nanomaterials

Review

Recent Developments of Tin (II) Sulfide/Carbon Composites for
Achieving High-Performance Lithium Ion Batteries:
A Critical Review

Sharif Tasnim Mahmud !, Rony Mia 2,3(0, Sakil Mahmud 29, Sha Sha }, Ruquan Zhang L Zhongmin Deng 1
Meltem Yanilmaz 4, Lei Luo 1* and Jiadeng Zhu 5*

check for
updates

Citation: Mahmud, S.T.; Mia, R.;
Mahmud, S.; Sha, S.; Zhang, R.; Deng,
Z.; Yanilmaz, M.; Luo, L.; Zhu, J.
Recent Developments of Tin (II)
Sulfide/Carbon Composites for
Achieving High-Performance
Lithium Ion Batteries: A Critical
Review. Nanomaterials 2022, 12, 1246.
https://doi.org/10.3390/
nano12081246

Academic Editor: Jung Woo Lee

Received: 8 February 2022
Accepted: 5 April 2022
Published: 7 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Textile Science
and Engineering, Wuhan Textile University, Wuhan 430200, China; tasnimmahmud13047@gmail.com (S.T.M.);
shasha@wtu.edu.cn (S.S.); zhangruquan@wtu.edu.cn (R.Z.); zmdeng@wtu.edu.cn (Z.D.)

Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, School of Chemistry and Chemical
Engineering, Wuhan Textile University, Wuhan 430200, China; mroni_mia@yahoo.com (R.M.);
sakilmahmud1105@gmail.com (S.M.)

Department of Chemical Engineering, Inha University, Incheon 22212, Korea

Department of Textile Engineering, Istanbul Technical University, Istanbul 34469, Turkey; yanilmaz@itu.edu.tr
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

*  Correspondence: leiluo@wtu.edu.cn (L.L.); zhujiadeng@gmail.com (J.Z.)

(S NN

Abstract: The ever-increasing worldwide energy demand and the limited resources of fossil have
forced the urgent adoption of renewable energy sources. Additionally, concerns over CO, emissions
and potential increases in fuel prices have boosted technical efforts to make hybrid and electric vehi-
cles more accessible to the public. Rechargeable batteries are undoubtedly a key player in this regard,
especially lithium ion batteries (LIBs), which have high power capacity, a fast charge/discharge
rate, and good cycle stability, while their further energy density improvement has been severely
limited, because of the relatively low theoretical capacity of the graphite anode material which is
mostly used. Among various high-capacity anode candidates, tin (II) sulfide (SnS;) has been attracted
remarkable attention for high-energy LIBs due to its enormous resource and simplicity of synthesis,
in addition to its high theoretical capacity. However, SnS, has poor intrinsic conductivity, a big
volume transition, and a low initial Coulombic efficiency, resulting in a short lifespan. SnS, /carbon
composites have been considered to be a most promising approach to addressing the abovementioned
issues. Therefore, this review summarizes the current progress in the synthesis of SnS; /carbon anode
materials and their Li-ion storage properties, with special attention to the developments in Li-based
technology, attributed to its immense current importance and promising prospects. Finally, the
existing challenges within this field are presented, and potential opportunities are discussed.

Keywords: tin (II) sulfide; carbon; lithium ion battery; anode; lithium storage property; high
energy density

1. Introduction

Lithium ion batteries (LIBs), with high energy density, extended cycle life, and environ-
mental friendliness, have been considered to be one of the most appealing energy storage
systems, and have played an increasingly significant role in modern civilization [1-6]. The
progressing advancement of LIBs has brought exceptional enhancements in different parts
of their activity [7-12], being widely involved on the market of compact electronic devices
(e.g., cell phones, workstations, advanced cameras, etc.). Additionally, they have been
distinguished as the favored force hotspot for electric vehicles (EVs) and fixed-vitality
energy storage. However, state-of-the-art LIBs cannot fulfill the developing need for EVs
and huge scope vitality energy storage [13-17], which is mainly caused by the limited
capacity (372 mAh/g) of the mostly used graphite anode [13,14,17-21]. Thus, tremendous
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efforts have been made to fabricate high-capacity anode materials, including elementary
substances (i.e., Ge, P, Sb, Si), transition metal oxides (i.e., MnO, V,0Os), metal sulfides
(i.e., ZnS, CuyS), etc. [22-42]. Among them, SnS; has been attracted remarkable attention
because of its low cost, environmental friendliness, and high theoretical specific capac-
ity [43—47]. SnS, has the catenation ability of sulfur and contributes to the enrichment of the
chemistry of tin sulfide. It is also possible to include other elements (metal and non-metal)
to form trivalent and quadratic tin sulfide structures, as well as ternary and quaternary
materials [48-52].

For SnSy, tin particles can exist in various oxidation states and different coordina-
tion structures, and sulfur ions have an enormous electronegativity and solid polarizabil-
ity [16,53-57]. Li-ions diffuse from the octahedral gap position, where the energy is most
supported, to the adjacent octahedral gap position, through the tetrahedral gap position.
The expansion of the layer spacing is beneficial for reducing the diffusion barrier [58,59]. In
addition, the energy density of SnS,-based LIBs can reach as high as 286 Wh/kg, which is
much better than those of commercial graphite [60]. Despite these advantages, SnS; has
certain drawbacks that hinder its broad application, such as the non-negligible volume
change issue and the comparatively poor initial Coulombic efficiency (CE), which is related
to the irreversible synthesis of LiyS and LixSnS, [61-63].

Overall, the commercial applications of SnS,-based anode materials are currently
limited in large part by the following issues: (1) significant initial irreversible capacity loss
as a result of the creation of thick solid electrolyte interphase (SEI) throughout the cycling
process; (2) the large volume change that occurs during the charge/discharge process,
which results in electrode pulverization and the loss of electrical contact with the current
collector, leading to fast capacity fading along with poor cycling performance [64-67]. Many
efforts have recently been concentrated on addressing the aforementioned difficulties, as
well as advancing the use of SnS;-based anode materials in LIBs for practical applications. It
has been found that hybridizing SnS; with other materials—including nanocarbon [68,69],
graphene [70,71], and MXene [72]—or doping SnS, with other additives—such as Co [39],
Ce [73], Mo [74], etc.—can significantly improve the overall conductivity and structural
resilience of SnSy-based electrodes, thus resolving the issues mentioned above. As most
commonly modified materials, carbon materials (i.e., amorphous carbon, carbon nanotubes,
graphene, etc.) have been extensively explored because they can improve the electrical
conductivity of the electrode, and can reduce the particle agglomeration of active materials,
enhancing the utilization of active materials and extending their lifespan [75-78].

