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Abstract: We report the successful synthesis and a complete magnetic characterization of
CoFe2O4@SiO2@Au magnetoplasmonic nanoparticles. The CoFe2O4 magnetic nanoparticles were
prepared using the hydrothermal method. A subsequent SiO2 shell followed by a plasmonic Au shell
were deposited on the magnetic core creating magnetoplasmonic nanoparticles with a core–shell
architecture. A spin-glass-type magnetism was shown at the surface of the CoFe2O4 nanograins.
Depending on the external magnetic field, two types of spin-glass were identified and analyzed in
correlation with the exchange field acting on octahedral and tetrahedral iron sites. The magnetization
per formula unit of the CoFe2O4 core is not changed in the case of CoFe2O4@SiO2@Au nanocompos-
ites. The gold nanoparticles creating the plasmonic shell show a giant diamagnetic susceptibility,
dependent on their crystallite sizes.

Keywords: core–shell nanoparticles; magnetoplasmonic nanoparticles; magnetic properties; spin-
glass; exchange field

1. Introduction

The flexibility of spinel ferrite CoFe2O4 or a (Co1−xFex)T(CoxFe2−x)OO4 structure,
with a variable occupancy of tetrahedral (T) and octahedral sites (O), provides a wide range
of physical properties and applications, particularly in their nanosized form. As a function
of the inversion parameter, x, the structure changes from a normal spinel (x = 0) to an
inverse spinel type (x = 1). In a bulk state, the CoFe2O4 ferrite has mainly an inverse-type
spinel structure and crystallizes in an FCC-type lattice, space group Fm3m. The ferrite is
ferrimagnetically ordered, and the magnetic moments of the atoms situated in octahedral
and tetrahedral sublattices, respectively, being antiparallelly aligned. According to the
degree of inversion, a large range of magnetizations can be obtained. The superexchange
parameters inside and between magnetic sublattices were determined in the bulk state,
starting from a mean field model [1,2].

At the nanometer scale, the magnetic behavior of CoFe2O4 ferrite shows significant
differences with respect to that of the bulk state. The crossover to a single domain behavior
is 40 nm [3]. The system becomes superparamagnetic between 7 and 10 nm. A core–shell
model was proposed for CoFe2O4 nanograins, in which a core of aligned spins is sur-
rounded by a magnetically disordered shell [4]. The low-temperature magnetic behavior of
ultra-small CoFe2O4 nanoparticles was also associated with a random freezing of surface
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spins [5,6]. Thus, associated with size reduction and the formation of single-domain parti-
cles, the presence of superparamagnetism, a canted spin structure and surface anisotropy
can be present, with different potential applications such as biomedical, electrical, antibac-
terial, energy storage media, coatings and magnetic refrigerants [7–10].

The CoFe2O4 nanoparticles are difficult to disperse due to their strong magnetic prop-
erties. A method to suppress nanoparticles’ agglomeration consists in surface modification
by coating, leading to the creation of so-called core–shell nanocomposites. For medical
applications, the coating shell must be non-toxic, biocompatible and stable in physiological
environments. A silica shell protects and stabilizes the magnetic core, in addition to having
low cytotoxicity, good chemical inertness and high thermal stability [9–12]. Additionally, it
can be functionalized to bind on its surface molecules that possess silanol groups.

The magnetoplasmonic core–shell nanocomposites, having a noble metal shell, are
promising materials for biomedical applications. Metallic Au and Ag have a good surface-
enhanced Raman scattering effect, whose surface plasma resonance enhances the electro-
magnetic field near the surface [13–17]. In this way the Raman scattering signals of the
adsorbed molecules are greatly enhanced as compared with that of the ordinary Raman
molecules. The gold does not interact with biological systems, so the use of Au on the shell
surface is useful in supplying biocompatibility characteristics to nanostructures.

The present paper reports the successful synthesis and physical characterization of
CoFe2O4@SiO2@Au magnetoplasmonic nanoparticles. The CoFe2O4 magnetic nanopar-
ticles have been synthesized by the hydrothermal method. Subsequently, the SiO2 shell
was deposited on CoFe2O4 core nanoparticles. The further deposition of gold was made
after the functionalization of CoFe2O4@SiO2 nanocomposites. Once the synthesis process
was completed, a complete evaluation of their magnetic properties has been performed. A
spin-glass-type magnetism was identified at the surface of CoFe2O4 nanograins. The mag-
netization per formula unit of CoFe2O4 core was not changed in the CoFe2O4@SiO2@Au
nanocomposites, while the coercive fields decreased in the case of magneto-plasmonic
nanohybrids. The gold nanoparticles on the shell showed a giant diamagnetic susceptibility,
dependent on their crystallite sizes.

