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Abstract: Simple and economical ferric ion detection is necessary in many industries. An europium-
based metal organic framework has selective sensing properties for solutions containing ferric ions
and shows promise as a key component in a new sensor. We study an idealised sensor that consists of
metal organic framework (MOF) crystals placed on a polymer surface. A two-dimensional diffusion
model is used to predict the movement of ferric ions through the solution and polymer, and the
ferric ion association to a MOF crystal at the boundary between the different media. A simplified
one-dimensional model identifies the choice of appropriate values for the dimensionless parameters
required to optimise the time for a MOF crystal to reach steady state. The model predicts that a large
non-dimensional diffusion coefficient and an effective association with a small effective flux will
reduce the time to steady-state. The effective dissociation is the most significant parameter to aid the
estimation of the ferric ion concentration. This paper provides some theoretical insight for material
scientists to optimise the design of a new ferric ion sensor.

Keywords: diffusion; ferric ion sensor; MOF; finite difference; composite materials

1. Introduction

There are many situations in which it is important to monitor the concentration of
ferric ions (trivalent iron cation or iron(III)) in a solution. For example, in environmental
contexts, a high concentration of ferric ions promotes bacterial and algal growth, which
can lead to the death of aquatic animals and plants [1,2]. In the mining industry, the
concentration of ferric ions can affect copper and gold yield during mineral leaching, with
both high and low concentrations producing adverse effects [3,4]. Other areas in which a
knowledge of the ferric ion concentration is important include health and drinking water
quality assurance [5,6].

This research is part of a larger project on lean mineral processing wherein a new
sensor is being developed to detect ferric ions in a time-, cost-, and energy-efficient manner.
Current ferric ion sensing methods are complex, use expensive equipment, suffer from
interference from other ions, and are not adaptable to real time monitoring [7]. In addition,
ferric ion concentrations are often determined indirectly [7]. As a consequence, a new ferric
ion sensor that is stable, cost-effective, energy-efficient, and easy to use is desirable and
would impact many sectors. In this paper, we present an idealised model of a ferric ion
sensor. We propose a diffusion model of ferric ions through two different media with a sink
located at the boundary separating the media.

Xu et al. [8] recently established the effectiveness of a europium-based metal organic
framework (EuMOF) for ferric ion sensing. The crystalline EuMOF was suspended in an
aqueous solution and tested against various concentrations of metal ions for changes in
luminescence. Most MOF ferric ion sensors are intensity-based “turn-off” sensors where the
intensity of light emitted by the sensor diminishes in the presence of ferric ions. However,
the EuMOF [8] is bimodal, so changes in the emission ratio of two frequency peaks are
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linearly proportional to the ferric ion concentration, while the intensity of the emission is
not as important. Metal ions such as Fe2+, Ag2+, Ca2+, and Zn2+ have little effect on the
emission ratio, and consequently, the ferric ion selectivity of the EuMOF has promising
sensing capabilities.

In [9] we investigated the van der Waals interaction energies and forces between a
hydrated ferric ion and an EuMOF crystal pore. The Coulombic forces were not considered
since ferric ions exist in highly acidic solutions, and the electrostatic forces are negligible [9].
The findings suggest that the hydrated ferric ion is attracted to the pore but does not enter
due to steric interactions. This is advantageous from a practical point of view because the
hydrated ferric ion can be “washed“ away and the sensor can be reused.

In this paper, we investigate how ferric ions diffuse through a solution and a polymer
layer and interact with a MOF crystal located on the boundary between the solution and
the polymer. One-dimensional diffusion through multiple layers has been studied before.
Hickson et al. used a numerical approach to solving diffusion through multiple layers
while considering various matching conditions at the boundary [10]. Carr and Turner [11]
developed a semi-analytical method to address the complexities that arise for a large
number of layers. An analytical solution exists for the one-dimensional problem with two
layers (or m layers) for slabs, cylinders, and spheres [12].

A proposed new ferric ion sensor consists of a thin film of polymer coating a cut-away
section of optic fibre and embedded with EuMOF crystals. In this scenario, the sensor will
have MOF crystals distributed throughout the polymer composite and over its surface. In
our model, we place an EuMOF crystal at the boundary between a solution and a polymer,
and we investigate the changing concentration of ferric ions bound to the crystal. The paper
provides important insight into ferric ion behaviour for a proposed sensor that is still under
development and for which there is no readily available experimental data. Squires et al. [13]
explore how the physical attributes of a sensor affect the flux onto the sensor, the rate at which
substance of interest binds to the sensor, and the approximate times scales for the system to
reach equilibrium. They present simple rules to equip the reader with a basic understanding of
the environment and enable the design of a sensor better suited to the environment. Yariv [14]
developed an advection–diffusion–reaction model of analytes binding to a sensor located on
a solid surface adjacent to a shear flow of solution, using an equation first proposed in [13]
to describe the concentration on the sensor. Here, we use a similar model to represent the
association and disassociation of ferric ions to the EuMOF crystals.

