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Abstract: A high concentration of Er3+ without clustering issues is essential in an Er-doped waveguide
amplifier as it is needed to produce a high gain and low noise signal. Ultrafast laser plasma doping is
a technique that facilitates the blending of femtosecond laser-produced plasma from an Er-doped
TeO2 glass with a substrate to form a high Er3+ concentration layer. The influence of substrate
temperature on the morphological, structural, and optical properties was studied and reported in this
paper. Analysis of the doped substrates using scanning electron microscopy (SEM) confirmed that
temperatures up to approximately 400 ◦C are insufficient for the incoming plasma plume to modify
the strong covalent bonds of silica (SiO2), and the doping process could not take place. The higher
temperature used caused the materials from Er-doped tellurite glass to diffuse deeper (except Te with
smaller concentration) into silica, which created a thicker film. SEM images showed that Er-doped
tellurite glass was successfully diffused in the Si3N4. However, the doping was not as homogeneous
as in silica.

Keywords: Er3+-doped glass; laser ablation; optical materials; ultrafast lasers; thin film

1. Introduction

Er-doped fibre amplifier (EDFA) was invented in 1987, and it has now been estab-
lished as one of the standard components in telecom networks [1]. It has facilitated
worldwide information exchange because of its unique characteristics, including low
noise [2], high gain [3], low loss [4,5] and low-dispersion wavelengths, especially at C-band
(1525–1565 nm) and L-band (1565–1610 nm) of fibre optical communication [6]. In addition,
EDFA is an excellent candidate for signal amplification at various points in such networks
because it is compatible with fibre light-wave systems [7].

Although EDFA is extensively used in various applications, EDFA integration with
other optical and electronic components on a compact integrated platform is complex
because of its large size, which causes the packaging to be expensive and a barrier to
the downsizing of the device [8,9]. The Er-doped waveguide amplifier (EDWA) concept
was introduced to mitigate this issue. Its operation principle is similar to an EDFA but a
miniaturised planar version to meet the emerging demands [10]. EDWA inherits EDFA’s
magnificent performance but with a smaller size, and it can be fabricated on silicon plat-
forms compatible with complementary metal-oxide semiconductor (CMOS) processing [11].

The selection of the material host for EDWA is crucial as it affects the gain per unit
length, which is closely related to the solubility of the dopant Er and its photoluminescence
lifetime [12]. Silica-based waveguides have the potential to provide the best characteristics
of a host to Er in EDWAs because of their refractive index matching with well-established
silica optical fibre that potentially minimises coupling loss [13]. Apart from silica, silicon
nitride (Si3N4) is seen as a potential host material for EDWA applications. Si3N4 is an

Nanomaterials 2022, 12, 919. https://doi.org/10.3390/nano12060919 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12060919
https://doi.org/10.3390/nano12060919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1741-6083
https://orcid.org/0000-0001-9856-6755
https://doi.org/10.3390/nano12060919
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12060919?type=check_update&version=1


Nanomaterials 2022, 12, 919 2 of 19

attractive candidate because of its high refractive index (1.99–2.29) [14] and because it is a
Si-based material, such as SiO2, which is compatible with CMOS processing.

Ultrafast laser plasma doping (ULPD) is a technique that has been proven successful
for doped Er3+-ions in relatively high concentrations without the occurrence of severe
clustering issues in silica-based film, and the obtained layer is referred to as Er-doped
tellurite-modified silica (EDTS) [13,15,16]. In this approach, the target glass is ablated using
a femtosecond laser. The interfacial reaction between a high energy plasma plume and the
heated substrate results in a thin layer consisting of a mixture of target glass and substrate
material. This laser-induced plasma-assisted process is different from the deposition of a
film on the substrate as in well-known pulsed laser deposition. The surface implantation
and dissolution of ions and nanoparticles produced by the femtosecond laser-induced
plasma into the substrate surface network results in the structural modification of the
substrate surface [17]. Previous studies have proven Er-TZN to be successfully doped
into silica [13,15,16,18–20]. Since this process is also assisted by substrate heating during
the doping process, selecting the appropriate temperature is very critical. The substrate
temperature is a significant parameter in ULPD because it activates the mobility of the
ablated species for it to diffuse into the substrate and modify the host SiO2 and Si3N4
networks. Strong covalent bonds can be modified by the incoming plasma plume when
appropriate temperatures are used to heat the substrate. Therefore, the effect of substrate
temperature for these two substrates is worth studying as this effect in the ULPD technique
has not yet been reported. The use of different substrate temperatures, thus, results in
varying doped layer characteristics.