This paper has reviewed the most recent developments in SnS, /carbon anodes for
LIBs. The structural properties of different composites using SnS; clearly demonstrate the
importance of preparation process. To fully use all the potential advantages of SnS; in
LIBs, endeavors have been made to handle the previously mentioned issues and push 5nS;-
based anode materials to handy applications. The morphological design and fabrication of
electrode materials tremendously affect the electrochemical performance of LIBs; thus, the
large-scale study of those material-based anodes is essential. This review highlights the
most recent developments with thorough discussion in the microstructure, morphology,
rational synthesis, and electrochemical performance of SnS,-based anode materials in
LIBs with a goal to provide more insights in this area. The future challenges and research
directions for practical, advanced SnS;-based anodes are also proposed at the end.

2. Working Mechanisms of SnS;-Based Anodes in LIBs

During the past decades, Sn-based materials, particularly SnS,, have played a major
role in LIBs due to their layered structure, which allows them to provide optimum space for
Li-ion intercalation [79-83]. It has also been demonstrated that the advantage of having lay-
ers in the structure of the crystal can be used to accommodate Li-ions [84]. The neighboring
sulfur layers in SnS; are held together by weak van der Waals contacts [85]. The lithiation
procedure of SnS; can be separated into two phases. When the Li content (x in Li SnSy) is
under 1, the volume extension is not remarkable, and only the S particles trap electrons from
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Li-ions. When the Li content is more than 1, the Sn** cations are fundamentally decreased,
the 3 5-5n-S layers deteriorate bit by bit, and an LixS; (1 < x < 3) layer is framed between
the 2 Sn monolayers, and the volume expansion of SnS, subtly reduces the intensity of Li
2p states. The anode’s stability may be jeopardized due to the lithiation-induced volume
expansion and crystal structural change. During lithiation/delithiation, Sn-based anode
materials always experience 200-300% volume expansion [61-63].

It has been proposed that the electrochemical reaction mechanisms of SnS, with Li-ions
are presented in Equations (1) and (2) [86]:

SnS, +4Li* +4e” — Sn + 2Li,S, 1)

Sn + xLi* + xe™ ¢ LixSn (0 < x < 4.4), )

The high theoretical capacity of 645 mAh/g is derived from the reversible reaction
(1) of Sn in SnS; with 4.4 mols of lithium. Despite this, during the conversion reaction of
lithiated SnS,, 4 mols of lithium are consumed in the irreversible formation of Li,S. As a
result, if the irreversible reaction is made reversible, then the theoretical capacity of SnS,
could be as high as 1231 mAh/g (8.4 mol Li* per mol SnS,) [87]. Lithiation causes SnS; to
decompose into metallic tin and Li,S during the first discharge. Tin alloys/dealloys up to
the theoretical limit of Lis.4Sn, and Li,S act as an inert matrix that surrounds the active Sn
grains during substantial charge and discharge processes [86]. Li-ions can intercalate to
some extent into the SnS, layers without generating phase dissolution, according to earlier
publications [45,50]; hence, the reaction can be separated into three phases, as follows in
Equations (3)-(5):

SnS, + xLi* + xe™ — Li,SnS,, 3)
LixSnS; + (y — x)Li* + (y — x)e” — LiySnS,, 4)
LiySnS; + (4 — y)Li" + (4 —y)e” — Sn+2LiS (0<x<y <2), (5)

To enhance the energy density and capacity of battery materials, a detailed under-
standing of electrode thermodynamics and chemistry is required [83,84]. First principles
have been utilized to study the Li-ion intercalation and diffusion in pristine and modified
SnS; interlayers. The data suggest that Li intercalation prefers the octahedral interstitial
location. The minimum energy path of Li-ion diffusion in the SnS, interlayer is explored.
Researchers have discovered that Li atoms spread from one energetically favorable octahe-
dral interstitial location to the next [63]. The results of this study suggest that regulating
the inactive morphologies of SnSy-based anode materials may be a viable strategy for
improving their electrochemical performances.

3. Pure SnS,

The SnS, anode material for LIBs was first reported in 1998 by T. Brousse and his
team [86]. SnS; is an n-type semiconductor “layered compound”, with a hexagonal cad-
mium jodide (Cdl;) structure that has the potential to own a high capacity [88-92]. SnS,
can host molecular guest species in vacancies between its neighboring sulfur layers because
of its layered structure, similarly to how Li-ion is embedded in graphite [50,66,83,84,93].
For pure 5nS; anodes, different structures have been designed and investigated, such as
nanoparticles [67,83], nanosheets [50,94-97], nanowalls [98,99], and nanoflowers [100-103],
that show different capacities according to their morphologies.

For example, Momma et al. [92] observed that the amorphous SnS; powder could be a
viable candidate material for LIBs. An aqueous solution of SnCly and thioacetamide was
sonicated in air at ambient temperature for 30 min to improve crystallinity before being
annealed at 400 °C. The cell with the unannealed SnS, electrode had an initial capacity of
300 mAh/g at a current density of 50 mA /g. After annealing, the capacity of SnS, increased
to above 600 mAh/g. The results showed that the crystalline morphology of annealed SnS,
has been revealed as a possible anode candidate for LIBs because it could accelerate the
lithiation process.
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Reducing the particle size of Sn-based materials to the nanoscale range is an efficient
technique to improve cycling stability. Various methods have been developed for the
synthesis of SnS; nanostructures with various diameters (from 10 to 100 nm) and mor-
phologies (i.e., nanoparticles, nanorods, nanobelts, nanotubes, and nanosheets) [104-116].
Kim et al. synthesized novel crystalline SnS; nanosheets/nanoplates and applied them as
anode materials for LIBs [50]. SnS; nanosheets from ~1.6 to ~26 nm were successfully pre-
pared via a simple, catalyst-free solvothermal route, without surfactants/functional groups.
Ethylene glycol was used as a reducing agent by capping the Sn-ion source, resulting in
creating a polymer network and the prevention of nanosheet aggregation. Li-ions could
be embedded in the SnS; layer to some extent without causing phase decomposition for
nanosheet structures.

