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Abstract: Through the amination of oxidized activated carbon with ethylenediamine and then the
adsorption of sulfuric acid, a strong carbon-based solid acid catalyst with hydrogen sulfate (denoted
as AC-N-SO4H) was prepared, of which the surface acid density was 0.85 mmol/g. The acetalization
of benzaldehyde with ethylene glycol catalyzed by AC-N-SO4H was investigated. The optimized
catalyst dosage accounted for 5 wt.% of the benzaldehyde mass, and the molar ratio of glycol to
benzaldehyde was 1.75. After reacting such mixture at 80 ◦C for 5 h, the benzaldehyde was almost
quantitatively converted into acetal; the conversion yield was up to 99.4%, and no byproduct was
detected. It is surprising that the catalyst could be easily recovered and reused ten times without
significant deactivation, with the conversion yield remaining above 99%. The catalyst also exhibited
good substrate suitability for the acetalization of aliphatic aldehydes and the ketalization of ketones
with different 1,2-diols.

Keywords: activated carbon; solid acid catalyst; benzaldehyde; acetals (ketals)

1. Introduction

Synthesis of acetals (ketals) are a class of reactions that are widely used in various
fields, such as organic synthesis [1,2], medical materials [3], carbohydrate chemistry [4],
and bio-based solvents [5]. As a typical representative, benzaldehyde condensed with
ethylene glycol has attracted considerable interest in a number of studies and is widely
used as flavors due to its properties of a fruity aroma with an apple flavor, long-lasting
fragrance, and good chemical stability [6,7]. In traditional catalytic syntheses, sulfuric
acid, hydrochloric acid, p-toluenesulfonic acid, and other inorganic acids can be used
as catalysts in synthesizing acetals (ketals) reactions [8]. These catalytic processes have
advantages of simplicity and high conversion efficiency but are also accompanied by
the disadvantages of side reactions, difficulties in products separation, and the corrosion
of equipment. Therefore, it is imperative to find an appropriate solid acid alternative
to traditional liquid acid catalysts. Currently, molecular sieves [9], solid superacid [10],
heteropoly acid (heteropoly-acid-based ionic liquids [11], TiO2 nanoparticle-exfoliated
montmorillonite [12], 8-hydroxy-2-methylquinoline-modified with H4SiW12O40 [13], Ta/W
mixed addenda heteropolyacid [14], solid oxide acid [7], and carbon-based solid acid [15]
have been used to catalyze the synthesis of acetals (ketals), achieving good catalytic effects
but also accompanied by low yield, poor selectivity, difficult recovery, poor solvent appli-
cability, and the loss of active components [15–17]. Thus, novel economical, efficient, and
reusable solid acid catalysts used in the synthesis of acetals still need to be developed. For
the past few years, solid carbon-based catalysts have attracted the attention of researchers
due to the advantages of abundant resources, large specific surface areas, easy-to-control
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pore structures, and abundant controllable aromatic rings and oxygen-containing func-
tional groups on the surface [18,19]. The catalytic performances of carbon materials are
inseparably related to the type of surface acidic or basic functional groups. Acidic groups
obtained by the simple oxidation of carbon with oxidants, such as HNO3 [20,21], H2SO4 [22],
H2O2 [23], and other oxidants [24], are usually weak acidic groups, such as hydroxyl, car-
boxyl, etc., which stimulate the use in absorption and desorption fields [25,26] but cannot
be applied satisfactorily in the field of catalysis due to the strong acidic requirements of
catalytic reactions. However, the abundant oxygen-containing functional groups on the
surface of carbon provided many possibilities for designing surface functional groups and
use in different catalytic systems. Graphene, mesoporous carbons, and activated carbon are
carbon materials that can be equipped with strong acidic catalytic groups on their surface
and as such have been synthesized with different pretreatment methods and applied in
the synthesis of acetals (ketals) [27–31]. Hosseini M.S. [27] prepared a SulAmp-AC catalyst
with the chemically attached sulfonic acid groups after surface modification with a suit-
able nitrogen-containing spacer group on AC; the conversion rate for benzaldehyde was
98% when the prepared SulAmp-AC used as catalyst. When propyl-SO3H functionalized
graphene oxide (GO-PrSO3H) modified with (3-mercaptopropyl) trimethoxysilane and the
thiol groups oxidized to surface -SO3H residues was used as catalyst, the conversion of
benzaldehyde was 92% [28]. Yuan C. [29] synthesized sulfonic-acid-functionalized core-
shell Fe3O4@carbon microspheres (Fe3O4@C-SO3H), and the conversion of benzaldehyde
was 69% when it was used as a catalyst. Although the different carbon-based catalysts
that have been studied exhibit good catalytic effects on synthesizing acetals (ketals), its
poor reusability due to the leaching of surface-active functional groups [29,31] is still the
main disadvantage of strong carbon-based solid catalysts. The exploration of methods
for preparing stable carbon-based acid catalysts with excellent catalytic performance and
stable functional groups was the focus of related research.