2. Materials and Methods
2.1. Samples Preparation

The CoFe2O4 nanoparticles were prepared using a typical hydrothermal
method [18,19]. The Fe(III)acetylacetonate (0.4 mmol) and Co(II) acetylacetonate (0.2 mmol)
were dissolved in 55 mL ethylene glycol and kept at a temperature of 50 ◦C. Following
this, 0.8 g of polyvinylpyrrolidone (PVP) was added to the solution. After magnetic stir-
ring, the above solution was transferred to an autoclave, and heated to 240 ◦C at a rate
of 0.3 ◦C/min and maintained at this temperature for 12 h. After cooling, the resulting
product was washed several times using a 4/1 volumetric ratio of diethyl ether and ethanol.
The CoFe2O4 nanoparticles were obtained by drying the solution at 50 ◦C.

In order to deposit the SiO2 shell on CoFe2O4 nanoparticles, the Stober method was
employed. The CoFe2O4 nanoparticles (0.2 mmol) were dispersed in 80 mL ethanol by
ultrasonication and mechanical stirring; the dispersed particles were functionalized using
0.2 mL APTES. After ultrasonication and mechanical stirring, the shell deposition was
completed during further sonication by adding TEOS (0.2 mL) to the solution and by
increasing the pH upon the addition of the NH4OH solution. The solution was sonicated
and stirred for 2 h, keeping the temperature constant at t = 40 ◦C. The nanocomposites thus
obtained were washed several times with ethanol and then dispersed in water.

The CoFe2O4@SiO2 nanostructures were then functionalized with 0.2 mL of
3-aminopropyltriethoxysilane (APTES.) The obtained CoFe2O4@SiO2 particles were dis-
persed in water. The pH of the solution was lowered to 4 using a 1M HCl solution. Aqueous
solutions of chloroauric acid (20 mmol/L), sodium citrate dehydrate(100 mmol/L), mixed
trisodium citrate dehydrate (20 mmol/L) and sodium borohydride (50 mmol/L) were
added sequentially and dropwise during sonification and mechanical stirring. The tem-
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perature was kept at 65 ◦C. Three series were prepared, denoted CoFe2O4@SiO2@AuN
(N = 1–3). Finally, the nanocomposites were then washed.

2.2. Characterization

The morphology of the CoFe2O4 nanoparticles and of the CoFe2O4@SiO2@AuN
nanocomposites was investigated by transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) using a Hitachi HD2700. The EDS measurements were done in
order to analyze the composition of the prepared nanocomposites.

The crystal structure and crystallite sizes of CoFe2O4 nanoparticles and of the
CoFe2O4@SiO2@AuN nanocomposites were determined by XRD measurements, performed
at ambient temperature, with a Bruker D8 Advance diffractometer. The crystallite sizes
were estimated by Rietveld refinement of XRD patterns, using FullProf Suite software.

Magnetic measurements were performed in the 4.2–300 K temperature range, and
in external magnetic fields of up to 12 T, using a vibrating sample magnetometer from
Cryogenic Limited (London, UK).

3. Results
3.1. Morphology and Crystal Structure

The XRD patterns of CoFe2O4 and CoFe2O4@SiO2@AuN nanocomposites are shown
in Figure 1. As expected, they correspond to the superposition of the XRD lines of CoFe2O4
and Au (ICDD PDF: 22-1086 for CoFe2O4 and 98-005-0876 for Au). All diffraction peaks
including (111), (220), (311), (400), (422), (511) and (440) are fully indexed to the spinel
CoFe2O4 phase. The sharp peaks corresponding to the (111), (200), (220) and (311) planes
shown in the CoFe2O4@SiO2@AuN nanocomposite patterns confirm the crystallization
of cubic FCC Au. The SiO2 was in amorphous state, as evidenced in XRD patterns by a
broad feature at low angles. The lattice constants of CoFe2O4 and Au, determined from
Rietveld refinements, are not dependent on nanostructures compositions and close to those
of bulk samples. The crystallite sizes of CoFe2O4 nanoparticles are in the 14.2 nm and
20.2 nm range, while those of the gold nanoparticles were found to be between 15.9 nm and
23.6 nm (Table 1).
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Table 1. Compositions, lattice parameters, crystallites sizes, magnetizations and coercive fields. AuN
is a symbol for CoFe2O4@SiO2@AuN nanostructures with N = 1–3).