During the lithiation/delithiation process, many efforts have been undertaken to
minimize the volume change and improve cycle performance. Du et al. [97] introduced an
eco-accommodating and conservative manufacturing method for two-dimensional (2D) lay-
ered 5nS; nanoplates by one-pot synthesis using SnCl,-2H,O powder (Figure 1a). Figure 2b
shows the crystal structure of SnS, nanoplates with alternating S-Sn-S layers and S-S lay-
ers along the z-axis (c-axis). The final fabricated cell exhibited highly reversible capacity
and good capacity retention after 30 cycles (Figure 1c,d). Seo et al. [94] discovered 2D
layered nanostructures by thermal decomposition and provided better cyclability due to
their unique nanoscale phenomena below 150 nm (Figure 1le,f). The determined average
discharge capacity could be up to 583 mAh/g, which was 90% of the maximum theoretical
reversible value and 1.6 times the commercial carbon electrode (372 mAh/g), as shown
in Figure 1g. This exhibited greatly improved host capabilities as an active LIB electrode
because of its unique shape, which consists of a finite, lateral sized, and well-defined
layered structure.
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Figure 1. (a) A TEM image of hexagonal SnS; nanoplates. Inset: (top) photograph of SnS; nanoplate
solution; (bottom) schematic diagram of a SnS; nanoplate. (b) The supercell structure of a SnS, crystal
with A = 3a, B = 3b, C = 3c. (c) Cycling performance of the SnS, nanoplate electrode at a current
density of 0.2 A/g and (d) charge-discharge capacities at various current densities from 0.5to 5 A/g.
Reprinted with permission from Ref. [97]. Copyright 2013 RSC. (e) A schematic of lithiation processes
for bulk versus nanoplates. (f) An SEM image of SnS; nanoplates; (g) life cycle performance of the
SnS; electrode. Reprinted with permission from Ref. [94]. Copyright 2008 John Wiley and Sons, Inc.
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Figure 2. (a) Schematic illustration of the morphological evolution process, (b) an SEM image,
and (c) cycling performance of the 3D flower-like SnS;. Reprinted with permission from Ref. [66].
Copyright 2010 Elsevier. (d) Schematic illustration of the morphological formation process, (e) an
SEM image, and (f) rate capabilities of SnS; hierarchitectures. Reprinted with permission from
Ref. [102]. Copyright 2013 Elsevier.

The vertically aligned 2D SnS; nanowalls can also serve as an ideal anode material
for LIBs. Liu et al. [98] performed a simple chemical bath deposition method to prepare
SnS; nanowall arrays grown directly on copper foils. The shape of these arrays offers
numerous benefits for enhancing electrocatalytic activity. Because there are more space
between neighboring nanowalls, the electrolyte may readily diffuse into the inner area of
the electrode, and the volume change associated with Lit insertion and extraction can be
maintained. In the meantime, a simple, biomolecule-assisted technique was used to produce
vertically aligned SnS, ultrathin nanosheet arrays on Sn substrate by Zhong et al. [99]. A
facile, L-cysteine-assisted hydrothermal strategy was devised to manufacture a graphene-
like SnS, film comprising 2-5 atomic layers on Sn foils. The electrochemical discharge
capability of the cell with ultrathin SnS, nanosheets was 690 mAh/g at 3C that was near to
the theoretical limit.

The formation of 3D flower-like structures was initially proposed early in 2010 by
Liu et al. [66]. The electrochemical characteristics of flower-like SnS, systems were remark-
able according to the achieved results. These flower-like SnS, structures were prepared
by a solvothermal ethanol method and produced nanoplates with thicknesses of about
5-10 nm, which revealed a reversible capacity of about 502 mAh/g after 50 cycles at a
current density of 200 mA /g (Figure 2a—c). Wu et al. [102] used CS; for the dissolve in
ethanol to form a homogeneous solution, in which CS, acted as a sulfur donor through-
out the solvothermal process and S* was released as a source of sulfides (Figure 2d,e).
The cell with such prepared electrodes could have capacities of 706.7, 582.4, 432.8, and
210.8 mAh/g, at current densities of 100, 200, 500, and 1000 mA /g, respectively, and it was
reversible back to 471 mAh/g when lowering the current density to 100 mA /g (Figure 2f).
The overall capacity retained was 73% of the theoretical reversible capacity. The enhanced
performance might be because the diffusion distance for ionic and electronic transport was
greatly reduced, caused by the specific porous structures of the thin nanosheets, which
were accessible for electrolytes and sufficiently dissipated the mechanical stress resulting
from the severe volume change during Li-ion uptake/removal. Compared with SnS,
nanoparticle anodes, the layered porous structure and flower-like building blocks of these
5nS; nanoflowers make the redox reaction and charge transfer kinetics at the electrode
faster, and show a much higher discharge capacity than SnS, nanoparticles [116].

Among those morphologies, nanowall- and nanoflower-based SnS, anodes provide
more stable cyclic ability. However, within similar morphology, the particle or plate size has
a significant impact on the lithiation and delithiation process, depending on the method,
reaction time, reaction temperature, annealing, and crystallinity of the material. The elec-
trochemical performance of pure SnS,-based anode is summarized in Table 1. For tin-based
electrode materials, an increase in current density usually results in significant capacity
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fading. As can be seen, bare SnS;-based anode materials continue to be obviously harmed
by large initial irreversible capacity losses, severe internal stress, and loss of electrical
contact with the current collector. Some primary strategies have been adopted to address
these current issues. The initial objective is to create a variety of novel, nanostructured
5nS, materials, including nanoparticles, nanosheets, and nanoflowers. Not only may
nanoscale materials reduce the diffusion length of electrons and lithium ions, but they can
also mitigate the large volume impact. However, the nanostructured or porous-structured
material alone does not appear to be capable of completely resolving the abovementioned
issues, particularly at long cycles and high rates. Thus, using cost-effective carbonaceous
materials along with their easy processes is a unique technique which has been considered
for increasing the capacity and cycling stability of SnS,.

Table 1. Electrochemical performance of pure SnS,-based anodes with various morphologies.

Size/Thickness Initial Specific Capacity Rate Performance

Materials Morphology (nm) CE (mAh/g) (mAh/g) Ref.
SnSp Nanoparticle N/A <50% 400/50 mA /g, 25th cycle N/A [83]
SnS, Nanoparticle 30 N/A 404/50 mA /g, 30th cycle N/A [67]
SnS; Nanosheet 2-26 43% 500/323 mA /g, 50th cycle ~368/3.2A/g [50]

SnS; (3D) Microsphere 10 34% 570/650 mA /g, 100th cycle 264/65A/g [95]

SnS; (2D) Nanoplate 10 36% 521/100 mA /g, 50th cycle 340/3A/g [96]

SnS, (2D) Nanoplate 35 73% 935/200 mA /g, 30th cycle 370/5A/g [97]

SnS; (2D) Nanoplate 16 ~50% 583/323 mA /g, 30th cycle N/A [94]

SnS; (NW) Nanowall <50 36% 700/0.3 C, 40th cycle 400/12C [98]
SnS, Nanosheet 1-3 ~44% 900/1 C, 10th cycle 360/5C [99]

SnS, (3D) Nanoflower 5-10 ~32% 502/200 mA /g, 50th cycle N/A [66]

SnS, (3D) Nanoflower 30 ~30% 519/100 mA /g, 50th cycle 297/08 A/g [101]

SnS, (3D) Nanoflower 50 N/A 549/100 mA /g, 100th cycle 210/1A/g [102]

4. SnS;,/Carbon Composites
4.1. Amorphous Carbon/SnS, Composites

Amorphous carbon has garnered considerable interest in energy-storage applications
due to its high electrochemical activity and inexpensive cost [117-125]. It has been widely
shown to improve the capacity and cycling stability of electrodes.