In the preliminary work, our group successfully attached stable aminated groups
on activated carbon with ethylenediamine [32]. Then, to explore carbon materials with
strong and stable acidic functional groups, aminated activated carbon was treated through
impregnation in aqueous sulfuric acid. The effects of preparation conditions on acidic
functional group content on activated carbon surface were investigated. To study catalytic
performance and the stability of acidic groups on the activated carbon surface, condensation
of benzaldehyde with ethylene glycol was used as a probe reaction. The catalyst reusability
and substrate suitability in synthesizing acetals (ketals) reactions were also studied.

2. Materials and Methods
2.1. AC-N-SO4H Preparation

Activated carbon (AC) as a raw material was oxidized with HNO3 and aminated
with ethanediamine. Details of the amination of AC leading to aminated activated carbon
(AC-N) was previously reported [32]. The intermediate was treated with aqueous sulfuric
acid to produce the catalyst denoted as AC-N-SO4H. The product was isolated by filtration
and dried at 105 ◦C for 24 h. The scheme of AC-N-SO4H preparation is shown in Figure 1.
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2.2. Sample Characterization

The density of acid was measured with back titration method: 50 mg sample was
added to 20 mL 0.01 mol/L NaOH and then sonicated for 30 min. After filtration and being
washed with distilled water, groups on AC-N-SO4H were determined with 0.01 mol/L HCl
using mixed bromocresol and green-methyl red as an indicator. FT-IR spectroscopy analysis
was performed using Perkin Elmer 283 spectrometer (Perkin Elmer Instruments Co., Ltd.,
Waltham, MA, USA). The solid was mixed with KBr powder, and the mixture was pressed
into pellets to conduct FT-IR analyses. The FT-IR spectra were recorded between 4000 and
400 cm−1 with a resolution of 4 cm−1 and acquisition rate of 20 scan·min−1. In order to ana-
lyze the thermal stability of the sample, NETZSCH STA 409 PC/PG (NETZSCH-Gerätebau
GmbH, Selb, Germany) thermal gravimetric analyzer was used. The conditions were as
follows: Under 10 ◦C/min heating rate, 20 mg sample was heated from room temperature
to 800 ◦C under N2. Using TriStar 3000 surface area analyzer (Micromeritics Instrument
Ltd., Atlanta, GA, USA), samples surface properties and surface area were characterized
with N2 adsorption measurements at 77 K. The surface area (SBET) was calculated from
isotherms using the Brunauer–Emmett–Teller (BET) equation. The volume of liquid ni-
trogen corresponding to the amount adsorbed at a relative pressure of P/P0 = 0.99 was
defined as the total pore volume.

2.3. AC-N-SO4H Catalytic Properties on Synthesis of Acetals (Ketals)

AC-N-SO4H catalytic properties on synthesis of acetal (ketal) reaction were tested.
Generally, substrates with certain amounts of AC-N-SO4H were added to a three-necked
flask, which was equipped with thermometer and condenser. The effects of reaction tem-
perature, reaction time, catalyst dosage, and molar ratio of alcohol/aldehyde on conversion
were investigated. The recycling performance and substrate suitability of AC-N-SO4H were
also studied. Agilent 6890N gas chromatograph (Agilent Technologies Inc., Santa Clara,
CA, USA) was used to quantitatively analyze the conversion of benzaldehyde and prod-
uct selectivity. The analytical conditions were: toluene as the internal standard, SE-30
capillary column (Beijing Huarui Boyuan S&T development Co., Ltd., Beijing, China)
(30 m × 0.25 mm × 0.25 µm), high-purity nitrogen as carrier gas with 1.0 mL/min flow
rate, FID detector temperature 250 ◦C, injector temperature 250 ◦C, column pressure
0.6 MPa, injection volume 0.2 µL. The column temperature was temperature-programmed
as: held for 3 min at 100 ◦C, then increased to 200 ◦C at a rate of 20 ◦C/min, and held
for 1 min.

