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Abstract: Layered double hydroxides (LDHs) constitute a unique group of 2D materials that can
deliver exceptional catalytic, optical, and electronic performance. However, they usually suffer
from low stability compared to their oxide counterparts. Using density functional calculations, we
quantitatively demonstrate the crucial impact of the intercalants (i.e., water, lactate, and carbonate)
on the stability of a series of common LDHs based on Mn, Fe, and Co. We found that intercalation
with the singly charged lactate results in higher stability in all these LDH compounds, compared to
neutral water and doubly charged carbonate. Furthermore, we show that the dispersion effect aids
the stability of these LDH compounds. This investigation reveals that certain intercalants enhance
LDH stability and alter the bandgap favourably.

Keywords: density functional theory; green rust; LDA + U; layered double hydroxides; LDH;
intercalation; stability

1. Introduction

By having atomically thin layers and internal nano-space intercalation, layered mate-
rials are at the frontier of nanomaterial research [1–3]. Among layered materials, layered
double hydroxides (LDHs) [4] constitute a substantial class with a broad range of applica-
tions in the catalysis of organic transformations, wastewaters and pollutant degradation,
CO2 capture [5,6], templating for oriented synthesis [7], photocatalysis [5,8], supercapaci-
tance [9], membrane fabrication [10], and drug delivery [11,12]. LDHs are usually composed
of divalent or trivalent metals with a general formula of [(M II

1–xM III
x (OH)2]x+:(A m–

x/m) · nH2O;
x =∼ 0.2–0.4, where the MII and MIII can be either identical or different metallic ions. The
LDH layers are positively charged and neutralised by anionic intercalants (Am–). Car-
bonate [13–17], nitrate [18], sulphate [13,16], and lactate [19] are some examples of the
anionic intercalants in LDHs that compensate the positive charge of the LDH layers [20].
Recent studies suggest that the intercalant anions play a crucial role in determining the
physicochemical properties of the final LDHs, opening the possibility of engineered LDHs
for specific applications [21]. Therefore, understanding how guest anions influence the
structural and electronic properties in LDHs is essential for tailoring their properties.

Carbonate, one example of an intercalating anion, has three oxygens and therefore pos-
sesses a strong hydrogen bonding capacity with the interlayer surface of an LDH , thus show-
ing a high adsorption tendency with LDHs [14,22]. Previously, some carbonate-intercalated
LDHs such as Mg Al(1/3) LDH [6], strätlingite (Ca2Al(AlSi)O2(OH)10 · 2.25 H2O) [16], and
hydrotalcite (Mg0.7Al0.3(OH)2(CO3)0.15 · 0.63 H2O) [22,23] were experimentally investigated
and reported. Lactate as another intercalant anion is utilised in the intercalation of Fe LDH
interlayers, showing a potential application in the design of catalytically active material for
H2 production [19]. Most of the presented examples from the literature are for bimetallic
LDHs. Monometallic LDHs are rarely studied and investigated in detail due to their lower
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stability and synthesis difficulties [24]. In particular, producing and maintaining both di-
valent or trivalent cations of the same metal in the application medium is challenging [25].
Furthermore, the difficulty in differentiating the divalent and trivalent cations of the same
metal is a major characterisation drawback for monometallic LDHs. Consequently, bimetallic
and trimetallic LDHs have become the most common in many applications [26,27].

Given that the monometallic LDHs warrant further investigations, in this work we
theoretically quantify the critical role of intercalant anions on the stability of three transition
metal (TM) based LDHs, i.e., Mn, Fe, and Co, in monometallic form. We systematically
investigate the role of the neutral water molecule, a single negatively charged lactate radical,
and a double negatively charged carbonate radical as intercalants in these LDHs. Moreover,
we also study the effect of intercalant anions on the bandgap of LDHs, which determines
their optical properties. The latter part can aid in designing LDH-based photocatalysts,
electrocatalysts, and photovoltaics.