For instance, Kim et al. [121] first discovered carbon-coated SnS; nanoparticles, in a
study in which SnS, powder was extracted from SnCly-5H,0O and thioacetamide by the
solvothermal method and the carbon coating was derived from glucose. After 50 cycles, the
C-5nS; nanocomposite had a high reversible capacity of 668 mAh/g at a current density
of 50 mA /g, superior to bare SnS; nanoparticles in terms of cycle performance and rate
capability, which owed to the conductive carbon shells and their close association with inert
nanoscale SnS, materials. Furthermore, a simple, high-energy ball-milling method was
developed to synthesize SnS, /carbon (SnS; /C-x, x = 40, 50, 60 wt.%) nanocomposites in
order to study the effect of carbon contents on the overall performance by Zhao et al. [122].
The results indicated that the SnS,/C-50 nanocomposite exhibited a remarkably high
capacity of 700 mAh/g and stable cycle capacity of 540 mAh/g after 100 cycles at the
same current rate of 100 mA /g. SnS, NPs were uniformly implanted inside the graphite
nanoparticles network after the ball-milling method, which could provide a large number
of Li-ion storage sites, excellent electronic conductivity, and rapid ion diffusion, as well
as a reduction in SnS; volume expansion during cycling. Li et al. [123] prepared a 3D
mesoporous carbon anchored with SnS; nanosheets (MC-5nS; NSs) by sonochemical reflux
method with the structural features of both the 2D nanosheet and the 3D porous carbon
matrix, which were expected to show improved Li storage efficiency. The composite
showed better cyclic performance and improved structural stability compared with the
bare-nanoplate-based SnS,-C anode. A stable discharge of 428.8 mAh/g at 100 mA /g after
50 cycles with a retention of 64.4% could be achieved by the MC-5nS; NSs.
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Compared with other regularly utilized carbon sources, different biomass-derived
carbons have also been employed with the benefits of low cost and environmental friendli-
ness [124]. An innovative SnS, /biochars (SnS, /B) composite with a hierarchical structure
composed of SnS; nanosheet arrays and biochars carbonized from chewed sugarcane was
effectively generated using a simple one-step hydrothermal method [125]. The constructed
cell with SnS, /B could deliver a high initial discharge specific capacity of 1107.4 mAh/g at
100 mA /g with a CE of 54.8%. Zhang et al. [56] fabricated carbon-encapsulated flower-like
5nS; nanoplates with (101) plane orientation by a hydrothermal method, with polyethylene
glycol (PEG 400) as a surfactant (Figure 3a—c). The SnS; nanoplates synthesized without
PEG mainly grew along the (001) plane. The cell with the prepared material showed an
excellent capability of 796 mAh/g at a current density of up to 2 A/g along with exceptional
cycle stability. The cycle attenuation rate of the cell tested at 0.5 A /g for 300 cycles was
only 0.05% (Figure 3e). The outstanding results might be ascribed to the use of highly (101)
faceted preferred orientation in the design of the microstructures, creating a quick and
long-lasting highway for Li-ion diffusion, resulting in rapid reaction kinetics (Figure 3d).
Using a hydrothermal synthesis process coupled with membrane technology, flower-like
SnS; nanosheets, evenly fixed in the pores of the carbon membrane (SnS,-CM), were pro-
duced by Liu et al. [69]. The unique design proved that membrane technology supplied
an abundant membrane pore space for uniform SnS; nanosheet development via a C-S
covalent connection. For LIBs at 50 mA /g, the highest reversible capacitance could be up to
808.9 mAh/g, which was because thin SnS; nanosheets emerged in the membrane hole and
surface, enabling the SnS; cm a 3D interpenetrating network of porous morphology. The
novel 3D porous structure not only assisted fast ion transit channels and lowered diffusion
length, but also provided ample void space for SnS; nanosheet volume growth during
long-term cycles. The C-S covalent bond also maintained a close contact between SnS, and
the carbon membrane, contributing to structural stability.
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"N ~ \ N ‘ ﬁ‘ ‘
Clg condensation Hf 'ﬁl P__ O(CH,CHQO)GH S coating \v
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Figure 3. (a) Schematic illustration of the formation process; (b) SEM images of carbon-encapsulated
5nS; nanoplates; (c) structural models of terminated (101) and (001) surfaces of SnS;, with adsorbed
PEG for first-principles calculation; (d) schematic illustration of Li-ion insertion; (e) long-term cycling
performance of carbon-encapsulated SnS; nanoplates with the (101)-oriented plane. Reprinted with
permission from Ref. [56]. Copyright 2017 ACS.
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However, SnS, with amorphous carbon typically has a low reversible capacity. Besides,
a better rate capabilty is desirable for next-generation LIBs. Thus, alternative carbon-based
materials, such as carbon nanotubes (CNTs) and graphene, are being investigated in
combination with SnS, in order to increase their specific capacity and rate capability, and
also resolve the issues related to pure SnSy-based anodes.

4.2. CNTs/5nS; Composites

SnS; combined with CNTs is another way to overcome the shortcomings associated
with bare SnS, anodes. CNT-based materials may be beneficial for charge transfer and
electrode stability, improving the electrochemical performance [126-135].

Zhai et al. [126] first reported SnS, nanosheets on multiwall CNTs (MWCNTs) by
chemical vapor deposition with a tube diameter around 80-90 nm. SnS, nanosheets and
nanoflakes were uniformly anchored on CNTs to form SnS, /CNT composite anodes with
SnS, sheaths of different thicknesses, which exhibited higher Li storage capacity and
better cycle performance compared with pure SnS, (Figure 4a—-d). Sun et al. [133] also
synthesized SnS; nanoflakes decorated on a MWCNT structure through a simple solution—
phase method. The cell with the SnS, /MWCNTs composite demonstrated initial discharge
and charge capacities of 1416 and 518 mAh/g, respectively, and could maintain a reversible
capacity of 510 mAh/g after 50 cycles at a current density of 100 mA /g. The improved
performance might be attributed to the morphological properties of SnS, flakes and the
inclusion of MWCNT, that could reduce volume change throughout the cycle, offer more
active sites to accept Li*, and accelerate the conductivity of the active material. Differently
from the above fabricating processes, a SnS, /CNTs composite was also produced via a
hydrothermal process by in situ vulcanization of SnO,/CNTs by Cheng et al. [48]. In
the prefabricated SnO,/CNTs composite, SnO; nanoparticles with diameters less than
5 nm were completely coated on the CNTs via Sn-O-C bonding. SnO, nanoparticles were
converted into SnS; hexagonal nanosheets during the in situ sulphuration reaction, and
the Sn-O-C bonding was replaced by C-S bonding. The cell with the obtained SnS, /CNTs
exhibited superior electrochemical performance, which could deliver an initial reversible
capacity of 1202 mAh/g and a capacity of around 660 mAh/g after 100 cycles at 100 mA /g
(Figure 4e-g).