Nanostructure CoFe2O4 Au1 Au2 Au3

Composition (weight %)
CoFe2O4 100 46.8 41.8 24.3

SiO2 - 11.0 11.6 6.3
Au - 42.2 46.6 69.4

Lattice parameter (nm) CoFe2O4 core 0.8379 (9) 0.8375 (4) 0.8372 (9) 0.8376 (9)

Crystallite size (nm 14.2 (2) 20.2 (3) 17.3 (2) 20.2 (2)

Lattice parameter (nm)
Au shell

- 0.4073 (2) 0.4073 (9) 0.4074 (7)

Crystallite size (nm - 23.57 (2) 15.86 (4) 18.88 (6)

Nanocomposite magnetization/CoFe2O4
weight percent (emu/g) 86.9 86.1 84.5 85.5

Coercive field HC(T)
T = 4.2 k 0.35 0.20 0.28 0.19

T = 300 k 0.04 0.03 0.03 0.030

The TEM and SEM images of CoFe2O4 nanoparticles evidenced that these were of
nearly spherical form and agglomerated in separate pseudo-spherical “raspberry”-like
nanostructures, with an average particle size of approximately 79 nm (Figure 2a,b). The
mean size of the crystallites was around 19 nm, as can be seen in Figure 2c.
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After the deposition of SiO2, the TEM images show the formation of a shell layer
(Figure 3). The nanocomposites thus formed had spherical or pseudo-spherical forms. A
similar morphology was shown after gold deposition (Figure 4). The core–shell
CoFe2O4@SiO2@AuN nanoparticles were nearly completely covered by gold. High resolu-
tion pictures confirmed that the Au nanoparticles had dimensions close to those determined
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by SEM, being in the 14–21 nm range. The average size of these nanocomposites was
288(57) nm.
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The EDS results show that the nanocomposites consisted of Fe, Co, O, Si and Au. As an
example, the EDS results for CoFe2O4@SiO2@Au2 are given in Figure 5. The compositions
determined for the studied samples are listed in Table 1.

3.2. Magnetic Properties

The magnetization isotherms, recorded at T = 4.2 K and 300 K for nanocrystalline
CoFe2O4 and CoFe2O4@SiO2@AuN nanostructures, are shown in Figure 6. The presence of
a spin-glass contribution superposed on mainly ferrimagnetic-type ordering is suggested
in CoFe2O4 nanocrystalline samples by the present investigations. The spin canting could
have been present due to the following: (1) surface effects due to symmetry breaking by the
broken exchange bonds at the surface layer, (2) cation distribution in the tetrahedral and
octahedral sites and (3) interactions between nanoparticles. In a spin-glass system, instead
of having global anisotropy axes, there are easy axes whose directions vary randomly in
space. Their direction is determined by the local spin arrangement.

The previous Mössbauer studies [5,6] as well as infrared spectroscopy [4] performed
on CoFe2O4 nanocrystalline samples evidenced the presence of a spin-glass state. It can be
mentioned that in a large number of studies, ferrimagnetic-type behavior was also reported.
The field dependences of the magnetization, in a spin-glass system, have been already
analyzed [20]. In such a system, which shows high anisotropy (correlated spin glass), the
approach to magnetic saturation follows a 1/H2 law. In systems with weak anisotropy (a
ferromagnet with wondering axes) the approach to saturation when the external field, H,
is smaller than the exchange field, Hex, can be described by a 1/H1/2 dependence, while
for H > Hex it follows the same dependence as for systems having high anisotropy. The
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spin-glass state of surface magnetization of weak anisotropic perovskites is well described
by the 1/H1/2 law, as already reported [21–23].
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Figure 6. Magnetization isotherms at T = 4.2 K (a) and T = 300 K (b) of CoFe2O4 and
CoFe2O4@SiO2@Au nanocomposites.