In this work, the doping of Er3+-doped tellurite-based glass in silica-on-silicon (SOS)
and Si3N4-on-silicon substrate using the ULPD technique was presented. The SOS substrate
was heated at 400 ◦C, 570 ◦C, and 700 ◦C and the Si3N4-on-silicon substrate was heated at
400 ◦C, 520 ◦C, 570 ◦C, 600 ◦C, and 650 ◦C to study the doping process. The effect of the
substrate temperature on morphological, structural, and optical properties of the doped
layer on SOS and Si3N4-on-silicon substrates was studied using the produced samples.

2. Materials and Methods
2.1. Sample Fabrication

The doped layer on SOS and Si3N4-on-silicon substrates was fabricated via the ULPD
technique [18,21]. The initial thickness for SiO2 and Si3N4 layers on silicon was 1 µm. A
commercial Coherent Ti: Sapphire LIBRA laser with a pulse duration of 100 fs, a wavelength
centred at 800 nm, a repetition rate of 1 kHz, and an energy of 50 µJ was used in this
work. The fs laser beam was focused on the target glass (79.5%TeO2–10%Na2O–10%ZnO–
0.5%Er2O3, Er-TZN) surface at an incident angle of 60◦ from normal. The substrate was
heated to a specific temperature (400–700 ◦C) at a ramp rate of 50 ◦C/min under an oxygen
ambient pressure of 70 mTorr. The laser ablation process was carried out for 4 h.

2.2. Sample Characterisation

Hitachi SU8230 scanning electron microscopy (SEM, Hitachi High-Tech Corp., Tokyo, Japan)
was utilised to study the cross section, and thickness of the doped layer and the surface
image was observed using an optical microscope and SEM. Energy dispersive X-ray (EDX,
Oxford Instruments PLC, Oxford, UK) was used to obtain the elemental concentration in the
sample. The crystallinity of the doped layer was investigated using a Philips X’Pert X-ray
diffraction (XRD, Philips, Amsterdam, The Netherlands). A prism coupler was employed
to measure the refractive index of the doped layer and verify the doped layer thickness.
Photoluminescence (PL) emission spectra were recorded using Edinburgh Instruments
FLS920 series spectrometer (Edinburgh Instruments Ltd., Livingston, UK) with a diode
laser at a wavelength of 980 nm as an excitation source. Time-resolved PL spectra using
laser source pulsed with a 100 ms period and a pulse width of 10 µs was also used to
determine PL lifetime. Surface analysis, including elemental concentration measurement,
was performed using X-ray photoelectron spectroscopy (Thermo Scientific K-alpha XPS,
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Waltham, MA, USA) with a monochromatic AlKα (1486.6 eV) source. Analysis and peak
fitting were carried out using CasaXPS software (v.2.3.16). Renishaw inVia micro (Renishaw,
New Mills, UK) with an excitation wavelength of 514 nm and a power of 25 mW was used
to collect the Raman spectra.

3. Results and Discussion
3.1. Er-Doped Tellurite Modified Silica (EDTS) on SiO2-on-Silicon Substrate

Figure 1a displays a backscattered (BSE) cross-sectional SEM image of bare SOS
substrate, while Figure 1b–d show BSE cross-sectional SEM images for samples fabricated
when substrates were heated at temperatures of 400 ◦C (B400), 570 ◦C (B570), and 700 ◦C
(B700). The thickness of the original silica layer (Table 1) remained at ~1 µm, proving that
no doping process actually occurred for sample B400, and the layer obtained was only
typical deposited film. This finding indicated that a temperature of 400 ◦C is insufficient for
the incoming plasma plume to modify the strong covalent bonds of silica. The film formed
on the SOS was only Er-TZN glass film, with compositions presented in Table 2, where
the Te concentration was much higher than the Si concentration. The surface for the B400
sample appeared to be very rough with clusters of microparticles. Such film is unsuitable
for EDWA because it could cause significant surface scattering and ultimately propagation
loss for laser signals.
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Figure 1. Backscattered cross-sectional SEM image of (a) bare SOS substrate and samples doped with
Er-TZN when the substrate was heated at (b) 400 ◦C (B400), (c) 570 ◦C (B570), and (d) 700 ◦C (B700).