In addition, polypyrrole, which is a one kind of carbonaceous substance, is a prospec-
tive additive for improving the electrochemical performances of LIBs due to its ease of
synthesis, low cost, strong electron conductivity, and environmental stability. Polypyrrole
works as a matrix to support the internal stress of electrodes that experience extreme vol-
ume changes, as well as providing a conducting backbone for the active materials [135].
Chen et al. [127] prepared composites with a higher initial CE by combining polymerization
and hydrothermal process (Figure 5a,b). Two-dimensional SnS, nanosheets were used to
adorn carbonaceous polypyrrole nanotubes with the interweaving twisted SnS, nanosheets,
reducing volume change during electrochemical cycling and providing more active sites to
react with Li-ions. Figure 5c shows that the initial discharge capacity of carbon polypyrrole
nanotubes (CPN)-coated SnS; nanosheets was 1422 mAh/g at a current density of 60 mA /g,
with a reversible capacity of 699.2 mAh/g after 100 cycles. The excellent electrochemical
performance of CPN@SnS, composite anode material derived from a unique structure
was due to the insertion of conductive CPN, that substantially enhanced the electronic
conductivity of the whole anode, allowing for fast electron transmission, as depicted in
Figure 5d.
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Figure 4. (a) Schematic illustration for the growth process of the SnS, NS@MWCNTs and (b-d) their
TEM images. Reprinted with permission from Ref. [126]. Copyright 2011 ACS. (e) The synthesis
procedures diagram; (f) illustration of the Li storage advantage; (g) cycling performance of the

SnS, /CNTs composite. Reprinted with permission from Ref. [48]. Copyright 2021 Elsevier.
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Figure 5. (a) Formation mechanism, (b) an SEM image, (c) cycling performance, and (d) a schematic
illustration of the Li insertion/extraction mechanism of CPN@SnS; composites. Reprinted with
permission from Ref. [127]. Copyright 2017 Elsevier.

The electrochemical performance of SnS;-CNT-based anodes has been widely ex-
plored, and their corresponding results are summarized in Table 2. In order to improve
the conductivity of SnS,-based materials, it is believed that the combination of electron-
ically conductive agents, such as CNTs, is an effective strategy. An additional effective
route is through the morphology-controlled SnS,-CNT synthesis of nanostructured, active
materials, such as nanowire, nanotubes, nanoflakes, and nanosheets. These nanostruc-
tures can shorten the pathway lengths of Li* and compensate for volume change due to
their large surface-to-volume ratio, which makes them ideal for use in LIBs. Additionally,
SnS,-graphene-based composites are currently used for further improving electrochemical
performance because they allow enormous concentrations of Li* to adsorb and desorb
during charging and discharging cycles.

Table 2. Electrochemical performance of carbon-coated SnS, and SnS;-CNT-based anodes.

. Size/Thickness Initial Specific Capacity Rate Performance

Materials Morphology nm CE (mAh/g) (mAh/g) Ref.
C-5nS, Nanoparticle 80 41% 668/50 mA /g, 50th cycle 600/645 mA/g [121]
SnS, /C-x Nanoparticle 60 80.8% 540/100 mA /g, 100th cycle 300/2A/g [122]
MC-5SnS, NS Nanoplate 5-15 N/A 428.8/100 mA /g, 50th cycle 150/1A/g [123]
C-SnS, Nanoplate 75 78% 800/500 mA /g, 300th cycle 796/2A/g [56]
SnS;@MWCNT Nanosheet 80-100 37.2% 420/100 mA /g, 50th cycle 310/500 mA /g [126]
SnS,@MWCNT Nanoflake N/A 37% 510/100 mA /g, 50th cycle 329/500 mA /g [133]
CPN@SnS, Nanosheet N/A 89.8% 699.2/60 mA /g, 100th cycle 553.5/1.5A/¢g [127]




Nanomaterials 2022, 12, 1246

11 0f 25

4.3. Graphene/SnS, Composites

Graphene is a novel, 2D, “aromatic” single molecule with high electron mobility, a
unique electrical structure, high thermal conductivity, mechanical strength, and a large
surface area, which has attracted unprecedented attention [136-167]. Many studies have
been conducted to design novel SnS,/graphene anode materials for LIBs with differ-
ent nanostructures to improve the electrochemical properties, including nanoparticles/
nanocrystals [53,54,137,142,156,158,161,163], nanosheets /nanoplates [141,143,144,150-153],
and nanoflowers [49].

For instance, Yin et al. [138] decorated SnS; nanocrystals on a reduced graphene oxide
(RGO) sheet through the combination of hydrothermal and reduction methods (Figure 6a,b).
The cell with the obtained composites showed better cyclic performance with a reversiable
capacity of 820 mAh/g at a current rate of 0.2 C after 30 cycles compared with a pure SnS;
anode (Figure 6a—c). Controlling the particle size of electrode materials has been acknowl-
edged as an effective approach for improving the cycle stability and rate characteristics of
LIBs [67]. Thus, a simple, one-step hydrothermal process for fabricating composites con-
taining size-tunable tin disulfide on SnS,-RGO (Figure 6d—f) was investigated by Zhao et al.
to thoroughly explore the effect of particle size on the electrochemical properties of the
material [161]. To demonstrate the morphological, size-dependent properties, the parti-
cle sizes of SnS; nanoparticles were changed by varying the length of the hydrothermal
process with three different heat-treatment times (12, 24, or 48 h). The collected samples
were marked as SnS, /RGO-12, SnS; /RGO-24, and SnS, /RGO-48, respectively. After 12 h
of hydrothermal treatment, the ultrafine SnS, particles (12 nm) were evenly spread over
the graphene nanosheets. It is seen from Figure 6g that, after 200 cycles at 0.1 A/g, a high
reversible capacity of 1211 mAh/g remained, which was because the prepared samples had
more active sites and increased transport kinetics, thus yielding significant enhancement
in electrochemical performance. Mei et al. [156] reported ultrasmall SnS, nanocrystals
decorated on flexible RGO through a refluxing method. The supplied composite with
a high surface-to-volume ratio could enhance Li atom absorption on both sides of the
sheet and porous architectures, enabling the RGO nanosheet to offer enough room for
Li* storage. The cell with such materials exhibited good capacity retention even at high
rates of 1 C and 5 C with the capacities of 773 mA h/g and 415 mAh/g, respectively,
after 450 cycles, which were significantly better than the previous hydrothermal-based
studies. SnS;@RGO nanocomposites were also created using a novel ionic-liquid-assisted
method, which employed SnSy precursors by reacting elemental tin and sulfur in the ionic
liquid, 1-butyl-2, 3-dimethylimidazolium chloride (Figure 6h,i) [163]. Exceptionally high
reversible capacity and cycle stability could be achived by using the obtained composite. A
discharge-specific capacity reached 1045.8 mAh/g, even after 700 cycles at a current density
of 500 mA /g, as shown in Figure 6j. The improved reversible capacity of the SnS,@RGO
electrode was explained by electrolyte breakdown at the low potential to create an organic
polymeric/gel-like layer due to the “pseudo-capacitance-type behavior” that activated the
active material under deep cycling.