2. Settings and Models

We performed spin-polarized first-principles density functional theory (DFT) calcula-
tions [28,29] using the CASTEP program [30]. The electron exchange-correlation energy
was approximated with the local density approximation (LDA) within the Ceperley and
Alder parametrisation (also known as CA–PZ) [31]. On-the-fly generated ultrasoft plane-
wave pseudopotentials [32] were used to treat the core electrons. Dispersion effects were
included using the semi-empirical dispersion correction based on the Ortmann–Bechstedt–
Schmidt formalism [33,34]. The cut-off energy was set to 630 eV for all simulations. A tight

Monkhorst–Pack k-point grid with 0.07 Å
−1

spacing was used for integration over the Bril-
louin zone throughout all geometry optimisations. This spacing produced a 5× 5× 5 grid
for un-intercalated LDH compounds. The density of states was calculated with a 10-times-
denser grid. During the geometry optimisation [35], performed with fixed basis quality,

internal coordinates and lattice parameters were relaxed to forces smaller than 0.01 eV Å
−1

and energies smaller than 10−5 eV. When a supercell contained more than one magnetic
ion, both ferromagnetic and antiferromagnetic spin alignments were examined, and the
lowest energy configuration was used. Using true magnetic ground state is critical for
obtaining realistic geometries and total energies [36].

We used an ad hoc Hubbard (U) term for the 3d electrons to correct the inherent and
superficial electronic delocalisation associated with the LDA functional [37]. The LDA+U
method with well-calibrated U values has been demonstrated to offer excellent electronic
structures at a reasonable computational cost [38]. The values were 3.90 eV for the Mn 3d
electrons, 5.30 eV for the Fe 3d electrons, and 3.32 eV for the Co 3d electrons. Our choice
was guided by the values reported in the Materials Project database [39] for compounds
containing these transition metal (TM) ions with similar oxidation states.

We first optimised the un-intercalated structures. The un-intercalated compounds
have a relatively simple hexagonal structure (Figure 1a) that has been widely reported in the
literature. This hexagonal lattice has a primitive rhombohedral representation (Figure 1b)
containing only one formula unit of TM(OH)2 that simplifies the simulation. We then
used the optimised un-intercalated structures to study the intercalated compounds. We
constructed a 2a× 1b× 1c supercell from the primitive TM(OH)2 unitcell and placed an
intercalating species in the space between the TM(OH)2 layers. We examined an exhaustive
set of configurations for the intercalant’s possible spatial orientations and reported the
most stable structures for each intercalating species, i.e., water molecule and lactate and
carbonate radicals (Figure S1). We removed all symmetry constraints from the supercells
during the geometry optimisation to allow for relaxation to lower symmetry structures
should those yield lower energy. Finally, we probed the optimised structures, reported in
Figure 2, for symmetry using the symmetry detection tool FINDSYM [40].
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Figure 1. (a) The conventional cell of TM(OH)2 layered double hydroxide compounds in hexagonal
representation with group R3̄m and space group number 166. (b) The rhombohedral represen-
tation of the same structure used for most calculations. In hexagonal representation, ah = bh,
αh = βh = 90◦, and γh = 120◦. In the rhombohedral presentation, the lattice parameters
ar = br = cr and αr = βr = γr 6= 90◦. The rhombohedral lattice parameters (denoted with
subscript r) are related to hexagonal lattice parameters (denoted with subscript h) according to

αr = arccos {(2c2
h − 3a2

h)/(2c2
h + 6a2

h)}, and ar =
√
(a2

h/3) + (c2
h/9).
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Figure 2. A representative of the LDH compounds intercalated with (a) H2O, (b) C3H5O3, and (c) CO3.
The optimised structures had higher cantered monoclinic symmetry with group C121 (group number 5)
for the water intercalated compounds. The rest of the structures were P1.