3. Results and Discussion
3.1. AC-N-SO4H Preparation

The effects of HNO3 concentration in the oxidation process, reaction temperature in
the amination process, and dilute aqueous sulfuric acid concentration in the acidification
process on the amount of acid on the AC-N-SO4H surface were investigated. The typical
impregnation procedure was as follows: 1 g of AC-N and 20 mL of 4 mol/L aqueous
sulfuric acid were mixed in a beaker and stirred at room temperature for 4 h. After
completion, the prepared solid was filtered and washed, then dried at 105 ◦C for 24 h to
prepare AC-N-SO4H. The effects of preparation conditions are shown in Figure 2a–d.

As shown, the density of -SO4H increased gradually with the initial increased concen-
tration of nitric acid, but when the HNO3 concentration exceeded 12 mol/L, the density
of -SO4H decreased rapidly to 0.5 mmol/L, which was attributed to the reduction of AC
surface functionalizable structures due to strong oxidation process. With the increased tem-
perature in amination process, the density of -SO4H gradually increased, which indicated
that the increase of amination temperature had no destructive effect on AC surface structure
as opposed to that of the HNO3 concentration. With the increased concentration of aqueous
sulfuric acid and longer impregnation time, the density of -SO4H gradually increased. At a
concentration of 4 mol/L and impregnation time of over 4 h, the density of -SO4H did not
increase further. In summary, when the HNO3 concentration was 12 mol/L, the amination
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temperature was 120 ◦C, the dilute aqueous sulfuric acid concentration was 4 mol/L, and
impregnation time was 4 h, the maximum density of -SO4H was 0.85 mmol/g.
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3.2. AC-N-SO4H Structural Analysis
3.2.1. Specific Surface Area

The standard BET equation was used to calculate the surface area of AC-N-SO4H and
its precursor, AC-N. The nitrogen adsorption-desorption curves are shown in Figure 3.
The N2 adsorption isotherms of the samples were belonged to the type IV class, which
indicated the presence of a uniform mesoporous structure [32,33]. An upturned “tail” and
obvious hysteresis loop are shown in both adsorption isotherms, indicating that AC-N
and AC-N-SO4H had a mesoporous structure. Figure 4 shows the results of the pore size
distribution measurements for the samples, which indicated that the impregnation process
with aqueous H2SO4 did not destroy the mesoporous structure in AC-N. The porous
structures of samples are shown in Table 1. According to Table 1, the BET surface area
of AC-N-SO4H was 384 m2/g, only slightly lower than that of AC-N’s 418 m2/g, which
illustrated that there were absolutely no detriments to the pore volume and pore size in the
acidification process.
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Table 1. BET surface area of AC-N and AC-N-SO4H.

Sample BET/m2·g−1 Pore Volume/cm3·g−1 Pore Size/nm

AC-N 418 0.26 2.5
AC-N-SO4H 384 0.23 2.5

3.2.2. FT-IR

FT-IR spectra of AC-N-SO4H and its precursor AC-N are shown in Figure 5. According
to Figure 5, the strong absorption band around 3400 cm−1 corresponds to stretching of
carboxylic O-H group. The broad absorption peak near 1200 cm−1 was the stretching
vibration of groups containing single-bonded oxygen atoms or single-bonded nitrogen
atoms, including phenolic hydroxyl groups, ether bonds, lactones, CN, -NH, -NH2, etc.
The absorption peak that appeared at 1604 cm−1 was due to CN stretching vibration, and
NH stretching vibration, which supposedly appeared at 3400 cm−1, almost overlapped
with -OH stretching vibration. The FT-IR spectrum of AC-N-SO4H almost overlapped with
that of AC-N, indicating that the treatment of aminated activated carbon impregnated with
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sulfuric acid did not destroy the N-containing structure on the AC-N surface. Combined
with the analysis of the types and contents of functional groups on the surface of activated
carbon, the hydrogen sulfate was successfully grafted on the aminated structure.
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3.2.3. TG-DTG

Thermogravimetric analysis was used to analyze the thermostability of AC-N-SO4H
and its precursors; the results are displayed in Figure 6. As shown, there was an obvious
weight loss peak near 92.6 ◦C, attributed to the removal of adsorbed water on AC-N-
SO4H, which was slightly lower than the 98.7 ◦C of AC-N but significantly higher than
the 78.3 ◦C of AC. The results illustrated that after aqueous sulfuric acid treatment, the
hydrophilicity of AC-N-SO4H was slightly lower than that of AC-N but still much higher
than that of activated carbon. Another obvious weight loss peak in AC-N-SO4H appeared
at 270 ◦C, which was mainly due to the removal of N-containing structure immobilized
with sulfuric acid on the surface of carbon materials, and was slightly lower than the
removal temperature of the N-containing structure on the AC-N surface at 350 ◦C. This
was mainly caused by the introduction of the electrophilic group -SO4H, which reduced
the stability of the N-containing structure on carbon surface. In general, after sulfuric acid
immersion treatment, the surface structure stability of activated carbon was slightly worse
than that of aminated activated carbon.
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3.3. AC-N-SO4H Catalytic Properties in Synthesis of Acetals (Ketals)