Furthermore, a homogeneous layer of SnS; nanoparticles was grown on graphene
nanosheets (SnS;@GNS) and linked by covalent bonds using the solvothermal method
(Figure 7a—c) [162]. The Ip/Ig values of SnS;@GNS and GNS were calculated to be 1.44
and 1.22, respectively, showing that SnS,@GNS had more flaws. High-level flaws in
graphene can accelerate ion and electron migration, improve electrochemical reaction
kinetics, and offer more active sites for Li-ion adsorption and intercalation [146]. As
displayed in Figure 7d, the cell with SnS,@GNS delivered a capacity of 1250.8 mAh/g
after 150 cycles at 0.1 A/g. In addition, Li et al. [166] prepared SnS, nanocrystals (NCs)
through the one-pot solvothermal method using carbon shells attached to RGO by C-5
covalent bonding (Figure 7e). The well-controlled carbon shells offered long-term protection
for SnS; NCs against electrolyte corrosion and structural pulverization. Carbon shells
could act as mediums, enhancing C-structural SnS;@RGO’s stability and conductivity. It
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is demonstrated that LIBs had superior rate capabilities and cycling stability (capacity
retention of 74.7% after 1000 cycles at 2.0 A/g, as shown in Figure 7f).
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Figure 6. (a) Synthetic process, (b) a TEM image, (c) cycling performance of SnS;@RGO composite.
Reprinted with permission from Ref. [138]. Copyright 2012 RSC. TEM images of (d) SnS, /RGO-12,
(e) SnS, /RGO-24, and (f) SnS, /RGO-48; (g) cycling performance of SnS, /RGO. Reprinted with
permission from Ref. [161]. Copyright 2020 Elsevier. (h) Schematic illustration of the synthesis, (i) a
TEM image, and (j) cycling performance at a current density of 500 mA /g of SnS,@RGO. Reprinted
with permission from Ref. [163]. Copyright 2021 Elsevier.
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performance of SnS;@GNS. Reprinted with permission from Ref. [162]. Copyright 2020 Elsevier.
(e) An SEM image and EDX mapping of C, S, and Sn elements; (f) long-term cycle stability of
C-5nS,@RGO. Reprinted with permission from Ref. [166]. Copyright 2020 RSC.

Moreover, Luo et al. [142] developed a new porous nanostructure composed of 2D
graphene-SnS; (G-5nS;) by transforming SnO; nanoparticles into 2D SnS; nanoplates
directly on/between graphene nanosheets via a solution approach followed with a chem-
ical vapor deposition (CVD) process (Figure 8a,b). The cycling performace in Figure 8c
showed that the cell with the prepared G-SnS; had a stable capacity of 650 mAh/g after
30 cycles at 50 mA /g, while the reversible capacity of bare SnS, gradually decreased to
277 mAh/g. Xia et al. [146] synthesized pristine SnS, nanosheets with a thickness of 5 nm
by a hydrothermal process, and then uniformly layered SnS, on graphene sheets to pro-
duce layer-by-layer nanosheets (LL-5nS; /G) through the ball-milling method (Figure 8d,e).
When used as anodes for LIBs, the capacity reached 1152.25 mAh/g after 100 cycles at a
current rate of 100 mA /g, as shown in Figure 8f. The excellent electrochemical performance
was attributed to the synergistic effect between SnS, nanoplates with high specific capacity
and conductivity of graphene, which buffered the volume change and provided an effective
physical barrier between the active materials and the electrolyte to suppress the shuttle
effect of polysulfides formed during delithiation processes. Chen et al. [157] used reflux
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condensation and hydrothermal methods to grow SnS; nanoplates on the surface of RGO
nanosheets. When the GO concentration was 15%, the SnS, /RGO electrode exhibited the
excellent electrochemical performance, which showed capacities of 776, 715, 635.6, 595.2,
517.5, and 447.1 mAh/g at current densities of 0.2, 0.5, 1, 2, 5, and 8 C, respectively. In
addition, 3D nanoplate-based SnS;/graphene was synthesized through a facial solvother-
mal method by Zhang et al. [151], in which SnS; nanoplates with an average thickness of
3.6 nm were well dispersed and tightly contacted onto graphene substrates (Figure 8g,h).
The cell with SnS,-G achieved a very stable capacity of 826 mAh/g over 200 cycles at
500 mA /g. The specific capacities of 854, 780, 728, 625, and 498 mAh/g were obtained
under the conditions of 0.5, 1, 2, 4, and 8 A/g, respectively (Figure 8i,j). The enhanced
electrochemical performance of the cell was because of the enormous surface area of 2D
hybrid materials, the highly conductive and flexible graphene matrix, the 3D design, the
facilitated electrolyte filtration, and the smooth ion transport.

SnS: nanoplates
z 1 ]
[

G-Sn0:2

C 2000 F
= .
wa | —. nS, (Discharge) n_a Irothermal
218001 ¢ —4—G-8nS S (Discharge) ;/ \= on M"\\\Q
K \‘ v G-8nS,-S (Discharge)
1000
z |
g
2 500 sfasse
S
0

0 5 10 15 20 25 30

Cycle Number

-~

Discharge specific capacity (mAhg”)

Vg

| Current density : 100mA g

SnS, crystal
Crystal Self-assembly
Solvothermal
SnS,-G
28618 mAg
A % o
i p—— - b
1200 § 1200 Current density: A g”
- 5 .;;
2 900 £ 2 900
< - ‘S E 0.5 98¢a0 .
£ 600 s & = 600 i YT 05
z ho oz s
s ‘E [ g
o
2 300 g 2 300
(3} 5 o
o
[ o O 0

o
o

10 15 20 25 30
Cyclic number

0 50 100 150 200
Cyclic number

Figure 8. (a) Illustration of the formation, (b) an SEM image, and (c) cycling performance of the
G-5nS;. Reprinted with permission from Ref. [142]. Copyright 2012 RSC. (d) Schematic illustration
of the formation, (e) an SEM image, and (f) cycling performance of LL-5nS;/G. Reprinted with
permission from Ref. [146]. Copyright 2018 Elsevier. (g) Schematic formation, (h) an SEM image,
(i) cycling performance, and (j) rate capability of SnS,-G. Reprinted with permission from Ref. [151].
Copyright 2016 Elsevier.