In Section 2, we describe the geometry and the physical environment of the ferric ion
sensor. We present a mathematical model that describes both the diffusion of ferric ions
through an analyte solution and a polymer region, as well as the association of ferric ions
to a MOF crystal located at the boundary between the two regions. Section 3 discusses
outcomes of the model and the role and importance of each of the parameters.

2. Mathematical Modelling and Assumptions

One possible design for a ferric ion sensor is to suspend EuMOF crystals in a polymer
composite to create a thin film on a cut away section of an optic fibre, as described by [15].
The ferric ions bind to the MOF pores on the crystal surface. A light pulse is sent through the
MOF–polymer-coated optic fibre and a detector measures changes in luminosity. Changes
in luminosity are indicative of the concentration of ferric ions in the solution. Figure 1
depicts a cross section of the optic fibre and MOF–polymer coating.

Analyte solution
containing ferric ions

Optic Fibre

MOF–polymer
composite

Figure 1. Two-dimensional cross-section of optic fibre with MOF–polymer thin film. Red dots
represent MOF crystals in yellow polymer composite. Green represents solution being analysed.



Nanomaterials 2022, 12, 887 3 of 19

Here, we are particularly interested in the diffusion of the ferric ions through the
mixed media and their association with the MOF crystals in order to gain some insight
into which physical parameters might be most important. As such, we study an idealised
version of the device depicted in Figure 2. We model only the process of diffusion in the
analyte solution, the association of ferric ions to a MOF crystal located at the interface
between the polymer composite and the solution, and diffusion in the polymer composite.
We position one MOF crystal at the interface between the solution and the polymer matrix.
We do not consider the association of ferric ions with MOF crystals inside the polymer
composite.

The MOF–polymer composite is exposed to a solution containing ferric ions, where the
movement of ferric ions is governed by Brownian motion. We assume that the diffusivity of
the ferric ions is constant through the solution, denoted by D1. Since, in practice, the polymer
is kept hydrated and the ferric ions do not enter the MOF pores, we assume that the diffusivity
in the polymer is also constant, D2 < D1, and the Vrentas–Duda theory is not applicable. As a
consequence, the movement of ferric ions in both the solution and the polymer is assumed to
be governed by the conventional diffusion equation with distinct diffusivities,

∂

∂T
C(T, X) = D1∇2C(T, X), X2 ≥ 0,

∂

∂T
C(T, X) = D2∇2C(T, X), X2 < 0,

where C(T, X) is the concentration of ferric ions, and the origin is located at the centre of
the MOF strip so that the X1-axis coincides with the solution–polymer boundary. Here, ∇2

is the usual Laplacian in two dimensions. The ferric ion concentration profile in the analyte
solution is given by C(T, X) for X2 ≥ 0, and the concentration in the polymer is given by
C(T, X) for X2 < 0. The time since the sensor’s exposure to the solution is given by T.

Ferric ion diffusion through solution
CT = D1∇2C

Ferric ion diffusion through polymer
CT = D2∇2C

Solution-polymer
boundary X2 = 0

X1 = −L X1 = L

MOF

−` `

X2

X1

Continuity

Distance h into
polymer X2 = −h

Figure 2. Two-dimensional system: X1-axis is solution–polymer boundary, X2 > 0 is distance into
solution, and X2 < 0 is into polymer composite.

To ensure that continuity is maintained for boundaries shared by two media, we
include two additional conditions. The ferric ion concentration at the boundary is assumed
to be the same when approaching from above or below the boundary, and the flux out of
the solution is equivalent to the flux into the polymer [10],

C+ = C−, D1
∂C+

∂X2
= D2

∂C−
∂X2

, X2 = 0.
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Far from the sensor in the direction of the analyte solution, we assume a far field
boundary condition, where the ferric ion concentration remains constant and equal to that
of the bulk solution C0. For numerical purposes, we set the location of this condition to be
at X2 = L, so that

C(T, X1, L) = C0, X2 = L,

where L is assumed to be a large distance away from the solution–polymer boundary. We
also assume no flux at a horizontal distance L away from the MOF centre (symmetry) and
at the bottom boundary of the polymer composite,

∂C
∂X1

= 0, X1 = ±L,
∂C
∂X2

= 0, X2 = −h.

