Al) delivered a pronounced correlation between the
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microstructural and electrical characteristics of the prepared MMO nanorods and the fabri-
cated DSSCs, respectively. Specifically, increasing the attained MMO nanorods diameter
from 64 to 80 nm resulted in higher open-circuit voltage, from 0.6 to 0.64 V, respectively.
This was particularly crucial as a larger diameter demonstrated a higher utilized dye N719
loading onto the deposited MMO layers (0.35 mM/cm2). The fabricated devices, ZA-8 in
particular, demonstrated a considerable fill factor (0.37%) and efficiency (0.69%), which can
be attributed to the enhanced short-circuit current and open-circuit voltage.
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