Figure 1c,d represent a cross section of samples produced at higher temperatures
demonstrating the formation of Er-doped tellurite silica layer labelled as EDTS with thick-
ness increasing with temperature. The elemental composition of the EDTS obtained from
EDX-SEM and XPS for samples B570 and B700, as shown in Table 2, proved that the EDTS
consisted of combinations of elements from the target material and silica from the substrate
surface. This finding indicated that cations, such as Te, Zn, Na, and Er, were removed from
the target material and diffused into silica, thereby modifying the original silica network
during the ULPD process. However, Table 2 shows that the sample where the substrate
was heated at 700 ◦C had a lower Te concentration than the sample prepared at 570 ◦C
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because of the volatility of Te that caused severe depletion through evaporation at a high
temperature [22,23]. Nonetheless, the high temperature used to heat the substrate gave
way to a relatively higher concentration of elements from the target glass, except Te, to
dissolve into the silica.

Table 1. Variation of the upper layer and remaining silica layer thickness and refractive index
prepared at different substrate temperatures.

Sample EDTS Thickness Measured
with SEM (µm)

EDTS Thickness
Measured with Prism

Coupler (µm)

SiO2 Thickness of the
Layer below EDTS

Measured with SEM (µm)
Refractive Index

B400 - - 1.03 ± 0.03 -
B570 0.81 ± 0.06 0.83 ± 0.05 0.56 ± 0.06 1.5587 ± 0.0004
B700 1.10 ± 0.03 1.10 ± 0.01 0.22 ± 0.06 1.5285 ± 0.0002

Table 2. Percentage of components existing in the upper layer of SOS substrate for samples fabricated
using different substrate temperatures obtained from EDX-SEM and XPS.

Element

Elemental Concentration (at. %)

B400 (at. %) B570 (at. %) B700 (at. %)

EDX-SEM XPS EDX-SEM XPS EDX-SEM XPS

O 50.69 52.24 61.01 58.51 60.91 58.40
Si 1.67 1.85 21.47 28.90 20.99 28.79

Na 7.94 10.18 8.57 5.72 9.68 7.08
Zn 6.60 6.95 6.77 3.50 7.14 4.57
Te 32.21 27.08 1.74 2.89 0.73 0.59
Er 0.89 1.70 0.44 0.48 0.55 0.57

As shown in Table 1, the thickness and refractive index of sample B400 could not be
accurately determined by the prism coupler because of its rough surface. Meanwhile, the
higher temperature used caused the materials from Er–TZN to penetrate more into the
silica, thus causing a thicker EDTS. The reduced concentration of Te in sample B700, which
is a heavy element in the EDTS, caused the lower refractive index of this sample than B570.
Therefore, the concentration of Te in the EDTS is an essential factor as it could control
the refractive index, which, in turn, could contribute to the design of integrated optical
waveguides by using the ULPD approach presented in this work.

Figure 2 shows the XRD patterns of SOS substrate and SOS doped with Er-TZN when
the substrate was heated to 400 ◦C, 570 ◦C, and 700 ◦C. For samples B570 and B700, the
EDTS obtained were amorphous, except the peak at 2θ = 69◦, corresponding to underlying
crystalline silicon, Si (100) from SOS substrate. Meanwhile, for B400, the deposited film was
clearly crystalline with a distinct peak at 2θ = 19.16◦, 28.86◦, 49.02◦, and 59.68◦. The peaks
at 19.16◦ and 59.68◦ refer to Zn2Te3O8 based on the ICCD reference code: 04-012-2189 with
each having miller indices of (111) and (332), whilst the peaks at 28.86◦ and 49.02◦ matched with
Na2TeO3 with miller indices of (022) and (242), respectively (ICDD reference code: 00-035-1263).

The photoluminescence (PL) emission spectra of Er3+-ions in the samples were mea-
sured using a 980 nm diode laser as the excitation source. The PL emission spectra of the
layers produced at various temperatures are represented in Figure 3. For sample B400,
the spectrum shape obtained was clearly different from that of samples B570 and B700.
The FWHM in sample B400 was broader (Table 3) than in samples B570 and B700 and
almost similar to that reported for tellurite glasses [24–26]. For samples B570 and B700, the
obtained FWHM was 20 nm and similar to the FWHM of other previously reported Er3+-
doped silicate glasses, such as phosphosilicate, soda-lime silicate, and borosilicate [27,28].
This also confirms, in addition to elemental analysis, that the Er-TZN had permeated
into the silica glass network and transformed it into silicate glass. Sample B400 had a
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lower PL lifetime (5.26 ms) than samples B570 (12.29 ms) and B700 (11.12 ms). The ob-
tained PL lifetime for the Er-doped tellurite glass layer was obviously much lower than
erbium-doped silicate glass as reported for other erbium-doped tellurite glasses, which are
TeO2–GeO2–Na2O–ZnO–Er2O3 (5.7 ms) [29], TeO2–WO3–Na2O–Er2O3 (3.46 ms) [30], and
TeO2–WO3–Na2O–Nb2O5–Er2O3 (3.7 ms) [31]. The lower PL lifetime for sample B400 is due
to it being essentially a tellurite host material with stoichiometry similar to the target glass.
PL lifetime is well known to also depend strongly on host material [32,33]. In particular, it
is closely related to the refractive index of the host material based on the Judd–Ofelt theory.
According to the theory, lifetime has an inverse relationship with refractive index [34–36].
Given that tellurite glass has a higher refractive index than silicate glass, it exhibited a
lower lifetime, and this is the main reason that the PL lifetime for sample B400 was far
lower than that for samples B570 and B700.
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Figure 2. XRD patterns for samples prepared using temperatures of (a) 400 ◦C (B400), (b) 570 ◦C
(B570), and (c) 700 ◦C (B700).