The flux condition at the solution–MOF interface is given by

D1
∂C+

∂X2
= a[konC (B0 − B)− koffB], |X1| ≤ `, X2 = 0,

where B(T, X1) is the occupancy of the MOF pores by the ferric ions, kon is the association
rate compared to the ferric ion concentration, koff is the dissociation rate, B0 is the number
of MOF pores available for ferric ion occupation, and a is a constant. Due to steric effects,
the ferric ion only associates at the MOF pore’s entrance and does not diffuse into the MOF
pore. The first term captures the association of ferric ions to the MOF crystal, and this
term vanishes when the MOF crystal is completely occupied. The second term captures the
dissociation of ferric ions from the MOF pore.

We assume that ferric ions only associate and dissociate from the MOF pores in the
X2-direction and impose a no-flux boundary condition to the sides of the MOF crystal,

∂C
∂X1

= 0, |X1| = `, X2 = 0.

The occupancy of the MOF pores is governed by the pseudo-ordinary differential
equation (ODE),

∂B
∂T

= konC (B0 − B)− koffB, |X1| ≤ `, X2 = 0.

In addition, since B0 is the number of MOF pores available, B(T, X1) ∈ [0, B0] and the
total ferric ion occupancy in the MOF crystal is,

Btot(T) =
∫ `

−`
B(T, X1)dX1 ≤ 2 ` B0.

The assumed initial conditions are

C(0, X) = C0, X2 ≥ 0, C(0, X) = 0, X2 < 0,

B(0, X1) = 0, |X1| ≤ `, X2 = 0.

2.1. Dimensionless Two-Dimensional Model

We non-dimensionalise distance with the half length of the MOF strip, `, the ferric
ion concentration with the bulk concentration, C0, and the MOF binding site occupancy
with the maximum occupancy, B0. There are two options for the time scale: a diffusive
time-scale, where τ = `2/D1, or an association time-scale, where τ = 1/C0kon. At this
stage, we non-dimensionalise time with τ without specifying which time-scale so that the
system of equations can be written
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∂c
∂t

= s1∇2c, x2 ≥ 0,
∂c
∂t

= s1D∇2c, x2 < 0, (1)

∂b
∂t

= s2[c (1− b)− s3 b], |x1| ≤ 1, x2 = 0, (2)

where D = D2/D1, s1 = D1τ/`2, s2 = C0konτ and s3 = koff/C0kon are non-dimensional
parameters. If the problem is scaled with the diffusive time-scale, then s1 = 1. If the
problem is scaled with the association time-scale, then s2 = 1.

The continuity conditions at the solution–polymer boundary become

c+ = c−,
∂c+
∂x2

= D
∂c−
∂x2

, x2 = 0. (3)

Far away from the solution–polymer boundary, the boundary condition becomes

c(t, x1, L/`) = 1, x2 = L/`, (4)

while the no-flux boundary conditions at the sides and at the polymer–optic fibre boundary
become

∂c
∂x1

= 0, x1 = ±L/`,
∂c

∂x2
= 0, x2 = −h/`. (5)

At the solution–MOF boundary,

s1
∂c+
∂x2

= s4 s2[c (1− b)− s3 b], |x1| ≤ 1, x2 = 0, (6)

where s4 = a B0/`C0 is a non-dimensional constant, and the no-flux boundary conditions
at the sides of the MOF crystal become

∂c
∂x1

= 0, |x1| = 1. (7)

The initial conditions and the total MOF pore occupancy are

c(0, x) = 1, x2 ≥ 0, c(0, x) = 0, x2 < 0, (8)

b(0, x1) = 0, |x1| ≤ 1, x2 = 0 (9)

btot(t) =
∫ 1

−1
b(t, x1)dx1 ≤ 2. (10)

2.2. One-Dimensional Model

To obtain a preliminary indicator of the behaviour of the system and the importance
of the various parameters, we further simplify this model. Figure 3 shows a simpler one-
dimensional system, where the MOF crystal is represented by a red square, and diffusion
in the polymer composite region is completely ignored.

MOF crystal

Column of solutionPolymer surface

X = 0 X = L

Figure 3. One-dimensional representation of ferric ions diffusing through a column of solution with
MOF crystal at the left boundary.

The concentration of ferric ions is assumed to be only a function of two variables,
C(T, X), and the MOF pore occupancy is assumed to depend only on time, B(T),
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∂C
∂T

= D1
∂2C
∂X2 , X ≥ 0,

∂B
∂T

= kon C(B0 − B)− koffB, X = 0.

The corresponding flux condition at the boundary X = 0 is given by

D1
∂C
∂X

= a[kon C(B0 − B)− koffB],

and the far field condition is C(T, L) = C0, with initial conditions C(0, X) = C0 and
B(0) = 0.

