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Abstract: With the continuous advancement in technology, electronic products used in augmented
reality (AR) and virtual reality (VR) have gradually entered the public eye. As a result, the power
supplies of these electronic devices have attracted more attention from scientists. Compared to
traditional power sources, triboelectric nanogenerators (TENGs) are gradually being used for energy
harvesting in self-powered sensing technology such as wearable flexible electronics, including AR
and VR devices due to their small size, high conversion efficiency, and low energy consumption.
As a result, TENGs are the most popular power supplies for AR and VR products. This article first
summarizes the working mode and basic theory of TENGs, then reviews the TENG modules used
in AR and VR devices, and finally summarizes the material selection and design methods used for
TENG preparation. The friction layer of the TENG can be made of a variety of materials such as
polymers, metals, and inorganic materials, and among these, polytetrafluoroethylene (PTFE) and
polydimethylsiloxane (PDMS) are the most popular materials. To improve TENG performance, the
friction layer material must be suitable. Therefore, for different application scenarios, the design
methods of the TENG play an important role in its performance, and a reasonable selection of
preparation materials and design methods can greatly improve the work efficiency of the TENG.
Lastly, we summarize the current research status of nanogenerators, analyze and suggest future
application fields, and summarize the main points of material selection.

Keywords: nanomaterials; triboelectric nanogenerator; AR and VR; self-powered sensing

1. Introduction

The triboelectricity phenomenon has a history that dates back more than 2000 years.
When two objects rub against each other, one object loses electrons, while the other object
gains electrons [1]. The basic working principle of a triboelectric nanogenerator (TENG) is
to generate charges on a material surface by bringing two different friction materials into
contact with each other to generate relative motion. When two different material layers
produce relative motion, the two materials have different electron binding abilities, where
one material inevitably loses electrons and the other material gains electrons. Therefore,
the same number of charges with opposite polarities can be generated on the two material
surfaces. According to the different electron binding abilities of the different materials,
these materials can be arranged in order from high to low, known as the series of tribo-
electric materials, which can be used as a reference for material selection [2,3]. Due to the
wide variety of triboelectric materials, a suitable pair of triboelectric materials depends not
only on their chemical composition but also on their physical properties, such as hardness,
toughness, and shape [4]. Therefore, selecting an appropriate pair of triboelectric materials
is difficult, and it was not until the advent of the first triboelectric nanogenerator in 2012
that this problem was effectively solved [5]. Currently, the most popular materials include
polytetrafluoroethylene (PTFE), polydimethylsiloxane (PDMS), and fluorinated ethylene
propylene (FEP). Researchers have conducted applicability studies on various materials
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to explore their performance characteristics for different application scenarios, and their
TENG applications include tidal energy harvesting [5–9], self-powered sensors [10–12],
and wearable flexible electronic devices [13–18]. PTFE is often used to manufacture TENG
modules in wearable flexible electronic devices, as PTFE film is non-toxic and has the
characteristics of flexibility, transparency, and mechanical stability [19–21]. In addition,
PTFE film corona offers a fast charging time with high efficiency, based on the PTFE film
preparation of TENG. It also has a generally high energy conversion efficiency, high output
voltage, and stable characteristics [22]. PDMS is often used in self-powered, sensing, and
flexible electronic devices because of its inherent elasticity and excellent biocompatibil-
ity [23–26]. In addition, PDMS films can achieve full contact with skin as they can freely
distort and deform, resulting in widespread interest in the material industry [27,28]. When
PDMS is embedded with microstructures and various sensitive materials on the surface,
the sensor exhibits high sensitivity, good linearity, and strong flexibility. More importantly,
the microstructure of the PDMS film can effectively reduce adhesion between materials,
thus promoting relative sliding between the friction layers. Therefore, there is an urgent
need to use PDMS elastomers as the main body to improve the friction characteristics of
the friction layer, and to create TENG with combined excellent flexibility and high output
performance [29].

TENG uses the principle of triboelectricity, where the friction between two materials
is used to convert mechanical energy into other forms. Compared to traditional power
supplies, TENGs can convert scattered and difficult-to-use mechanical energy into electrical
energy [30]. Furthermore, these materials have advantages such as low cost, a simple
design, convenient carrying, a high conversion rate, and a variety of material choices [31,32].
Due to the rapid development of artificial intelligence, there is an increasing demand for
green energy and wearable electronic products. Compared to other forms of green energy,
mechanical energy is the most widely distributed energy in the natural environment and
daily life, and it is not affected by the external environment [33]. Therefore, determining
how to use TENGs to convert mechanical energy into electrical energy and maximize
conversion efficiency has received considerable research attention. Moreover, as a result of
the rapid development of the Internet of Things industry, human–computer interactions
and intelligent perception have gradually entered our daily lives, and human–computer
interactions are no longer limited to voice commands [34]. For example, gesture recognition
can be used for target control, and gesture recognition has been used in VR and AR with
good developmental prospects. Among them, TENG-based AR and VR technology is on
the rise (Figure 1). Compared to traditional control methods, some AR and VR applications
have allowed users to experience convenient and intelligent operations [35] such as VR
glasses [36,37], VR gloves [15,38] and flexible patches. VR gloves can replace the traditional
computer mouse and keyboard accessories to achieve a non-contact operating computer
interface. Furthermore, through intelligent perception technology, game players can have a
more immersive experience.