The analysis of magnetization isotherms in CoFe2O4 nanograins suggests the presence
of a spin-glass state superposed on mainly ferrimagnetic-type behavior. The dependences
of magnetizations, at T = 4.2 K and 300 K on 1/H1/2, are given in Figure 7. Linear variations
are present in the field ranges up to 12 T, for data obtained at T = 300 K and up to µ0H = 8
T at T = 4.2 K, described by the relation:

M(H)

M(0)
= 1 − bH−1

2 (1)

with a rate b = 0.1275 (T1/2) at T = 4.2 K and 0.0402 (T1/2) at T = 300 K. Nearly the same
rate b has been obtained at T = 4.2 K for the field dependence of magnetization at the grain
surface of Sr2FeMoO6-based perovskites [22,23].
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Figure 7. Magnetization isotherms of CoFe2O4 at T = 4.2 K and T = 300 K as function of H1/2. In
inset, the data at T = 4.2 K for H > 8 T as a function of H−2.

For fields higher than 8–9 T, the magnetization at 4.2 K follows a 1/H2 law. There is a
change in the shell magnetic behavior, suggesting a transition from a spin-glass state with
wondering axes to a correlated spin-glass state. The extrapolation of magnetizations at
T = 4.2 K, for both 1/H1/2 and 1/H2 trends, to infinite field, as expected, give the same
value of saturation magnetization, Ms = 87.0 (3) emu/g. This corresponds to a magnetic
moment per formula unit of Ms = 3.65 µB/fu and it is expected to characterize the situ-
ation when the moments of both core and shell are oriented along the same axis. Thus,
the inversion factor can be determined from saturation magnetization [24,25] as being
x = (1/4)(7−Ms) = 0.838. The composition of the sample (Co0.162Fe0.838)T(Co0.838Fe1.162)OO4
is closer to that of an inverse-spinel-type structure.
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The analysis of magnetization at T = 4.2 K suggests that the contribution of the spin-
glass state to magnetization is around 8% of the total nanoparticle magnetization. This
could be due to the cumulative effects of the broken exchange bonds at the surface layer,
as well as to the exchange interactions between constituent ions, assuming a spherical
grain with d = 20 nm and the shell volume having one CoFe2O4 lattice parameter (0.4 nm)
width, corresponding to 11% of that of the nanograin. By Mössbauer spectroscopy, it was
shown that the canting angle of iron moments in CoFe2O4 at tetrahedral sites was 410 and
at octahedral sites 360 [5]. Thus, the corresponding magnetization of the shell volume, on
the field direction, was ~8% of the total magnetization, suggesting that the spin-glass state
is mainly due to the surface shell.

The exchange interactions at the level of the unit cell also influences the spin canting.
The anisotropy of cobalt is sensitively higher than that of iron and no canting is expected
for cobalt moments, unlike for the Fe3+ spins. The exchange fields acting on iron ions in
octahedral and tetrahedral sites were estimated starting from the exchange interaction
parameters in bulk CoFe2O4, determined in the mean field model, assuming the presence
of two [1] or three [2] magnetic sublattices. According to the determined inversion param-
eter, a tetrahedral Fe3+ ion has as neighbors four Fe and two Co octahedral ions, and an
octahedral Fe3+ ion seven Co and five Fe tetrahedral ions, respectively [6]. In the above
assumptions, the exchange fields, Hex, acting on iron at octahedral and tetrahedral sites are
roughly of 300 T and 160 T, respectively. These values approximate those of the nanoparticle
core. The exchange fields at the surface layer are sensitively diminished due to broken
bonds and deviations from the parallel alignment of iron moments. Thus, for tetrahedral
iron sites, in the one lattice parameter shell, the exchange field can be of a magnitude not
highly different from the external field used for measurements. Consequently, there can be
different magnetic responses of Fe3+ ions at tetrahedral and octahedral sites in the presence
of an external field.

At ambient temperature, only a T−1/2 dependence of surface magnetization is shown,
as determined by thermal effects.

The nanoparticle anisotropy seems to influence also the spin-canting-type behavior.
The hysteresis curves recorded at 4.2 K and 300 K are given in Figure 8. At T = 4.2 K,
the remanent magnetization was Mr/Ms = 0.5, as expected for single domain particles. A
smaller Mr/Ms value was obtained at T = 300 K, correlated with the superparamagnetism
of some nanoparticles having dimensions d < 10 nm—see Figure 8b. The anisotropy
constants of CoFe2O4 nanoparticles were estimated assuming that below the blocking
temperature, TB the anisotropy is uniaxial [26]. According to the Stoner–Wohlfarth model
for non-interacting single domain particles, the coercive field, Hc, depends both on the
anisotropy constant K1 and saturation magnetization [27]:

Hc = 2K1/µ0Ms (2)
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From experimentally determined Hc values, anisotropy constants K1 = 7 × 105

(T = 4.2 K) and 6.8 × 104 (T = 300 K) J/m3 were obtained.
The effective anisotropy constant, Keff, has been estimated using the blocking temper-

ature TB, according to the relation:

TB = KeffV/25kB (3)

where V is the nanoparticle volume.
For a log normal distribution of particles sizes, the blocking temperature, TB, is related

to the temperature corresponding to the maximum in ZFC magnetization, Tmax, by the
relation [28]: Tmax = e<TB>, where e is in the 1.5–2.5 range. A careful analysis of the matter
in case of CoFe2O4 nanoparticles with dimensions 5–7 nm evidenced a value e = 1.70 [29].
By using this value and taking into account that Tmax = 300 K, an effective anisotropy
constant Keff = 4.31 × 104 J/m3 was estimated assuming crystallite sizes of 15 nm. This
value is close to that determined at T = 300 K from a coercive field. Somewhat higher
Keff values were obtained for nanograins with dimensions of 6.6 nm [16]. Starting from
the determined anisotropy constants, the anisotropy field Ha = 2K/µ0M of 9–14 T was
estimated. These values are smaller than the exchange field, but close to the field where a
change in the spin-glass-type behavior was shown, suggesting possible relations.

The magnetization isotherms for CoFe2O4@SiO2@AuN nanostructures can be de-
scribed by the contributions of a magnetic ordered phase, attributed to CoFe2O4 and
diamagnetic contributions of SiO2 and Au—see Figure 6.

MT = xMCoFe2O4 − (yχSiO2 + zχAu)H (4)

By fitting the experimental data with the above relation, the contributions of CoFe2O4
to the nanostructure magnetizations were obtained. These values are in good agreement
with the content of CoFe2O4 in the nanocomposites, as expected in the case of a simple
magnetic dilution model—see Figure 9 and Table 1. The covering of the CoFe2O4 core with
SiO2 and Au shells do not induce changes in their magnetic properties as compared with
that of the single CoFe2O4 phase. Thus, by varying the CoFe2O4 content in nanostructures
it is possible to ensure the desired magnetic properties of nanocomposites.
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Figure 9. Magnetizations at T = 4.2 K as a function of CoFe2O4 content in CoFe2O4@SiO2@AuN
nanocomposites. The solid line gives the expected trend in a simple dilution magnetic model.

The diamagnetic contributions of the SiO2 and Au content, as determined from
VSM studies, are higher than those expected starting from those of bulk SiO2 and Au,
χSiO2 = 0.447 × 10−6 [30] and χAu = 2.74 × 10−6 [31], respectively. Unlike that of Au, the
diamagnetism of SiO2 is not affected by the nanocrystalline sizes. A giant diamagnetism has
been observed already in gold nanorods [32] and theoretically investigated [33,34]. After
the subtraction of the contribution of SiO2 to nanostructural diamagnetism, the diamagnetic
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susceptibility of gold nanoparticles was shown to be higher by one order of magnitude
than that of the bulk value.

The giant diamagnetic susceptibility of gold nanoparticles is a consequence of field-
induced currents in the surface electrons [33]. The diamagnetic susceptibility is originated
by steady currents induced by the applied field for quasi-free electrons confined in the
surface. The diamagnetic response, induced when the external field is turned on, remains
constant during the time the field is acting. As the size of the sample increases, the percent-
age of surface atoms decreases. Consequently, the magnetism of the surface approached
that of the bulk sample. Such a trend is evidenced by the present data. The diamagnetism
of gold nanoparticles, in relative units s = χex.Au/χAu, is plotted in Figure 10, as a function
of nanocrystallites surfaces, assuming that these have a spherical form. On the same figure,
the s parameter determined for a nanorod with d = 15 nm and l = 80 nm is also given [32].
These data are in agreement with the expected trend between gold diamagnetism and
nanoparticle dimensions
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Figure 10. The gold diamagnetism in CoFe2O4@SiO2@AuN nanostructures as function of the mean
surface of Au nanograins, in relative units (referred to bulk gold diamagnetism) (*). The data from [31]
are also given (•).