Figure 4 shows the XPS survey scan for samples fabricated using different substrate
temperatures. For sample B400, the Te peak was obviously the highest among the samples,
proving that tellurite is the predominant host material in the deposited layer. The absence
of Si in sample B400 also confirms that there was no reaction in underlying SiO2 layer. For
samples B570 and B700, the Er concentration was too low, and it could not be detected in
the spectra survey. Er peaks that are often identified from Er 4d overlap with Si 2s peaks,
which are more pronounced because of much higher silicon concentrations than the Er in
samples B570 and B700. Furthermore, no peaks other than carbon (C 1s) and species from
Er-TZN and silica were detected in the spectrum survey obtained. This finding indicated
that no contaminants were present in the upper layer. For sample B700, the Te 3d5/2, and
Te 3d3/2, peaks were very low compared with those in B570, and Te 2p1/2 and Te 2p3/2
peaks were absent, which validated the argument on the reduction of Te content in EDTS
at higher temperatures.
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Table 2 tabulates the element concentration for the surface layer of samples B400, B570,
and B700, as calculated using a high-resolution scan of O 1s, Si 2p, Na 1s, Zn 2p3/2, Te 3d5/2,
and Er 4p3/2. Even though the value for the element concentrations derived from XPS was
slightly different from EDX-SEM, the trend was still quite similar. Figure 5 shows a high-
resolution scan of Te 3d5/2 for a sample fabricated with varying substrate temperatures. As
expected, the high-resolution scan of Te 3d5/2 for B400 was slightly different from that of
the EDTS. No Te metal could be detected for this deposited layer, indicating that the amount
of oxygen is sufficient in the layer. Surprisingly, TeO3 was dominant in this network. The
peak located at ~574 eV is typically attributed to tellurium suboxide [37,38]. For the B700
sample, the low density of the tellurium species in EDTS made the scan results have much
noise and made deconvolution processes difficult, possibly causing it to be less accurate.
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Figure 6 shows the Raman spectra for samples prepared at different substrate temper-
atures. Samples B570 and B700 reported a wavenumber peak of 521 cm−1 attributed to
single-crystalline silicon derived from the substrate [39,40]. This peak appeared to be lower
for sample B700 because the EDTS for this sample was thicker than that for B570, which,
in turn, caused the signal from the Si substrate to be weak. By contrast, the Si peak was
invisible in sample B400 because of the thick layer of deposited Er-TZN and the SiO2 layer
on a silicon substrate. Deconvolution of the spectrum was carried out for sample B570 to
extract information about the hidden peaks for the EDTS layer.
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The Raman spectra for sample B570 were deconvoluted into nine Gaussian bands
(A–I), and the results are shown in Figure 7. The peak at energies lower than 250 cm−1

is named band A and considered a boson peak [41,42]. The Raman peak observed near
band B (272 cm−1) is associated with a bending vibration of the TeO3 trigonal pyramid
(tp) [43–45]. The appearance of TeO3 was also detected by XPS, as shown in Figure 5.
Band C, which was in the range of 430–500 cm−1, is commonly associated with the Si-O-Si
bending of Q4 species [39,46,47]. The peak around band E (590–650 cm−1) is attributed to
the Si-O-Si bridges (bending vibration) between two Q2 species [46,48]. The emergence of a
peak in the region of bands F (770–790 cm−1) and G (900–1000 cm−1) is often assigned as
antisymmetric Si vibration in tetrahedral oxygen cage (Q4) [39,46,49] and Si-O-Si stretching
of Q2 components, respectively [46,50]. The bands at a higher frequency located at bands
H (~1160 cm−1) and I (~1544 cm−1) are associated with Er-related fluorescence, whilst the
prominent peak at band D (521 cm−1) is referred to as silicon from the substrate. Meanwhile,
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the peak around ~250–280 cm−1 associated with TeO3 seemed more pronounced for sample
B570 than for sample B700 (Figure 6) because of the higher Te density in B570.
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3.2. Doped Layer on Si3N4-on-Silicon Substrate