This article discussed the selection of TENG materials including PTFE, PDMS, and
other materials, and analyzed the advantages and disadvantages of the different mate-
rials. Subsequently, TENG material structures and designs for AR and VR equipment
were introduced, and the applications of AR and VR equipment based on TENG were
summarized, including gloves and flexible patches. Furthermore, TENG was used as a
self-powered sensor module to realize human–computer interactions between the human
and the computer screen, realize the intelligent perception of virtual objects, and achieve
control. Finally, this article summarized the developmental status of TENG worldwide and
discussed the developmental prospects and challenges of further TENG applications for
AR and VR in the future.
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Reprinted with permission from ref.[41]. Copyright 2018 Nano Energy; Reprinted with 
permission from ref.[34]. Copyright 2021 Advanced Materials Technologies; Reprinted with 
permission from ref.[42]. Copyright 2020 Advanced Science; Reprinted with permission from 
ref.[43]. Copyright 2020 Nano Energy. 
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periodic changes result in alternating current [50]. Freestanding is based on the natural 
friction between the friction material and the surrounding air. In this mode, the charge on 
the triboelectric layer can last a long time; thus, no external drive is required [51,52]. 
Moreover, the movement of the triboelectric layers is irregular and an asymmetric electric 
field is formed, generating triboelectric energy between the triboelectric layers. Compared 
to the first two modes, no direct contact occurs between the freestanding triboelectric 
layers; thus, wear between materials is reduced. In the case of the single-electrode 
configuration, one output terminal is connected to the electrode, and the other output 
terminal is virtually grounded, and in the double-electrode configuration, both output 

Figure 1. Application of TENG in AR and VR. Reprinted with permission from Ref. [39]. Copyright
2021 Science Advances; Reprinted with permission from Ref. [40]. Copyright 2019 Nano Energy;
Reprinted with permission from Ref. [41]. Copyright 2018 Nano Energy; Reprinted with permission
from Ref. [34]. Copyright 2021 Advanced Materials Technologies; Reprinted with permission from
Ref. [42]. Copyright 2020 Advanced Science; Reprinted with permission from Ref. [43]. Copyright
2020 Nano Energy.

2. The Basic Theory for TENG

The working modes of TENG can be generally divided into three categories: contact-
separation mode, sliding mode, and freestanding mode. Each mode can be further divided
into single and double electrodes [44], as shown in Figure 2. The contact-separation mode is
composed of two types of dielectrics that face each other, which can be divided into positive
and negative electrodes. When the two electrodes are in contact, the dielectric surface
generates a charge [45]. However, when the two electrodes are separated, a potential
difference is generated on the surface of the two dielectrics, and the charge from the
positive electrode is transferred to the negative electrode. When the two electrodes come
into contact again, the electrons move in opposite directions, and an alternating current is
generated through this alternating back-and-forth process [46]. The sliding mode consists
of the relative motion of two dielectrics, where the surfaces of the two materials generate
charges due to friction; thus, a potential difference forms between the positive and negative
electrodes [47–49]. The change in the effective contact area of the two dielectrics during
the relative motion causes a potential difference to occur, while periodic changes result in
alternating current [50]. Freestanding is based on the natural friction between the friction
material and the surrounding air. In this mode, the charge on the triboelectric layer can
last a long time; thus, no external drive is required [51,52]. Moreover, the movement of
the triboelectric layers is irregular and an asymmetric electric field is formed, generating
triboelectric energy between the triboelectric layers. Compared to the first two modes, no
direct contact occurs between the freestanding triboelectric layers; thus, wear between
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materials is reduced. In the case of the single-electrode configuration, one output terminal
is connected to the electrode, and the other output terminal is virtually grounded, and in
the double-electrode configuration, both output terminals are connected to the electrode.
Among these configurations, the advantages of dual electrodes include higher flexibility
and a wider range of motion [53]. For example, when a car is running, the tire and the
ground is triboelectrically charged. The tire can be used as an output electrode while the
ground acts as another electrode. In this case, a single-electrode mode would be suitable.
However, because of the lack of a real reference electrode, the resulting voltage and current
may be unstable, while the double-electrode modes do not have such a problem [54,55].
Therefore, choosing the correct electrode configuration for each application is important.
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Figure 2. Working modes of TENG.