Meanwhile, due to the high porosity, low density, and large pore volume, sev-
eral self-assembled graphene aerogels (GAs) and composites of 3D graphene-embedded
metal or metal oxide nanopaticles have been successfully manufactured using various
approaches [150-152,168-170]. For instance, Tang et al. [148] prepared a unique 3D
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SnS, / graphene (SSG) composite through transforming SnO, nanoparticles anchored on
GO sheets directly into SnS, nanoplates, homogeneously embedded in the graphene frame-
works (Figure 9a,b). The diameter of the obtained nanoplates on graphene was about
300 nm. The initial discharge and charge capacities of the cell were 1677 and 1159 mAh/g,
respectively. A reversible capacity of 1060 mAh/g was retained after 200 cycles at a current
density of 100 mA /g. When the current density declined from 2000 to 100 mA /g, it was
found that the reversible capacity could be up to 1100 mAh/g (Figure 9¢,d). Jiang et al. [150]
successfully fabricated 3D SnS, /graphene aerogels (SnS, /GAs) via an in situ hydrother-
mal method for self-assembly of graphene sheets followed by freeze-drying to maintain a
stable 3D structure (Figure 9¢). Figure 9f illustrates that the cell with SnS;/GAs exhibited
high-rate capability and cycling stability, which could be ascribed to the unique 3D intercon-
nected architectures of the aerogels and the synergistic effects of the layered SnS; and the
graphene, providing enough sites for absorbing Li-ions and shortening transport distance
between electrode and electrolyte. Additionally, 3D sandwich-like SnS, /graphene/SnS,
with expanded interlayer distance was introduced by Jiang et al. [149]. The covalently SnS;
nanosheets were decorated on both sides of RGO sheets to form an SnS, /RGO/SnS, anode
composite. The presence of GO could provide a nucleation site for SnS, and promote SnS,
nanoplates aggregate and grow to form fewer layers. SnS; nanosheets were chemically
linked to graphene through the C-S bonds to produce a sandwich structure with specific
capacities of 844 mAh/g after 200 cycles at a current density of 1 A/g (Figure 9g—i).
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Figure 9. (a) Schematic formation process, (b) an SEM image, (c) cycling performance, and (d) rate
capability of SSG. Reprinted with permission from Ref. [148]. Copyright 2015 Elsevier. (e) Fabrica-
tion process, and (f) schematic representation of electron transmission and lithium ions storage of
5nS; /GAs. Reprinted with permission from Ref. [150]. Copyright 2013 Elsevier. (g) Schematic illus-
tration, (h) molecular model, and (i) high rate cycling performance of SnS, /RGO/SnS,. Reprinted
with permission from Ref. [149]. Copyright 2019 ACS.

Apart from nanosheets, Ren et al. [144] introduced SnS; nanoflakes on the 3D graphene
foams (GFs) using a single-mode microwave hydrothermal technique (Figure 10a,b). The
composite SnS,@GF electrode provided a high capacity of 818.4 mAh/g at a high current
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density of 1.0 A/g after 500 cycles, as seen from Figure 10c. The GF served as a 3D frame-
work for SnS; nanoflakes loading and this conductive porous matrix was convenient for
rapid electron transport, reduced the strain during the intercalation/extraction process,
and provided a large electrode/electrolyte contact area. A new nanocable-like structured
SnS,—graphene network was fabricated by Kong et al. [158], in which graphene layers
were rolled up to embody SnS; nanosheets with a thickness of around 10 nm. SnS,@G
nanocable showed the initial discharge and charge capacities of 1334 and 764 mAh/g, re-
spectively (Figure 10d—f). Figure 10g presents that the composite maintained the reversible
capacity of 720 mAh/g at 200 mA /g up to 350 cycles with over 93.5% capacity reten-
tion. This might be attributed to the unique structure design which released the volume
change of 5nS; during discharge—charge cycles and promoted easy access of electrolytes
to dynamic anode materials. Liu et al. [49] synthesized nanoflower-based SnS,@RGO
(5SnS,-NF@RGO) composite anodes for LIBs (Figure 10h). The initial specific capacities of
5nS,-NS and SnS,-NF were 1300 and 1100 mAh/g, respectively, and gradually decreased
to below 200 mAh/g after 200 cycles under 615.5 mA /g, while SnS,-NF@RGO maintained
reversible capacity of 525 mAh/g after 360 cycles and capacities of 1211.8, 1021.7, 809.1,
708.1, 412.5, 509.6, 751.5, 820.3, and 923.5 mAh/g under 123.1, 246.2, 615.5, 1231, 2462,
1231, 615.5, 246.2, and 123.1 mA /g, respectively (Figure 10i,j). It revealed good capacity
retention through the layer structure of RGO additives, which gave better conductivity
between SnS,-NF/electrolyte interfaces and minimized the self-aggregation during the Li*
insertion/deinsertion processes.
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Figure 10. (a) Schematic illustration of the formation, (b) an SEM image, and (c) cycling performance
of SnS;@GF. Reprinted with permission from Ref. [144]. Copyright 2016 Elsevier. (d) Schematic
illustration, (e) an SEM image and mapping, (f) a TEM image, and (g) cycling performance of SnS,@G.
Reprinted with permission from Ref. [158]. Copyright 2014 RSC. (h) Schematic diagram and SEM
images, (i) cycling performance, and (j) rate capability of SnS,-NF@RGO. Reprinted with permission
from Ref. [49]. Copyright 2019 Elsevier.

The electrochemical performance of SnS; /graphene anodes is summarized in Table 3.
It can be seen that SnS; /graphene-based anodes have attracted great attention thanks to
the synergistic interaction of SnS; and graphene. On one hand, the graphene sheets could
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not only prevent the aggregation of microscopic SnS,, but also significantly improve the
electrode’s electronic conductivity and buffer volume changes during charge/discharge
processes. The inclusion of SnS, between graphene sheets, on the other hand, could
successfully prevent graphene restacking. In recent years, a variety of methods have been
utilized to make SnS,-G nanocomposites, each with its own set of benefits. For example, by
simply altering the reaction conditions and additives, hydrothermal/solvothermal methods
and other solution-based methods are most typically employed to create SnS, /graphene
nanocomposites with various nanostructures. SnS; nanostructures, such as nanoparticles,
nanorods/nanowire, 2D nanosheets/films, and 3D nanoflowers, can reduce volume change
during charge/discharge and can shorten the diffusion length of Li-ions, which is critical
for boosting cells’ rate capability and cycle stability.

Table 3. Electrochemical performance of SnS, / graphene-based anodes.