Figure 8a shows a BSE cross-sectional SEM image of a Si3N4-on-silicon substrate prior
to ULPD trials, whilst SEM images for samples K470, K520, K570, K600, and K650 are shown
in Figure 8b–f. As Figure 8b illustrates, deposition of Er-TZN onto the substrate occurred.
The layer formed on the Si3N4 substrate appeared uniform and smooth. However, only
a small amount of Er-TZN successfully penetrated Si3N4, indicating that a temperature
of 470 ◦C is not sufficiently high to break the Si-N bond. Only a few of the energetic
elements of Er-TZN managed to enter into the Si3N4 molecular network, as could be seen
around the materials interface. According to the SEM images in Figure 8c–f, for samples
fabricated with a higher temperature of 520–650 ◦C, Er-TZN successfully diffused into
the Si3N4. However, all the images of the doped layer demonstrated that the doping was
not as uniform as doping silica with Er-TZN. Although elements from the target material
managed to penetrate Si3N4, they were discretely distributed, as depicted by the grayscale
variations in the doped layers. This largely inhomogeneous layer appeared to be partly
porous, and, in certain areas, an accumulation of specific elements was observed. The SEM
images of the surface of the doped layer also showed that it was very uneven and rough, as
shown in Figure 9.

The thicknesses of the upper layers for all of the samples are summarised in Table 4.
For sample K470, the thickness of the Si3N4 underneath the upper layer was less than
the original thickness of 1 µm, which indicated that doping occurred, even though only a
small amount was found on the Si3N4 surface. For samples K520, K570, K600, and K650,
the upper layer thicknesses could not be precisely determined, and they showed large
errors due to their very rough surfaces. However, the estimated thickness obtained showed
a linear relationship between thickness and the temperature used to heat the substrate.
Additionally, the thickness of the Si3N4 underneath the doped layer became smaller with an
increase in substrate temperature. This finding indicated that the material target could react
with Si3N4 more thoroughly at higher temperatures. The refractive index and thickness,
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which were supposedly measured using a prism coupler, could not be measured because
of the uneven surface of the doped layer.

Nanomaterials 2022, 12, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 7. Deconvolution of Raman spectra of sample B570 in various Gaussian bands. The bands 

investigated in this work labelled as A–I are marked. 

3.2. Doped Layer on Si3N4-on-Silicon Substrate 

Figure 8a shows a BSE cross-sectional SEM image of a Si3N4-on-silicon substrate prior 

to ULPD trials, whilst SEM images for samples K470, K520, K570, K600, and K650 are 

shown in Figure 8b–f. As Figure 8b illustrates, deposition of Er-TZN onto the substrate 

occurred. The layer formed on the Si3N4 substrate appeared uniform and smooth. How-

ever, only a small amount of Er-TZN successfully penetrated Si3N4, indicating that a tem-

perature of 470 °C is not sufficiently high to break the Si-N bond. Only a few of the ener-

getic elements of Er-TZN managed to enter into the Si3N4 molecular network, as could be 

seen around the materials interface. According to the SEM images in Figure 8c–f, for sam-

ples fabricated with a higher temperature of 520–650 °C, Er-TZN successfully diffused 

into the Si3N4. However, all the images of the doped layer demonstrated that the doping 

was not as uniform as doping silica with Er-TZN. Although elements from the target ma-

terial managed to penetrate Si3N4, they were discretely distributed, as depicted by the 

grayscale variations in the doped layers. This largely inhomogeneous layer appeared to 

be partly porous, and, in certain areas, an accumulation of specific elements was observed. 

The SEM images of the surface of the doped layer also showed that it was very uneven 

and rough, as shown in Figure 9. 

  
(a) (b) 

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 8. BSE cross-sectional SEM images of (a) bare Si3N4-on-silicon substrate, and samples doped 

with Er-TZN into Si3N4-on-silicon when substrate was heated at (b) 470 °C (K470) (c) 520 °C (K520), 

(d) 570 °C (K570), (e) 600 °C (K600), and (f) 650 °C (K650). 

 

Figure 9. SEM surface morphology of the top surface of the doped layer for sample K600. 

The thicknesses of the upper layers for all of the samples are summarised in Table 4. 