The charge transfer mechanism in triboelectric electrification has always been a vexing
conundrum among scientists. In 2017, Zhonglin Wang et al. proposed a new method to
investigate the charge transfer changes of TENGs with temperature [56], and determined
why the charges generated in triboelectric electrification were easily retained in the material
at room temperature. For the polymers and amorphous materials summarized in this
paper, an electron cloud-potential well model proposed by Zhonglin Wang et al. was used
to explain the charge transfer mechanism in most polymer materials [57]. As shown in
Figure 3, electron clouds were formed by the electrons, which were localized within the
atoms and occupied specific atomic orbitals. The atoms were represented by potential
wells, whose outer layers were bound by the electrons that formed the atomic electron
clouds [58]. As shown in Figure 3a,d the distance between the electron clouds, EA, and EB,
consisted of the occupied energy levels of the electrons in the atoms of materials A and B,
E1 and E2 were the potential energies required for the electrons to escape from the material
surface, and EA and EB were smaller than E1 and E2, respectively. Before the two materials
came into contact, electrons could not transfer due to the trapping effect of the potential
wells. When material A made contact with material B, the single potential well became a
double well potential, and the electrons could move from material A to material B [59], as
shown in Figure 3b. When materials A and B were separated, most of the electrons that
were transferred to material B were retained due to the potential energy E2 in material
B [60], as shown in Figure 3c. Therefore, positively charged material A and the negatively
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charged material B exhibited a contact electrification effect. As the temperature increased,
the electrons contained more energy, which made it easier to jump out of the potential well
and return to the original material, as shown in Figure 3d. This model elucidated why the
charge generated by contact electrification remained constant due to the potential barrier
of the material.
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Figure 3. Electron transfer model of TENG. Reprinted with permission from ref. [56]. Copyright 2018
Advanced Materials. (a) Material A and material B before contact; (b) the two materials in contact;
(c) the two materials separated; and (d) with increasing temperature, electric charges were released
by the atoms.

What is worth mentioning is that Wang Zhonglin expanded the most famous Maxwell
equations in electrodynamics in 2021 to develop the theoretical framework of nanogener-
ators [61]. The expanded Maxwell equations include not only all the connotations of the
classical Maxwell equations but also the electromagnetic coupling effect resulting from the
motion of the charged medium, and the theoretical architecture of the nanogenerator. So
far, worldwide attention has been paid to the research of nanogenerators because of their
important applications in micro-nano energy, self-driven sensing, blue energy, and artificial
intelligence [62,63]. Nanogenerators convert mechanical energy into electrical signals with
displacement current as a driving force. In 2017, Wang Zhonglin expanded the expression
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of displacement current for the first time to derive the output power of nanogenerators [5].
In 2019, the analytically deduced transport equation of nanogenerators and the analytical
solutions to the four modes of TENG given by Wang Zhonglin laid the overall theoretical
framework of nanogenerators and formed the theoretical basis for the development of this
discipline [61,64].

3. Material Selection for TENG

There are many types of factors that affect TENG performance, and among them,
material selection plays a decisive role. This is because the physical and chemical properties
of triboelectric materials can directly change TENG performance [1,4]. Several parameters
such as power density stability, flexibility, and sustainability must be considered when
designing TENG for specific applications [3]. In addition to high frictional electrical prop-
erties, there are different requirements for materials depending on the application. Some
materials are suitable for energy collection, other materials are suitable for supercapaci-
tors in self-powered sensing systems, while two-dimensional materials have bi-functional
properties [1,44]. For example, Vimal Kumar Mariappana et al. discovered a paper-like
carbyne material [65], and TENG prepared with this thin film exhibited good power density
and energy density. In addition, due to its extensibility and stability, the two-dimensional
material could be used to develop self-powered implantable nanodevices repairable by the
human body [66]. Minsu Seol et al. studied the triboelectric charge behavior of various
two-dimensional materials such as MoS2, WS2, and graphene oxide in the triboelectric
series, and determined that the charge transfer efficiency between the tribomaterials had
an obvious relationship with the effective work function [31]. In addition, the charge char-
acteristics of the friction material could be modified by chemical doping. Hypothetically, to
generate more charges or obtain higher output from TENG, two materials with significantly
different charge affinities are preferred. Theoretically, the greater the difference in charge
affinity of the two materials, the stronger the output voltage and current of the TENG
prepared from the two materials. However, in practice, the two materials with the largest
difference in charge affinity are not selected, as triboelectric electrification between the
two materials depend not only on their chemical composition but also on other physical
properties such as elasticity, friction, and surface topography [67]. The triboelectric effect
of the materials is usually represented by the surface charge density of the material. Even
for the same material, different triboelectric charging processes result in different surface
charge densities. By analyzing the above nanomaterials, studies have shown that many
have good triboelectric properties; moreover, the nanomaterials also exhibit good piezoelec-
tric properties. One such example is polylactic acid (PLA). As a biomaterial, PLA has been
widely used due to its unique advantages such as biocompatibility, biodegradability, and
piezoelectricity [68,69]. The piezoelectric properties of PLA are related to its crystallinity,
crystal phase, and temperature, and the piezoelectric constant of PLA is a function of its
crystallinity [70–73]. Thus, by determining the piezoelectric constant of nanomaterials, one
can compare the piezoelectric or triboelectric properties of materials [74–76].