The coercivities of CoFe2O4 and CoFe2O4@SiO2@AuN nanostructures determined
from hysteresis loops, recorded at 4.2 K and 300 K, are given in Table 1. The coercive fields at
T = 4.2 and 300 K increase due to reduction in CoFe2O4 nanosizes. At ambient temperatures,
these values are smaller by one order of magnitude than those determined at T = 4.2 K.
These magnetic measurements fail to fully describe complex magnetic nanostructures,
such as an ensemble of nanoparticles with different magnetic properties, mainly due to
the size distribution of the grains. The first-order reversal curve (FORC) diagram offers
an image related to the coercivity and interaction fields acting on the different magnetic
entities within the sample [35–38]. After applying a magnetic field to ensure the saturation
magnetization, this is reduced to a predefined field Hr, denoted as the reversal field, and
the magnetization of the sample is measured while H is returned. The above sequence is
repeated with a decreasing Hr, thus obtaining a sequence of magnetization curves M(Hr,H).
On this basis, the FORC distribution, P, defined as a second derivative of the magnetization
with respect to reversal and applied field, is obtained. The quantitative analysis of the
FORC data is performed using the projection of the FORC distribution in the plane of
the coercive field, Hc = (1/2)(H − Hr), and the interaction field, Hu = (1/2)(H + Hr), axes,
called the coercivity distribution (PHc) and interaction distribution (PHu), respectively. The
FORC distributions for the CoFe2O4 and CoFe2O4@SiO2@Au2 nanostructures are given
in Figure 11. In CoFe2O4 nanograins, there is a large distribution of coercive fields and
interaction fields.
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The latter is due to particle interactions and the former is due to different particles
switching at different applied field strengths. A higher maximum in the p value indicates
stronger exchange interactions. The maximum of the probability density for CoFe2O4
is one order of magnitude larger than that for CoFe2O4@SiO2@AuN. This means that
the FORC distribution of CoFe2O4 is much narrower than that for CoFe2O4@SiO2@AuN
nanocomposites. The extended spot shown in the FORC diagram of CoFe2O4 resembles
‘’single phase” behavior, but with large exchange interactions between the nanograins along
the hc-axis. In CoFe2O4@SiO2@Au2 nanostructures, the peak distribution is located at an
interaction field of 0.19 T. The peak in the FORC distribution is thus shifted towards positive
reversal and interaction fields in the core–shell nanostructures, dipolar interactions being
increasingly more important due to the presence of a SiO2-Au shell and its screening effect.

4. Conclusions

Magnetoplasmonic CoFe2O4@SiO2@Au nanoparticles were successfully prepared.
The SiO2 shell was mainly in an amorphous state, as evidenced in XRD patterns by a broad
feature at low angles. The lattice constants of CoFe2O4 and Au were not dependent on
nanostructure compositions being close to those of bulk samples. The crystallite sizes of
CoFe2O4 nanoparticles were in the 14.2 nm and 20.2 nm range, while those of gold were
between 15.9 nm and 23.6 nm. The TEM and SEM images of CoFe2O4 nanoparticles evi-
denced that these are of nearly spherical form and agglomerate in separate pseudo-spherical
“raspberry”-like nanostructures. The presence of a spin-glass contribution superposed on
mainly ferrimagnetic-type ordering is suggested. The contribution of the spin-glass state to
magnetization was no more than 8% of the total CoFe2O4 nanoparticle magnetization. This
could have been due to the cumulative effects of the broken exchange bonds at the surface
layer, as well as to the exchange interactions between constituent ions. As a function of
the external magnetic field, two types of spin-glasses were observed and correlated with
different exchange fields acting on tetrahedral and octahedral iron sites.

The diamagnetic susceptibility of gold nanoparticles was shown to be by one order
of magnitude higher than that of the bulk value. The giant diamagnetic susceptibility of
gold nanoparticles is a consequence of field induced currents in the surface electrons. The
diamagnetic susceptibility originated by the steady currents induced by the applied field
for quasi-free electrons was confined in the surface. As the size of the sample increased, the
percentage of surface atoms decreased. Consequently, the diamagnetism approached that
of the bulk sample.

The FORC diagram of CoFe2O4 highlighted ‘’single phase” behavior, with large
exchange interactions between the nanograins along the hc-axis. The peak in the FORC
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distribution was shifted towards positive reversal and interaction fields in the core–shell
nanostructures, dipolar interactions increasing due to the presence of SiO2@Au shells and
their screening effects.
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