For sample K470, the thickness of the Si3N4 underneath the upper layer was less than the 

original thickness of 1 μm, which indicated that doping occurred, even though only a 

small amount was found on the Si3N4 surface. For samples K520, K570, K600, and K650, 

the upper layer thicknesses could not be precisely determined, and they showed large 

errors due to their very rough surfaces. However, the estimated thickness obtained 

showed a linear relationship between thickness and the temperature used to heat the sub-

strate. Additionally, the thickness of the Si3N4 underneath the doped layer became smaller 

with an increase in substrate temperature. This finding indicated that the material target 

could react with Si3N4 more thoroughly at higher temperatures. The refractive index and 

thickness, which were supposedly measured using a prism coupler, could not be meas-

ured because of the uneven surface of the doped layer. 

Figure 8. BSE cross-sectional SEM images of (a) bare Si3N4-on-silicon substrate, and samples doped
with Er-TZN into Si3N4-on-silicon when substrate was heated at (b) 470 ◦C (K470) (c) 520 ◦C (K520),
(d) 570 ◦C (K570), (e) 600 ◦C (K600), and (f) 650 ◦C (K650).

Table 4. The thickness of the upper layer and Si3N4 underneath, as measured by SEM for samples
K470, K520, K570, K600, and K650.

Sample
Thickness (µm)

Upper Layer Si3N4 under Upper Layer

K470 1.1 ± 0.1 0.87 ± 0.04
K520 1.5 ± 0.4 0.74 ± 0.03
K570 1.5 ± 0.3 0.66 ± 0.03
K600 1.8 ± 0.3 0.60 ± 0.05
K650 2.0 ± 0.3 0.57 ± 0.09



Nanomaterials 2022, 12, 919 11 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 20 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 8. BSE cross-sectional SEM images of (a) bare Si3N4-on-silicon substrate, and samples doped 

with Er-TZN into Si3N4-on-silicon when substrate was heated at (b) 470 °C (K470) (c) 520 °C (K520), 

(d) 570 °C (K570), (e) 600 °C (K600), and (f) 650 °C (K650). 

 

Figure 9. SEM surface morphology of the top surface of the doped layer for sample K600. 

The thicknesses of the upper layers for all of the samples are summarised in Table 4. 

For sample K470, the thickness of the Si3N4 underneath the upper layer was less than the 

original thickness of 1 μm, which indicated that doping occurred, even though only a 

small amount was found on the Si3N4 surface. For samples K520, K570, K600, and K650, 

the upper layer thicknesses could not be precisely determined, and they showed large 

errors due to their very rough surfaces. However, the estimated thickness obtained 

showed a linear relationship between thickness and the temperature used to heat the sub-

strate. Additionally, the thickness of the Si3N4 underneath the doped layer became smaller 

with an increase in substrate temperature. This finding indicated that the material target 

could react with Si3N4 more thoroughly at higher temperatures. The refractive index and 

thickness, which were supposedly measured using a prism coupler, could not be meas-

ured because of the uneven surface of the doped layer. 

Figure 9. SEM surface morphology of the top surface of the doped layer for sample K600.

Figure 10 shows two different positions in sample K470 measured by EDX-SEM to
obtain the elemental concentrations at these particular positions, and the results are shown
in Table 5. As the upper layer of sample K470 was only a deposited layer, it was expected to
have the properties of tellurite-based glass used as a target material. The high concentration
of Te at position 1 confirmed this expectation. For position 2, which is located near the
interface of the deposited region and Si3N4 but within the Si3N4, some elements from the
target material were mostly oxygen. The smaller atomic size of oxygen than that of Te,
Zn, Na, and Er enabled a few energetic ions/atoms of oxygen to successfully penetrate
the Si3N4 and oxidise some of it. However, the lower temperatures evidently hindered
deeper modification of the Si3N4 layer further. The area scan performed for the sample to
determine the distribution of elements in sample K470 is shown in Figure 11. The negligible
presence of elements Si and N in the upper layer confirmed that the upper layer consisted
of elements from Er-TZN. Besides, the area scan obtained showed an intermediate region
between the deposited layer and Si3N4 composed of Si, O, Te, Zn, Na, Er, and N. However,
the area scan for Er was less obvious because of its deficient concentration, resulting in
considerable noise in the scan results.
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Figure 10. EDX-SEM measurement at two different locations for sample K470. Position 1 is the
location where Te is abundant while position 2 is the location near the interface of the deposited
region and Si3N4.
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Table 5. The elemental concentration of sample K470 at two locations, as shown in Figure 10.

Sample
Concentration (µm)

Position 1 Position 2

O 58.79 15.86
Si 2.25 39.49
Te 23.70 2.83
Zn 5.78 1.23
Na 8.45 1.54
Er 0.65 0.02
N 0.38 39.03
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(g) erbium, and (h) nitrogen.