After reviewing numerous TENG-related articles, we concluded that the following
materials were most widely used: PTFE [19,22,77–81], PDMS [29,82–85], FEP [86–88],
polyester polyethylene terephthalate (PET) [30,89], and graphene [61,85,86]. Figure 4
presents the preparation and characterization of triboelectric materials such as PTFE and
PDMS. The nanostructure on the surface of the PDMS material is clearly visible in Figure 4a,
and the TENG prepared from this thin film exhibited high transparency and stable voltage
output characteristics, as shown in Figure 4b. Figure 4c,d shows the structure diagrams at
different stages during PTFE preparation according to the biaxial stretching method, and
finally, a porous PTFE film was prepared. Figure 4e–g shows characterization of the mixed
PTFE and PDMS films [81]. The voltage and current variation characteristics of the PDMS
films with different PTFE content were analyzed, indicating that the triboelectric properties
of the PDMS films could be improved by adding a suitable amount of PTFE to the PDMS
films. Figure 4h shows a comparison of the charge affinity among the triboelectric material
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family, showing that MOS2 was between PTFE and PDMS. This order also indicated
ordering of the triboelectric properties among the individual materials. These materials
were also used in the AR and VR products reviewed in this paper. In addition to the above
triboelectric materials, cellulosic materials [90] have attracted significant attention due to
their high reproducibility and production efficiency [32], and the output power densities
of cellulose-based TENG have greatly improved [91]. Currently, altering the chemical
properties of engineered polymers is of interest, as the modification method can regulate
the ability of the material surfaces to rub against each other and generate electric charges,
thereby increasing the power output of the TENG [1]. For example, studies have shown that
the hydrophobicity and electrical conductivity of the TENG materials could be changed
by a coating process. Furthermore, inorganic triboelectric two-dimensional materials such
as MoS2 [92] and WS [93,94] have received attention, and the charge mechanisms of these
materials are well known. However, these materials are difficult to prepare due to their
physical properties such as large-area single crystal films. Therefore, research on these
materials is still limited.
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voltages of the triboelectric nanogenerators based on PDMS. Reprinted with permission from Ref. [95].
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materials. Reprinted with permission from Ref. [31]. Copyright 2018 Advanced Materials.
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Currently, there are four basic types of triboelectric nanogenerators: single elec-
trode [97], contact separation [98], lateral sliding [99], and independent triboelectric
layer [60] modes. Triboelectric materials are placed in vertical contact in the single electrode
and contact separation modes, and there are many materials to choose from. Unlike the
first two modes, lateral sliding and independent triboelectric layer modes have specific
requirements for materials, namely low friction coefficients. If the friction coefficient of
the material is high, the relative sliding between the two materials wear away the mate-
rial. Thus, PTFE and PDMS have been widely used in these two modes due to their low
friction coefficients.