3. Results and Disscussion

We began with un-intercalated LDH compounds with an empty interlayer space. The
geometry optimisation of the rhombohedral presentation, shown in Figure 1b, yielded a
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lattice parameter ar of 6.066 Å for Mn(OH)2, 5.934 Å for Fe(OH)2, and 5.841 Å for Co(OH)2.
Noticeably, all these structures were quite similar to one another. The optimised structures of
the un-intercalated LDH compounds are presented in Table S1 of the supplementary materials.
The Mn magnetisation based on the Mulliken population analysis was calculated to be
4.86 µB, indicating a d5 electronic occupation, which corresponds to the +2 oxidation
state and high spin configuration, arranged as filled spin-up t2g and eg orbitals and empty
spin-down t2g and eg orbitals. The Fe magnetisation was calculated to be 3.80 µB, which
corresponds to the high spin configuration of d6 occupation (t3

2g ↑ e2
g ↑ t1

2g ↓ e0
g ↓). The Co

magnetisation was calculated to be 0.94 µB, indicating that, unlike Mn and Fe, Co2+ (d7)
is at a low-spin configuration of t3

2g ↑ t3
2g ↓ e1

g ↑ e0
g ↓. One should note that the calculated

magnetisations are slightly smaller than nominal values of pure ionic bonds—by a fraction
of 1 µB. This trend indicates that the TM O bonds slightly deviate from pure ionicity
towards covalency [41].

To examine the stability of these LDH compounds, we compared their DFT total
energies against the most stable TM oxides by calculating the decomposition enthalpy
(∆H). These oxides were Mn3O4, Fe2O3, and CoO2. The initial structures used to initiate the
geometry optimisation of these oxides were taken from the Materials Project database [39].
The card numbers for Mn3O4, Fe2O3, and CoO2 were mp-18759, mp-19770, and mvc-14149,
respectively. We calculated (∆H) per TM ion for these three LDH compounds according to
the following equations:

∆H =
{

3E f (Mn(OH)2)− E f (Mn3O4)− 2E f (H2O)− E f (H2)
}

/3, (1)

∆H =
{

2E f (Fe(OH)2)− E f (Fe2O3)− E f (H2O)− E f (H2)
}

/2, (2)

∆H =
{

2E f (Co(OH)2)− 2E f (CoO2)− 2E f (H2)
}

/2. (3)

Here, E f is the DFT total energy of each compound.The ∆H was calculated to be
−1.048 eV/Mn for Mn(OH)2, −1.562 eV/Fe for Fe(OH)2, and −2.009 eV/Co for Co(OH)2.
These negative ∆H values indicate the relative stability of these LDH compounds against
their oxide forms. We can also infer a trend of higher stability for heavier TM-ion-based
LDH compounds. Interestingly, when we repeated the same calculations without including
the dispersion effects, ∆H was slightly higher, but negative nonetheless, at −0.866 eV/Mn,
−1.367 eV/Fe, and −1.655 eV/Co, respectively. Higher but negative ∆H values show that
although the dispersion effect contributes to the stability of these compounds, it is not the
sole stabilising factor.

Figure 2 shows the optimised structures of the H2O, C3H5O3, and CO3 interca-
lated LDH compounds. The relaxed lattice parameters and the atomic coordinates of
all structures are provided in Table S2 and File S1 (in the common CAR format) of the
supplementary information. For the water intercalated Mn LDH compound, the magneti-
sation of both Mn ions was 4.88 µB, indicating that water intercalation did not change the
Mn electronic configuration compared to the un-intercalated compound. For the lactate
intercalated compounds, [Mn(OH)2]2:C3H5O3, the magnetisation of one of the TM ions
was reduced to 4.07 µB, i.e., high-spin d4 configuration, indicating that the singly negative
lactate radical oxidises one of the Mn ions to Mn3+. In the case of doubly negative carbonate
intercalation, both Mn ions had a magnetisation of 4.05 µB, meaning both were at +3 oxida-
tion state. To examine how intercalation affects stability, we calculated the decomposition
enthalpy per Mn of the three intercalated Mn-based LDH compounds according to the
following equations:

∆H =
{

3E f ([Mn(OH)2]2:H2O)− 2E f (Mn3O4)− 7E f (H2O)− 2E f (H2)
}

/6, (4)

∆H =
{

3E f ([Mn(OH)2]2:C3H5O3)− 2E f (Mn3O4)− 3E f (C3H6O3)− 4E f (H2O)− 0.5E f (H2)
}

/6, (5)