An area scan was performed to view the entire elemental distribution present in K600
(Figure 12). The elements were clearly distributed unevenly. Surprisingly, the concentration
of N in the doped layer was very low compared with its concentration in Si3N4, which
was supposedly around ~57.1 %. Nitrogen was considered lost in the form of nitrogen
gas when the tellurite glass reacted with Si3N4, and this phenomenon was also reported
by Watanabe et al. [51]. Failure to obtain a very uniform doped layer, such as in the case
of EDTS, was probably due to the substrate temperature not being sufficiently high. The
melting temperature of Si3N4 (1900 ◦C) was higher than that of silica (1710 ◦C). Therefore,
higher temperatures may be required to allow the dissolution of Er-TZN into Si3N4 with
homogeneous layer formation. Additionally, the failure to obtain homogeneously doped
layers may be due to the SiO2 amorphous network, which is somewhat different from
Si3N4. Unlike the local structure of silica, which contains adjustable and flexible Si-O-Si-
bridging bonds, Si3N4, consists of Si-N-Si bonds that are rendered rigid as N requires
bonding with three Si rather than two to form a stable configuration. As a consequence, its
network structure is much more constrained than that of silica [52], making it difficult for
the elements from Er-TZN to diffuse into Si3N4 and modify it. This leads to the formation
of pores and cavities and the accumulation of certain elements for Si3N4 samples. A higher
temperature could be expected to help loosen the strong Si-N bonds. Nonetheless, the
more rigid Si3N4 structure caused it to have higher internal stress levels and thus to crack
more easily. This problem was not observed for samples fabricated using an SOS substrate.
Figure 13a,b show the surface images of samples that used different substrates (SiO2 and
Si3N4) with the same process parameters and target material. The images were taken under
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an optical microscope near the edge of the doped layer. The findings clearly showed that
the undoped Si3N4 layer on silicon cracked after the sample fabrication process.
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Figure 13. Surface images taken by optical microscope for samples fabricated with the same process
parameters and target material for (a) silica-on-silicon (b) Si3N4-on-silicon substrate.

Figure 14 shows the XRD patterns of the Si3N4-on-silicon substrate and samples
K470, K520, K570, K600, and K650. The patterns showed that all samples were in a mixed
amorphous–crystalline phase. The indexed peaks assigned to the possible crystalline struc-
tures are also shown in Figure 14. The 2θ peak located at approximately ~69◦ is a crystalline
Si (100) peak originating from the silicon substrate. For sample K470, eleven peaks were
detected, namely, 23.38◦, 27.87◦, 38.63◦, 40.61◦, 43.61◦, 46.42◦, 48.73◦,49.95◦, 57.24◦, 63.11◦,
and 65.98◦, which correspond to Te (ICCD reference code: 00-036-1452). The appearance of
Te crystallite peaks is attributable to the transition layer between the deposited and Si3N4
layers. For the doped layer of samples K520–K650, the intensity and number of crystalline
peaks increased when higher substrate temperatures were used because crystallisation
occurs more easily at high temperatures [53,54]. The crystalline peaks for SiO2 (ICCD refer-
ence code: 00-039-1425) and Na2Zn3 (SiO4)2 (ICCD reference code: 00-012-3700) started
to appear when the sample was heated at 600 ◦C, and they became more pronounced at
higher temperatures. In addition, for the doped layer, the crystalline phase of Te increased
in number and intensity with respect to increasing temperature.



Nanomaterials 2022, 12, 919 14 of 19
Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 14. XRD patterns of (a) Si3N4-on-silicon substrate and samples (b) K470, (c) K520, (d) K570, 

(e) K600 and (f) K650. 

Figure 15 presents the Raman spectra for the Si3N4-on-silicon substrate and samples 

fabricated with various substrate temperatures. The Raman spectra for sample K470 (Fig-

ure 15b), comprising tellurite-based glass, were different compared with samples pre-

pared at higher temperatures. As shown in Figure 15c–f, all Raman spectra showed me-

tallic tellurium peaks (122 and 141 cm−1). This finding indicated that the tellurium cluster 

was likely to form within this doped layer and coincides with the findings from XRD. 