4. The Structures of TENG

Over the past two years, nanogenerators have been used more frequently in wear-
able devices, especially gloves. Figure 5a shows two TENG configurations proposed
by Li et al. to meet the requirements for full human-machine interface (HMI) functional-
ity and simplified signal processing capabilities. The TENG was composed of PEDOT
(poly(3,4-ethylenedioxythiophene)), which consisted of a PSS (poly(styrene sulfonate)) coat-
ing with silicone [100]. PEDOT:PSS was chosen because the material offers many excellent
properties such as its physical and chemical properties, which are stable at normal tempera-
ture and pressure, and the material exhibits good transparency, good electrical conductivity,
easy preparation, strong film-forming abilities, and a low cost. As shown in Figure 5b,
Feng et al. proposed a simple coating method for carbon nanotubes (CNTs) [101], achieving
super-hydrophobic textiles with improved output performance [102]. The mechanism of
the material exhibiting superhydrophobicity while also maintaining excellent triboelectric
properties was due to two factors: First, water droplets had difficulty adhering to the
surfaces of CNT and TPE materials due to the obstruction of the superhydrophobic inter-
face, which improved its waterproof performance. Second, because the rough structure
of the CNT and TPE composite surface increased the actual surface area, the friction force
was enhanced and the triboelectric effect became more pronounced. In addition, super-
hydrophobic textiles can quickly resolve moisture and dry quickly in wet environments.
Using this textile solved the problem of the output voltage being susceptible to humidity.
As shown in Figure 5c, a flexible single-electrode two-dimensional control patch was pro-
duced, which could realize in-plane two-dimensional motion control. The control patch
consisted of only three thin layers, namely a PET base layer, a grasping pattern Al electrode
layer, and a PTFE friction layer [103]. The working principle of the two-dimensional control
patch was based on contact electrification and electrostatic induction between the PTFE and
the glove. Due to the different binding abilities to electrons of the two materials, a potential
difference was generated between the PTFE friction surface and the glove. Thus, voltage
output was generated on the peripheral circuit, which acted as a power source. Figure 5d
shows the triboelectric interaction patch with four sensing electrodes, as proposed by
Qiongfeng et al. As a flexible multifunctional human-machine interface, it was used to
detect various human–machine interactions [66]. This patch was also composed of a PET
substrate, an open-loop aluminum electrode (E1~E4), and a PTFE friction layer.
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Figure 6a shows a self-powered delta-parallel human–machine interface (DT-HMI),
which was proposed by Cheng et al. In the DT-HMI, the friction materials used by the
TENG were copper sheets and FEP films. During the initial state, the surface charge of
the copper sheet was balanced. When the gear rotated clockwise, the positive charges in
the FEP film and copper sheet were offset, causing the negative charges on the copper
sheet to repel the ground [105]. When the current flowed from the ground to the copper
electrode, the copper electrode generated a negative pulse. However, detaching the copper
sheet and the FEP membrane produced a positive current signal. Figure 6b shows a
TENG-based three-dimensional control sensor proposed by Tao et al., which was used to
detect and control the movement of objects in a three-dimensional (3D) virtual space. This
device consisted of two identical non-planar TENG sensing modules [106], and the module
was composed of two hemispheres and PTFE film. The PTFE structure was designed
with a hemispherical bottom in order to increase the contact area of the friction material,
thereby increasing the triboelectric charge density of the TENG. In addition, Zhu et al.
developed a continuous DC nanogenerator using one-way charge transport and double-
cross TENG, as shown in Figure 6c [107]. The rotating disc was composed of porous cloth
and the intermediate material cloth was assembled with an acrylic ring [108,109], while
a dielectric pair was connected to the top stator. The dielectric materials consisted of
PMMA (poly(methyl methacrylate)) and PVC (polyvinyl chloride), respectively, where
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the PMMA dielectric exhibited a positive surface charge upon contact with the cloth, and
the PVC dielectric exhibited a negative surface charge on the cloth during operation [110].
Many materials can be used as intermediate materials when arranged in the order of the
three frictional polar materials, such as natural rubber and paper. Considering PVC and
PMMA, Zhu et al. found that a porous cloth with friction-induced polarity reversal was
an ideal intermediate material due to its mechanical strength and flexibility as a friction
layer [43]. The experimental results showed that the larger the contact area between the
intermediate material and the medium, the better the triboelectric performance, the higher
the voltage obtained, and the more charges that were transferred. Therefore, the contact
area between the intermediate material and the dielectric material should be increased as
much as possible. The PMMA film was located on the left side on one quarter of the disk,
and PVC was located on the right side on the other quarter of the disk. Bottom electrodes A
and B consisted of wire electrodes placed in the bottom stator, and the wire electrodes were
made of cloth coated with nickel metal. This electrode was chosen due to its mechanical
properties, as it was flexible and easily integrated into the equipment [111]. Figure 6d
shows an electronic system (ET) based on a TENG for a virtual haptic experience, where
the different polymer films were made of PTFE, Kapton, PET, and PEN [112]. Regarding
the selection of materials for the ET interface, PTFE was selected as a negative triboelectric
material because of its good charging performance and low cost after corona polarization.
Ion bombardment technology has recently been used to modify capacitor energy storage
materials, and experiments showed that this method significantly improved the triboelectric
properties of Kapton film [39]. In this study, a similar ion bombardment technology was
used to improve and enhance TENG in the ET system. In addition, as shown in our
previous work, ion radiation could not be improved due to the weak thermal stability of
the PET film [39]. Therefore, in this study, because polyethylene naphthalate (PEN) had
high thermal stability, we selected it as an alternative material.
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control, Reprinted with permission from Ref. [34]. Copyright 2021 Advanced Materials Technologies;
(b) material structures and physical photos of a self-powered sensor made with PDMS and PTFE,
Reprinted with permission from Ref. [41]. Copyright 2018 Nano Energy; (c) internal structure
diagram and material hierarchy diagram of DC-DTENG, Reprinted with permission from Ref. [43].
Copyright 2020 Nano Energy; (d) material structure of an electro-tactile system based on TENG
and spherical electrode array formation, Reprinted with permission from Ref. [39]. Copyright 2021
Science Advances.