∆H =
{

3E f ([Mn(OH)2]2:CO3)− 2E f (Mn3O4)− 3E f (H2CO3)− 3E f (H2O)− 0.5E f (O2)
}

/6. (6)
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We found ∆H was −2.271 eV/Mn for [Mn(OH)2]2:H2O, −2.697 eV/Mn for
[Mn(OH)2]2:C3H5O3, and −1.735 eV/Mn for [Mn(OH)2]2:CO3. These values are lower
than the un-intercalated Mn(OH)2 ( ∆H = −1.048 eV/Mn), therefore demonstrating higher
stability. Consequently, intercalation enhances the stability of the Mn-based compounds.
The greatest stability boost, however, is caused by lactate intercalation.

For the water intercalated Fe LDH, [Fe(OH)2]2:H2O, the magnetisation of both Fe
ions was found to be 3.82 µB, indicating a high-spin d6 configuration—just like the un-
intercalated compound. For lactate intercalation, [Fe(OH)2]2:C3H5O3, the two Fe ions
in the supercell had magnetisations of 3.86 µB and 4.20 µB, indicating that the Fe ion
with the larger magnetic moment was oxidised to Fe3+ (d5). For carbonate intercalation,
[Fe(OH)2]2:CO3, the magnetisation of both Fe ions was 4.21 µB, indicating that both Fe
ions were at +3 oxidation state. The stability trend was examined by calculating the
decomposition enthalpy according to the following equations:

∆H =
{

E f ([Fe(OH)2]2:H2O)− E f (Fe2O3)− 2E f (H2O)− E f (H2)
}

/2, (7)

∆H =
{

E f ([Fe(OH)2]2:C3H5O3)− E f (Fe2O3)− E f (C3H6O3)− E f (H2O)− 0.5E f (H2)
}

/2, (8)

∆H =
{

E f ([Fe(OH)2]2:CO3)− E f (Fe2O3)− E f (H2CO3)− E f (H2O)
}

/2. (9)

We found ∆H was −1.456 eV/Fe for [Fe(OH)2]2:H2O, −2.665 eV/Fe for
[Fe(OH)2]2:C3H5O3, and −1.318 eV/Fe for [Fe(OH)2]2:CO3. Among these compounds,
only [Fe(OH)2]2:C3H5O3 is more stable than un-intercalated Fe(OH)2, which had a ∆H
value of −1.562 eV/Fe. Consequently, only lactate intercalation enhances the stability of
the Fe LDH compounds. However, since ∆H remains negative for the latter intercalations,
[Fe(OH)2]2:H2O and [Fe(OH)2]2:CO3 are expected to survive equilibrium conditions.

Regarding the Co-based LDH compounds, we found that in the case of water inter-
calation, [Co(OH)2]2:H2O, both Co ions in the supercell had a magnetisation of 0.95 µB,
corresponding with the low-spin d7 electronic configuration. For lactate intercalation in
[Co(OH)2]2:C3H5O3, the magnetisation of one Co ion remained 0.95 µB, while the other
Co became nonmagnetic. Nonmagnetic cobalt indicates a +3 oxidation state (d6), in
which at low-spin configuration, the spin-up and spin-down electrons in the t2g orbitals
cancel each other’s magnetisation. For the carbonate intercalated [Fe(OH)2]2:CO3, both
Co ions were nonmagnetic, indicating that the compound was comprised of Co3+ only.
The decomposition enthalpy for Co-based LDH compounds was calculated based on the
following equations:

∆H =
{

E f ([Co(OH)2]2:H2O)− 2E f (CoO2)− E f (H2O)− 2E f (H2)
}

/2, (10)

∆H =
{

E f ([Co(OH)2]2:C3H5O3)− 2E f (CoO2)− E f (C3H6O3)− 1.5E f (H2)
}

/2, (11)

∆H =
{

E f ([Co(OH)2]2:CO3)− 2E f (CoO2)− E f (H2CO3)− E f (H2)
}

/2. (12)

We found ∆H was −3.470 eV/Co for [Co(OH)2]2:H2O, −3.968 eV/Co for
[Co(OH)2]2:C3H5O3, and −3.212 eV/Co for [Co(OH)2]2:CO3. The values are substantially
lower than the ∆H of the un-intercalated Co(OH)2 of −2.009 eV/Co. Consequently, interca-
lating Co-based LDH with either a water, lactate, or carbonate molecule results in significant
stabilisation. However, the stabilisation is greatest for lactate intercalation. Our prediction
of stabilisation through lactate intercalation corroborates experimental observations in
Fe- [19] and (Zn, Al)- [42] based LDH compounds.