Size/Thickness Initial Rate Performance

Specific Capacity

Materials Morphology nm CE (mAh/g) (mAh/g) Ref.
G/SnS, Nanoparticle 30 29.6% 351/200 mA /g, 50th cycle N/A [54]
RGO-5nS; Nanoparticle 100 63.44% 405/0.5 C, 80th cycle 200/5C [53]
SnSy-G,1 <x<2 Nanoparticle 5 69% 860/0.2 C, 150th cycle 450/2 C [137]
5nS; /graphene Nanocrystal 3-5 71.5% 564/0.2 C, 60th cycle 242/5C [138]
SnS;-graphene Nanoparticle 5-20 63.2% 903/200 mA /g, 50th cycle 500/1.6 A/g [143]
SnS, /GNS Nanoparticle 2-3 ~69.9% 577/59.1 mA/g, 50th cycle 200/591 mA/g [147]
SnS, /RGO Nanocrystal 10-40 35% 644/500 mA /g, 50th cycle 430/1A/g [154]
SnS, /RGO Nanocrystal 34 78.7% 1034/0.1C, 200th cycle 415/5C [156]
SnS; NP/GNs Nanoparticle 4 49% 631.4/100 mA /g, 150th cycle 378/20A/g [140]
RGO/SnS, /TiO,  Nanoparticle ~10 64.3% 485/0.5 A/g, 200th cycle 303/2A/g [141]
5nS; /graphene Nanoparticle 3 74.4% 1480/0.2 A /g, 50th cycle 666/10A/g [159]
G-5nS; Nanoplate 7 38% 650/50 mA /g, 30th cycle 230/64A/g [142]
5nS; /graphene Nanoplate 2-5 69% 704/387 mA /g, 100th cycle 303/6.45A/g [155]
5nS;-G Nanoplate ~3.6 73% 826/500 mA /g, 200th cycle 498/8 A/g [151]
SnS, /G Nanoplate N/A 42.4% 920/100 mA /g, 50th cycle 600/1A/g [139]
SnS, /GAs Nanoplate 200 37% 656/50 mA /g, 30th cycle 240/1A/g [150]
5nS, /graphene Nanoplate 300 69% 1060/100 mA /g, 200th cycle 670/2A/g [148]
SnS, /G-CNT Nanosheet 10-30 63% 1017/100 mA /g, 100th cycle 634.6/2 A/g [170]
SnS, /GNS Nanosheet 20-25 83.7% 1114/100 mA /g, 30th cycle 870/1A/g [145]
L-SnS, /G Nanosheet 5 74.16% 773/200 mA /g, 180th cycle 567/2A/g [146]
SnS;-graphene Nanosheet N/A ~71% 570/0.2 C, 30th cycle N/A [153]
SnS; /RGO Nanosheet 10 55.6% 514/1.2 A/g, 300th cycle 447/8 C [157]
SnS, /RGO/SnS, Nanosheet 4.43 81% 1357/100 mA /g, 200th cycle 844/10A/g [151]
SnS,@GT Nanorod 10 57.3% 720/0.2 A/g, 350th cycle 247/5A/g [158]
SnS,@GF Nanoflakes N/A 69.6% 818.4/1 A/g, 500th cycle 1609 /5A/g [144]
GNS@MoS,@5nS, Nanoflakes 20 66% 743/80 mA /g, 100th cycle 710/320 mA/g [152]
SnS;NF@RGO Nanoflower N/A ~78% 525/615.5 mA/g, 360th cycle  412.5/2462 mA/g  [49]

5. Summary and Outlook

SnS, /carbon composites have been considered as an appealing family of high-capacity
anode materials for next-generation LIBs. This review provides a comprehensive overview
of the most significant advances in their microstructure, Li storage instrument, combination,
and electrochemical characteristics. Specific accentuation has been put on handling the
rest of the issues of SnS;-based anode materials through a reasonable basic structure (i.e.,
building remarkable nanostructures, different morphology, and creating SnS,/carbon-
based composites). Besides, different procedures can be taken for electrochemical execution
upgrade, such as securing controlled pre-lithiation and polymer fastener enhancement.

The creators suggested that the micropores could adequately mitigate the volume
changes of SnS, nanoparticles and forestall the breakdown of the permeable structure.
The high explicit surface zone encourages the effective contact of dynamic materials with
electrolytes. Among different carbon materials, compositing SnS, with graphene sheets is
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one of the hotly debated ongoing exploration issues in recent years since the synergistic
impact between SnS, and graphene can strikingly improve the anode’s electrochemical
performance. On the one hand, the graphene sheets could not just forestall the agglom-
eration of small SnS; particles, cradle the volume change during charge-release forms,
and essentially upgrade the terminal’s electronic conductivity. The diverse nanostructures
of 5nS,, including nanoparticles, nanorods/nanowires, nanosheets, nanoflowers, and 3D
nanospheres, can also ease the volume change during the charge-release process.

In this paper, we focused on the morphological structure of the SnS, material. In
the case of pure SnS;-based anodes, particle size has a significant impact on discharging
capacity. SnS,, with smaller particle size, showed better capacity retention and discharging
capacity, and also provided more a specific area for volume change expansion. Nanoflower
based structures with more active sites for Li-ion insertion significantly improve capacity
retention and discharging capability at high current rates. In case of hybrid materials, the
specific area and morphology of the other component also play a vital role in capacity
performance. As we discussed in the graphene section, sandwich-like nanosheet structures
could reduce the Li-ion diffusion distance and have shown excellent CE and rate capability.
However, the dispersion length of Li particles is an extremely important factor in improving
the reversible limit and cycling dependability. Graphene-based materials are growing
rapidly as an incredibly adaptable 2D material for electrochemical energy storage systems,
which have aided batteries in achieving excellent high capacities and rate capability due
to their optimized interlayer spacing and proprietary chemistry. These accomplishments
are a result of graphene’s inherent features, which include strong electrical conductivity, a
defined structure, and the capacity to sustain adaptations, allowing for the electrodes to be
tailored to a specific application.

There is still a long way to go before the use of SnS; /graphene composites. Although
some of the procedures listed are fairly easy after obtaining graphene or GO, one of the
major difficulties is the question of how to further simplify the process of manufacturing
graphene. Furthermore, further work is required to alter the mechanical characteristics
of the SEI layer, such as SnS, /graphene-active materials, binders, electrolytes, and elec-
trolyte additives, in order to achieve improved cycle performance and CE (Figure 11).
Meanwhile, high energy consumption in material and battery production, depletion of
critical raw material resources, and low degradation rates are incompatible with the current
sustainability of LIBs, and could result in a severe environmental impact and uncertain
production conditions in the future, which also need to be taken under consideration for
future work. However, it is certain that SnS;-based anode materials will make tremen-
dous advances in the near future due to the ongoing and unwavering efforts throughout
the world, which will play an increasingly essential and active role in next-generation
high-energy-density LIBs.
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