5. Applications of TENG in AR and VR

Qiongfeng et al. proposed a TENG based on two configurations to realize more HMI
functions and make signal processing easier. Each sensor consisted of a PEDOT:PSS-coated
textile tape and the gloves were coated with a layer of silicone film (Figure 7a) [113]. This
type of HMI was used for unmanned driving technology, and the operation technology was
simple and intuitive, as the four sensors were represented by different finger movements.
Figure 7b shows the real-time outputs of the sensors when the fingers were bent downward
at different angles at the same speed [114]. This HMI could control the car, drive it in
different directions, and the running state of the car could be changed according to the
finger bending angle and strength of the operator (Figure 7c,d).
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Advanced Science.
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To address the issue of human sweat on glove performance, a simple CNT and
TPE coating method was proposed by Qiongfeng et al., which is shown in Figure 7e,
to achieve superhydrophobic triboelectric textiles with improved performance [115,116].
The super-hydrophobic fabric recovered quickly from high humidity conditions seven
times faster than the original fabric, and the triboelectric properties were three times
better. Superhydrophobic triboelectric textiles collected biomechanical energy from human
activities at four times the power density of the original textiles [117]. In a high humidity
environment, superhydrophobic textiles with anti-perspiration properties can monitor
human movements without obvious output voltage deterioration. Figure 7g,h shows the
applications of superhydrophobic triboelectric gloves in an AR space. Figure 7g shows the
control of firearms in a 3D shooting game, where each sensor on the glove was connected
to a single-chip microcomputer and controlled through a serial port. Python was used
for real-time processing and analysis, and the commands were sent to Unity. The shooter
controls included “grab the gun”, “reload”, and “shoot”, which were achieved through
three different signal modes. First, the user bent their fingers so that the super-hydrophobic
textile was in full contact with the ecoflex, and the characters in Unity responded to this
command and grabbed the gun. In the second stage, the user pressed the sensor button
to trigger the refill command, and the index finger was bent for the shooting command.
The flower arrangements shown in Figure 7h were based on a variety of gestures such as
“water”, “spin”, “light”, “pick”, “trim”, and “stop”. After training in deep learning model,
the average accuracy for gesture recognition reached 96.75% [118].

Zixuan et al. proposed a triboelectric interaction patch with only four sensing elec-
trodes for a flexible multifunctional human–machine interface to detect various action
signals, allowing the user to set an operating area in advance to control the input and
output relationship of the four electrodes to achieve position detection (Figure 8a) [119].
The triboelectric patch exhibited accurate sensing ability and could adapt to finger tapping,
sliding, and other common finger movements. The TENG was operated by sliding fingers
on the eight defined points shown in Figure 8b,c. Using the ratio of each voltage, the posi-
tion perception performance of these eight points in the two scenarios could be identified.
Thus, the triboelectric patch could be used for UAV control, and the output signal and
corresponding UAV movements are shown in Figure 8d [120].

To further improve the practicality of the equipment and achieve a minimalist control
interface, Qiongfeng et al. developed a control patch with a single electrode to control
a UAV in a virtual space and demonstrated the 3D control capabilities of the equipment
(Figure 8e). The control system consisted of a 3D control patch, which was used to generate
the dual-channel control signals [121], a processing circuit, and an MCU used to calculate
the number of dual-channel output peak values. After receiving the control commands,
the computer generated the corresponding actions for the UAV. Figure 8e shows the
two-channel signals and six degrees of freedom obtained after the 3D control patch was
processed by the circuit.

Figure 9a shows a new self-powered DT-HMI which was combined with the output
signal from a TENG sensor, achieving 2/3D control for VR and AR interactions, robotics,
and other applications. The DT-HMI consisted of three parallel branches connected between
the movable platform and the fixed base, where each branch consisted of a drive bar and a
passive bar. At the end of the drive lever, there were three sensitive gears (A, B, and C), each
with two TENGs for clockwise and counterclockwise angle identification. Since each gear
had two TENGs, there was a total of six TENGs for three gears. The electrical signals of the
six TENGs produced different peaks in different operating modes (Figure 9b). Figure 9c
shows an application that controlled the movement of a virtual submarine through a mobile
platform. By identifying the digital status signals from the six TENG outputs, different
operation commands of the submarine in different states such as diving, floating, forward
and backward movement, and movement relative to the moving platform were defined. For
3D operation of the submarine model floating and diving, the mobile platform would move
upward or downward, triggering the entire left side TENG sensing of the gears or the entire
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right side TENG sensing of the gears. Similarly, moving in different directions through gear
commands with different control codes achieved different motion states of the submarines
in the water. As shown in Figure 9d [122], DT-HMI was used for AR liver resection in virtual
minimally invasive surgery, and the camera was used for a plane image recognition control
script, which mainly consisted of a scalpel, pliers, liver resection, and instrument switching.
The TENG sensor gear was mainly used for instrument operation, and the AR output signal
represented the movement states. Although the procedure above demonstrated a simple
operation, it still showed the value of the TENG for surgical applications.

Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 25 
 

 

To further improve the practicality of the equipment and achieve a minimalist control 
interface, Qiongfeng et al. developed a control patch with a single electrode to control a 
UAV in a virtual space and demonstrated the 3D control capabilities of the equipment 
(Figure 8e). The control system consisted of a 3D control patch, which was used to 
generate the dual-channel control signals [121], a processing circuit, and an MCU used to 
calculate the number of dual-channel output peak values. After receiving the control 
commands, the computer generated the corresponding actions for the UAV. Figure 8e 
shows the two-channel signals and six degrees of freedom obtained after the 3D control 
patch was processed by the circuit. 

 
Figure 8. Virtual UAV control based on TENG: (a) triboelectric patch attached to the skin of a human 
arm; (b, c) output signals corresponding to finger tapping and sliding of the patch; (d) triboelectric 
patch controlling signal output corresponding to the horizontal movement of the UAV, Reprinted 
with permission from ref. [104]. Copyright 2020 IEEE; and (e) corresponding signal output of the 
UAV when it moved through 3D space. Reprinted with permission from ref. [40]. Copyright 2019 
Nano Energy. 

Figure 9a shows a new self-powered DT-HMI which was combined with the output 
signal from a TENG sensor, achieving 2/3D control for VR and AR interactions, robotics, 
and other applications. The DT-HMI consisted of three parallel branches connected 
between the movable platform and the fixed base, where each branch consisted of a drive 
bar and a passive bar. At the end of the drive lever, there were three sensitive gears (A, B, 
and C), each with two TENGs for clockwise and counterclockwise angle identification. 
Since each gear had two TENGs, there was a total of six TENGs for three gears. The 
electrical signals of the six TENGs produced different peaks in different operating modes 
(Figure 9b). Figure 9c shows an application that controlled the movement of a virtual 
submarine through a mobile platform. By identifying the digital status signals from the 
six TENG outputs, different operation commands of the submarine in different states such 
as diving, floating, forward and backward movement, and movement relative to the 
moving platform were defined. For 3D operation of the submarine model floating and 

Figure 8. Virtual UAV control based on TENG: (a) triboelectric patch attached to the skin of a human
arm; (b,c) output signals corresponding to finger tapping and sliding of the patch; (d) triboelectric
patch controlling signal output corresponding to the horizontal movement of the UAV, Reprinted
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Due to the large size, poor portability, and difficult operation of the DT-HMI, a new
TENG-based sensor was developed to control the movement of a virtual object. The struc-
ture of the sensor was three-dimensional, symmetrical, and composed of eight independent
sensing electrodes and two touch balls, with human–computer interaction functions, to
realize three-dimensional force information perception and VR control [123]. Thus, by
analyzing the relevant properties of the force and the electrode, the triboelectric mecha-
nism was used for the first time to detect a six-axis direction in 3D space. As a result, the
researchers successfully realized the control function of the sensor in a VR interface. To
avoid electromagnetic interference between the eight sensing signals, the following method
was adopted [124]. First, the circuit in the A/D converter used differential input. Then, the
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sensor was set with a high threshold trigger in the software to distinguish instructions from
the interference. Figure 10a–h shows a schematic diagram of the controlling parts for virtual
assembly and the corresponding axial voltage changes. By controlling the movements of
each part and by selecting and releasing certain instructions, the three parts operated in
turn to complete the assembly process [125]. Figure 10i,j shows a schematic depicting the
controlled movements of virtual dice in a game.
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Figure 9. Application of delta-parallel-inspired human–machine interface (DT-HMI) on AR and VR,
Reprinted with permission from ref. [34]. Copyright 2021 Advanced Materials Technologies. (a) delta
manipulator movement controlling the platform based on self-powered triboelectric nanogenerator
and its reachable spatial points; (b) output electrical signal of the platform when the manipulator
moved; (c) platform controlling the submarine’s movement during rising and diving and correspond-
ing output voltage changes; and (d) augmented reality surgery training program for liver resection
with DT-HMI.
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Figure 10. Using 3D self-powered sensor AR interface of virtual assembly, Reprinted with permission
from Ref. [41]. Copyright 2018 Nano Energy. (a–h) part assembly process and corresponding voltage
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curve with AR interface control dice.