The condensation of benzaldehyde with ethylene glycol was used as probe reaction to
study the catalytic properties of AC-N-SO4H in the synthesis of acetals (ketals). The general
procedure was as follows: 10 mL solvent cyclohexane, 25 mmol, benzaldehyde, 43.75 mmol
ethylene glycol, and 0.13 g AC-N-SO4H were mixed in a three-necked flask equipped
with a thermometer and reflux condenser and reacted 5 h at 80 ◦C. The effects of reaction
temperature, reaction time, catalyst dosage, and molar ratio of glycol/benzaldehyde on
benzaldehyde conversion were tested. At the same time, the catalytic recycling properties
of AC-N-SO4H in reaction of benzaldehyde condensed with ethylene glycol and the ap-
plicability of different substrates were discussed. The reaction formula of benzaldehyde
condensed with ethylene glycol is shown in Figure 7.
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3.3.1. Effects of Reaction Conditions on Benzaldehyde Conversion

To determine the catalytic properties of the prepared AC-N-SO4H, the effects of reac-
tion temperature, reaction time, catalyst dosage, and the molar ratio of alcohol/aldehyde
on benzaldehyde conversion were discussed. The test results are shown in Figure 8a–d.
According to the results, with the increased reaction temperature, reaction time, and cata-
lyst dosage, benzaldehyde conversion increased gradually until the reaction temperature
reached 80 ◦C, the reaction time reached 5 h, and the catalyst dosage was 5% of the ben-
zaldehyde mass. Under the above conditions, benzaldehyde conversion was above 99%.
When the molar ratio of alcohol/aldehyde was lower than 1.75, benzaldehyde conversion
gradually increased with the increase of ethylene alcohol. Benzaldehyde conversion de-
creased to a certain extent when the amount of ethylene glycol continued to increase. The
main reason for the decreasing benzaldehyde conversion was that the concentration of
benzaldehyde in the reaction system was reduced with the increasing amount of ethylene
glycol, which caused a decrease in collisions between molecules. The selectivity of ben-
zaldehyde glycol acetal was above 99% under all conditions, which indicated a competitive
catalysis mechanism.

3.3.2. Performance of Reusability

Finally, the stability of AC-N-SO4H was tested by performing a recycling experiment;
the test results are presented in Figure 9. In the exploration of catalyst reusable performance,
the catalyst AC-N-SO4H was washed with solvent cyclohexane and then put into the next
reaction cycle. The specific process includes centrifuging out the solid after the reaction
completed and washing the solid three times with cyclohexane to completely remove the
small amount of residual liquid from the previous round of reaction on the surface. The
performance of the catalyst showed no significant reduction even after ten successive runs,
still achieving a 99% benzaldehyde conversion and 99% selectivity. Thus, AC-N-SO4H is
an excellent and stable recyclable solid acid catalyst for the studied benzaldehyde ethylene
glycol acetal reaction.
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3.3.3. Comparison of Catalytic Efficiency with Reported Solid Acid Catalysts

The catalytic efficiency of the prepared AC-N-SO4H and reported solid acid catalysts in
benzaldehyde acetalization with ethylene glycol are briefly listed in Table 2. As can be seen,
different kinds of solid catalysts and carbon-based solid acid catalysts modified by different
methods for the reaction of benzaldehyde condensed with ethylene glycol achieved good
efficiencies. Compared with the results, the AC-N-SO4H catalyst showed similar, sometimes
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even better catalytic performance under mild reaction conditions. Particularly, the prepared
AC-N-SO4H catalyst had an advantage of good reusability, which was mainly due to the
stable existence of strong acidic functional groups on activated carbon, which did not fall
off in the reaction process.

Table 2. Comparison of the catalytic efficiency of the prepared AC-N-SO4H catalyst with various
reported solid acid catalysts in synthesizing benzaldehyde ethylene glycol acetal.

Entry Solid Acid
Catalyst

Catalyst
Amount
(wt.%)

Benzaldehyde:
Ethylene

Glycol

Time
(h)

Temp.
(◦C)

Conv. in
the First

Cycle
(%)

Sel.
(%)

Reaction
Cycle

Conv. in
the Last

Cycle
(%)

Ref.