The total and partial density of states (DOS and PDOS) for all the intercalated com-
pounds are shown in Figure 3. The 3d PDOS of all TM ions corroborate the arguments
presented earlier from the TM magnetic moment viewpoint. Going from left to right—
intercalation with water, then lactate, then carbonate—we can see the emptying of the d
shell electrons due to oxidation, i.e., the states shifting to above the Fermi level. For Mn,
that would be the emptying of spin-up eg states (marked with an orange circle). For Fe,
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that would be emptying the spin-down t2g states (marked with a purple circle). Lastly,
for Co, that would be emptying the spin-up eg states. Figure 3 also show the bandgaps
(Eg) for the intercalated LDH compounds. The Eg value determines how responsive a
compound is to photoexcitation. For instance, for electron–hole pair generation under
visible light, an Eg value of∼ 1.7 eV is required. The Eg for Mn-based LDHs was calculated
to be 1.995 eV for [Mn(OH)2]2:H2O, 0.480 eV for [Mn(OH)2]2:C3H5O3, and 0.679 eV for
[Mn(OH)2]2:CO3. The [Mn(OH)2]2:H2O with half-filled d5 configurations had the widest
bandgap because of the strong magnetic exchange between the spin-up and spin-down
states. The Eg for Fe-based LDHs was calculated to be 3.115 eV for [Fe(OH)2]2:H2O, 1.027 eV
for [Fe(OH)2]2:C3H5O3, and 1.124 eV for [Fe(OH)2]2:CO3. Finally, The Eg for Co-based LDHs
was calculated to be 1.055 eV for [Co(OH)2]2:H2O, 0.307 eV for [Co(OH)2]2:C3H5O3, and
2.047 eV for [Co(OH)2]2:CO3. Here, the large crystal field splitting between the filled t2g
states and the empty eg states widens the bandgap in [Co(OH)2]2:CO3.
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Figure 3. Total and partial density of state of the intercalated layered double hydroxide compounds.
The upper row of (a–c) corresponds to the Mn-based compounds. The middle row of (d–f) corre-
sponds to the Fe-based compounds. The lower row of (g–i) corresponds to the Co-based compounds.
The first, second, and third columns correspond to H2O, C3H5O3, and CO3 intercalation. The 3d
partial density of states of different TM ions is shown in various shades of blue.
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4. Conclusions

Using density functional calculations within the LDA + U formalism, we demon-
strated that Mn-, Fe-, and Co-based layered double hydroxide compounds were stable
against decomposition to the respective most stable oxides. Furthermore, in Mn- and Co-
based LDH compounds, this stability is enhanced with either water, lactate, or carbonate
intercalation. However, the most significant margin of stability was achieved for lactate
intercalation. In Fe-based LDH compounds, water and carbonate intercalation reduced the
margin of stability against decomposition to Fe2O3. In this case, only lactate intercalation
improved the stability. Finally, we demonstrated that the intercalated LDHs have a large
range of bandgaps, ranging from wide 3.115 eV in [Fe(OH)2]2:H2O to narrow 0.307 eV in
[Co(OH)2]2:C3H5O3. As a result, by controlling the intercalation molecule, one can tune the
band gaps in these compounds for the desired applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12081339/s1, Figure S1: Search for the water intercalant ori-
entation; File S1: The optimised structures for intercalated LDH compounds; Table S1: Lattice
parameters of the un-intercalated LDHs; Table S2: The lattice parameters of the intercalated LDHs.
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