However, these two peaks were less pronounced in sample K470, suggesting that most of 

the Te in this sample was present in oxide form rather than metallic form. The stoichiom-

etry of Er-TZN was better preserved in the deposited film than in the doped layer. The 

Raman spectrum for K470 was similar to that for B400 (Figure 6a) because both of them 

were deposited tellurite-based layers. The decrease in Si peak intensity from samples K520 

to K650 indicated that the thicknesses of the doped layer increased for samples fabricated 

at higher substrate temperatures. The Raman spectra for samples K520, K570, K600, and 

K650 (Figure 15c–f) were similar to the EDTS, and only the appearance of peaks at 122 and 

141 cm−1 distinguished them. Therefore, the assignment of all other peaks in the spectra 

was the same as discussed for the EDTS, as the contribution of N was not detectable. 

Figure 14. XRD patterns of (a) Si3N4-on-silicon substrate and samples (b) K470, (c) K520, (d) K570,
(e) K600 and (f) K650.

Figure 15 presents the Raman spectra for the Si3N4-on-silicon substrate and samples
fabricated with various substrate temperatures. The Raman spectra for sample K470
(Figure 15b), comprising tellurite-based glass, were different compared with samples
prepared at higher temperatures. As shown in Figure 15c–f, all Raman spectra showed
metallic tellurium peaks (122 and 141 cm−1). This finding indicated that the tellurium
cluster was likely to form within this doped layer and coincides with the findings from
XRD. However, these two peaks were less pronounced in sample K470, suggesting that
most of the Te in this sample was present in oxide form rather than metallic form. The
stoichiometry of Er-TZN was better preserved in the deposited film than in the doped layer.
The Raman spectrum for K470 was similar to that for B400 (Figure 6a) because both of them
were deposited tellurite-based layers. The decrease in Si peak intensity from samples K520
to K650 indicated that the thicknesses of the doped layer increased for samples fabricated
at higher substrate temperatures. The Raman spectra for samples K520, K570, K600, and
K650 (Figure 15c–f) were similar to the EDTS, and only the appearance of peaks at 122 and
141 cm−1 distinguished them. Therefore, the assignment of all other peaks in the spectra
was the same as discussed for the EDTS, as the contribution of N was not detectable.
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Figure 16 displays the XPS survey spectrum for sample K570. The spectrum pattern
obtained resembled that of the EDTS. The absence of N confirmed that N is released when
Er-TZN reacts with Si3N4. The distinct peak of N 1s that was expected at a binding energy
of around 398 eV was not observed in the obtained spectra. Therefore, N is present only
in very small quantities or virtually absent in the doped layer. The presence of Si in the
spectral survey verified once again that Er-TZN successfully entered into the Si3N4 layer
and formed a predominantly silicate-based layer.

The PL emission spectra for the samples are shown in Figure 17. For K470, the FWHM
of the spectra was broader than that of the others, also indicating that the upper layer
was a tellurite-based material. The low PL lifetime (4.97 ms) and an FWHM value of
approximately 33 nm (Table 6) obtained were comparable with those reported for tellurite
glass [24,55]. As shown in Table 6, samples K520, K570, K600, and K650 had a PL lifetime
of between 9 and 10 ms and FWHMs of 20 nm. This finding indicated that the doped
layer was silicate based, as with the EDTS. If the doped layer is Si3N4 based, it could show
a lower lifetime in the range of 0.2–7 ms with an FWHM broader than that of a typical
Er-doped silicate-based material [56–58]. As shown in Table 6, the higher PL intensity and
the lower lifetime of samples prepared at higher substrate temperatures signified that the Er
density is higher in the doped layer when the substrate is heated to a higher temperature.
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Table 6. PL lifetime and FWHM of samples K470, K520, K570, K600 and K650.

Sample FWHM (nm) PL Lifetime (µm)

K470 33 4.97
K520 20 10.43
K570 20 9.94
K600 20 9.71
K650 20 9.59

4. Conclusions

In summary, the ULPD technique successfully integrated two immiscible materials
(Er-TZN and silica) that resulted in a homogeneous layer of the mixture, referred to as
EDTS. However, the quality of the resulting film and the effectiveness of the doping process
that occurred were highly dependent on the substrate temperature. The temperature of
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400 ◦C was not sufficient for the incoming plasma plume to modify the strong covalent
bonds of silica, and the doping process could not take place. The higher temperature
used caused the materials from Er-doped tellurite glass to penetrate more (except Te with
smaller concentration) into silica, thus creating a thicker film. The reduced concentration of
Te in the doped silica on silicon (SOS) produced at 700 ◦C caused the refractive index to
decline. However, Er-TZN doping into Si3N4 failed to show a homogeneous layer because
Si3N4 has a high melting temperature and rigid structure compared with SiO2. A higher
temperature could be expected to help loosen the strong Si-N bonds, but the rigid Si3N4
structure caused it to have higher internal stress levels and thus crack more easily.
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