Tactile sensing plays an important role in VR and AR systems. Based on the ET
interface formed by the TENG and spherical electrode array, Yuxiang et al. proposed a
self-powered, painless, and highly sensitive ET system for a virtual tactile experience [126].
The structure of the ET unit is shown in Figure 11a [127]. This TENG-based ET system
could be used in many fields, including for virtual haptic displays, Braille commands
(Figure 11b) [128], intelligent protective clothing (Figure 11c), and even neural stimulation.
The conversion of mechanical energy into direct current was also important for the next
generation of self-contained Internet of Things and real-time virtual reality control. By
using a porous material with frictional polarity reversal as the charge transport carrier, the
charge was transferred unidirectionally between the hyper-negative and hyper-positive
materials and the repulsive discharge through the wire electrode [129], forming a stable DC
output (Figure 11d). Due to the charge transfer and repulsive discharges, obtaining a much
higher DC output voltage was easier compared to the air breakdown mechanism [130].
Figure 11e shows a racing control game in a virtual space, based on continuous DC double-
crossing TENGs (DC-DTENG). The continuous control of acceleration, constant speed, and
further acceleration and deceleration was identified with real-time connection in real and
virtual space [131]. Notably, the car in the virtual space was completely controlled by the
corresponding continuous output signals of the real DC-DTENG with mechanical activity.
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Figure 11. VR application of TENG: (a) unit structure of a self-powered, painless, and highly sensitive
electro-tactile (ET) system based on TENG and spherical electrode arrays; (b) ET system applied
to a dynamic braille display; (c) positive pressure suits and spacesuits equipped with ET systems,
Reprinted with permission from ref. [39]. Copyright 2021 Science Advances; (d) DC-DTENG using an
external electric device for DC output; and (e) DC-DTENG controlling the output voltage when the
virtual vehicle performed at different speeds, Reprinted with permission from ref. [43]. Copyright
2020 Nano Energy.

In this paper, various TENG-based designs for AR and VR applications were summa-
rized. Among them, flexible wearable devices made from two-dimensional materials were
the most common, such as flexible electronic system designed by Yuxiang Shi et al., which
could be worn on the arm for virtual environment control. Additionally, we highlighted
waterproof textiles designed by Feng Wen et al., and the flexible control patch designed by
Qiongfeng Shi et al., which could be worn on the human body to realize energy collection.
The advantages of these designs included their small size, wearability, flexible operation,
and low cost. These designs mainly differed in their wearable portions, as some were gloves
and some were two-dimensional patches worn on the arm. In addition, the application
scenarios were different, as some were used to control the computer screen, some were
used for energy harvesting in real sports, and others were used in the field of biomedicine
to realize simulated surgery.



Nanomaterials 2022, 12, 1385 17 of 23

6. Future Applications for TENG

TENG may likely be widely used in the medical field in the future. In recent years, the
novel coronavirus epidemic has swept the world, which has significantly impacted human
health. To monitor the health status of patients, TENG-based breathing sensors could be
integrated with masks to monitor patients in real time. The respiratory status of a patient is
shown in Figure 12a,b [132]. Integrating TENG with cancer treatment equipment could
also be used to monitor their condition at home for an extended period without the need
for an external power supply, as shown in Figure 12c [133]. A TENG-based biodegradable
bandage sensor could be used to monitor the physiological state of the human body in
real time, and the sensor could be reused, as shown in Figure 12d,e [134]. The TENG-
based electroporation system has been shown to deliver drugs to mice, as presented in
Figure 12f. If TENG could be combined with AR and VR in telemedicine and surgical
treatment applications, it would benefit more patients. Therefore, TENG experiments in
the medical field may likely be implemented into practical applications, offering significant
contributions to the medical field and a benefit to human health.
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7. Summary and Outlook

This paper described in detail the types of materials that can be used for triboelectric
nanogenerators, including PTFE and PDMS, which are the most commonly used tribo-
electric materials for the triboelectric layer in TENGs, especially for TENGs operating
in transverse sliding and independent triboelectric layer modes. In addition to material
selection, a better understanding of materials is needed to improve the triboelectrification
effect, such as chemical etching and coating, as it can be used to fit the two friction materials
more closely together to improve the TENG power output. This paper also described
the applications of triboelectric nanogenerators in AR, VR, and other wearable electronic
devices, and summarized the design methods of TENGs as self-powered sensor modules
in these devices.

The current method of designing a self-powered sensor module is relatively com-
plicated and difficult to integrate with electronic equipment; therefore, it is difficult to
realize for large-scale industrial production. The design and integration of triboelectric
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nanogenerators requires further research. Moreover, the stability and reliability of TENGs
may seriously degrade due to the unavoidable mechanical and environmental effects that
the devices are often subjected to during use. These factors can easily result in material
and device failure, causing problems such as lower output voltage, shortened lifespan,
and potential safety hazards. Therefore, TENG robustness and reliability are issues that
must still be addressed. In the future, nanogenerators may require more in-depth research
regarding applications in the field of wearable electronic equipment, especially in the field
of medical detection devices. The pursuit of future medical detection devices is focused
on lightweight and family-oriented applications, which is not sufficient for every patient.
Users want to check their own health status; thus, if wearable nanogenerators are to have
better medical field applications in the future, they must be inseparable from the choice
of materials, such as those with good biocompatibility, good sweat resistance, flexibility,
and mechanical stability. At the same time, the corrosion resistance and degradation of
materials in physiological environments should be considered, and new device integration
and packaging technologies should be developed to fully realize the wide use of TENGs.
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