1 AC-N-SO4H 5 1:1.75 5 80 99 100 10 99 This
study

2 SulAmp-AC 3 1:3 3 90 98 - 4 92 [27]
3 GO-PrSO3H 3 1:3 3 90 92 - 5 80 [28]
4 Fe3O4@C-SO3H 1.3 1:1 2 90 69 97 9 63 [29]
5 SO3H/NCF-600 1.9 1:5 1 90 99 - 5 99 [30]

6 SG-[(CH2)3SO3H-
HIM]HSO4

8.2 1:1.8 1.5 110 95 - 10 90 [31]

7 SulAmp-GO 3 1:3 3 90 86 - - - [27]
8 CeFeTiO 6.9 1:1.6 3 110 97 - - - [7]
9 [PPSH]2HPW12O40 5 1:1.8 3 reflux 85 - - - [11]
10 HMQ-STW 7 1:3 1 105 96 100 5 90 [13]

3.3.4. Substrate Suitability

The suitability of AC-N-SO4H for catalyzing synthesis of acetals (ketals) reactions
with different substrates was investigated. The catalytic effects of AC-N-SO4H on ethylene
glycol, propylene glycol, butylene glycol, chain aldehydes (ketones), cyclic aldehydes
(ketones), and branched o-hydroxybenzaldehyde were investigated. The results are shown
in Table 3: AC-N-SO4H demonstrated excellent catalytic performance on different alcohols
both in chain and cyclic aldehydes (ketones). Only the conversions of salicylaldehyde with
different alcohols were less than 70%, which may be due to its steric hindrance.

Table 3. Conversion of acetals (ketals) reactions with different substrates catalyzed by AC-N-SO4H.

Raw Materials Conv.
(%)Alcohol Aldehydes (Ketones)

Glycol 2-Pentanone 99.20
Glycol Cyclohexanone 98.90
Glycol Butanal 99.12
Glycol 2-Furaldehyde 96.00
Glycol Salicylaldehyde 67.31

1,2-Propanediol 2-Pentanone 99.30
1,2-Propanediol Cyclohexanone 99.12
1,2-Propanediol Butanal 99.10
1,2-Propanediol 2-Furaldehyde 96.55
1,2-Propanediol Salicylaldehyde 66.28
Butane-1,2-diol 2-Pentanone 97.26
Butane-1,2-diol Cyclohexanone 98.09
Butane-1,2-diol Butanal 98.73
Butane-1,2-diol 2-Furaldehyde 90.50
Butane-1,2-diol Salicylaldehyde 63.25

Note: Reaction conditions: 10 mL cyclohexane; 25 mmol aldehyde (ketone); 43.75 mmol alcohol; AC-N-SO4H
accounted for 5% of aldehyde (ketone) mass; reflux temperature, 5 h.
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4. Conclusions

(1) With activated carbon as the raw material, a strong and stable carbon-based solid
acid catalyst with hydrogen sulfate AC-N-SO4H with a surface acid content of
0.85 mmol/g was prepared after oxidation with HNO3, amination with ethylene-
diamine, and acidification with dilute aqueous sulfuric acid. The structural analysis
showed that the specific surface area of AC-N-SO4H was almost the same as that of
AC-N while preserving surface-active functional groups. The N-containing structure
on AC-N surface was not damaged after impregnation with aqueous sulfuric acid.
However, the thermal stability of the activated carbon surface structure was slightly
lower than that of aminated activated carbon AC-N after sulfuric acid impregnation
for introduction of the electrophilic group -SO4H.

(2) As a catalyst, AC-N-SO4H demonstrated excellent performance in synthesis of acetals
(ketals) reactions. In the catalytic condensation of benzaldehyde with ethylene glycol,
the conversion of benzaldehyde and the selectivity of benzaldehyde glycol acetal were
both above 99%. The performance of the catalyst showed no significant reduction even
after ten successive runs, still achieving a 99% benzaldehyde conversion yield and
99% benzaldehyde glycol acetal selectivity. At the same time, AC-N-SO4H showed ex-
cellent catalytic properties in the study of substrate applicability for the condensation
reaction of ethylene glycol, propylene glycol, and butylene glycol with different chain
and cyclic aldehydes (ketones), which indicated the excellent application prospects of
AC-N-SO4H as a solid acid catalyst.

(3) The excellent catalytic properties of AC-N-SO4H in synthesis of acetals (ketals) can
be attributed to its strong acidic functional groups and good stability. This provides
a novel method for preparing carbon materials with stable strong acidic functional
groups on surface. The detailed structure of the modified activated carbon surface
and its catalytic mechanism still need to be further explored.
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