2.3. Dimensionless One-Dimensional Model

We non-dimensionalise concentration, occupancy, length, and time in the same way as
before, where ` is a characteristic length representative of the MOF crystal size so that the
system of equations becomes

∂c
∂t

= s1
∂2c
∂x2 , x ≥ 0,

∂b
∂t

= s2[c (1− b)− s3 b], x = 0, (11)

where the si are as previously defined. The non-dimensional flux condition at the boundary
x = 0 is

s1
∂c
∂x

= s4 s2[c (1− b)− s3 b], (12)

while the non-dimensional far field condition at x = L/` becomes

c(t, L/`) = 1, (13)

and the initial conditions are given by

c(0, x) = 1, b(0) = 0. (14)

3. Results and Discussions

In this section, we discuss the results for the diffusion of ferric ions through the two
regions and the ferric ion occupancy in the MOF pores. We vary the dimensionless constants,
si and D, to analyse how the parameters affect ferric ion diffusion and MOF occupancy.

The models are solved numerically, as no analytical solution exists for this system, us-
ing purpose written code in MATLAB. First, we examine the dimensionless one-dimensional
model where the equation for b(t) is solved using a Runga–Kutta method, and the dif-
fusion equation for c(t, x) is solved with an implicit Crank–Nicolson scheme. Second,
we examine the dimensionless two-dimensional model where the equation for b(t, x1) is
solved using a Runga–Kutta method, and the diffusion equation for c(t, x) is solved with a
forward-time-centred-space finite difference scheme.

Further details about the numerical schemes for the dimensionless one-dimensional
and two-dimensional models are presented in Appendices A and B. In addition, the authors
have tested some extremely simple cases; for example, if the MOF crystal is not present.
However, these results are trivial and are not included here.

3.1. Dimensionless One-Dimensional Model

Figure 4a depicts the time evolution of the ferric ion concentration in solution, and
Figure 4b shows the MOF occupancy. Ferric ions in the solution initially associate rapidly
to the MOF crystal, reducing the concentration in the solution near the MOF crystal. Over
time, the ferric ion concentration returns to the steady-state far-field condition, as shown in
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Figure 4a. We note that the MOF crystal’s occupancy initially increases rapidly and then
slowly increases until steady state is reached, as shown in Figure 4b.

In the following subsections, we describe the impact of varying parameters. In all
cases for the one-dimensional scheme, ∆x = 0.1 and ∆t = 0.005, and we set L/` = 10.

0 1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 4. (a) Non-dimensional concentration of ferric ions in solution, c(t, 0). Arrow indicates increasing
time, t = 0.5, 1, 1.5, 2, 5. (b) Non-dimensional MOF occupancy, b(t). Here, s1 = s2 = s3 = s4 = 1.

3.1.1. Varying the Non-Dimensional Diffusion Coefficient, s1

Figure 5 shows the effect of varying the non-dimensional diffusion coefficient
(s1 = D1τ/`2) on the ferric ion concentration in the solution at the MOF crystal and the
MOF occupancy. A smaller non-dimensional diffusion coefficient causes the concentration
of ferric ions in solution to be more significantly reduced near the MOF boundary, and, fol-
lowing this initial reduction, it takes longer for the concentration in the solution to recover
towards the steady-state concentration. A larger non-dimensional diffusion coefficient
results in less reduction near the boundary because ferric ions can more readily diffuse
from the column of solution. MOF occupancy reaches close to steady-state sooner with a
high non-dimensional diffusion coefficient.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 5. Results for different values of non-dimensional diffusion, s1 = 0.1, 1, 5, 10, and s2 = s3 =

s4 = 1. Arrows indicate the direction of increasing s1. (a) Non-dimensional concentration of ferric
ions at MOF–polymer boundary, c(t, 0). (b) Non-dimensional MOF occupancy, b(t).

3.1.2. Varying the Effective Association Parameter, s2

Increasing the effective association parameter (s2 = C0konτ) means that ferric ions
associate to the MOF crystal faster than they diffuse through the solution. This results
in the MOF occupancy reaching the steady state sooner, as shown in Figure 6b. When s2
is large, the concentration near the solution–polymer boundary is reduced very quickly,
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followed by a slow increase as ferric ions diffuse from the rest of the region, as shown in
Figure 6a.

Upon exposure of the MOF to the solution, the concentration at the boundary varies
significantly for different values of s2. However, at large times, the ferric ion concentration
and the MOF occupancy is largely independent of s2.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 6. Results for different values of effective association, s2 = 0.1, 1, 10, and s1 = s3 = s4 = 1.
Arrows indicate the direction of increasing s2. (a) Non-dimensional concentration of ferric ions at
MOF–polymer boundary, c(t, 0). (b) Non-dimensional MOF occupancy, b(t).

3.1.3. Varying the Effective Dissociation Parameter, s3

The effective dissociation parameter (s3 = koff/C0kon) captures the ferric ions that
dissociate from the MOF crystal. We have investigated various values of s3, including
s3 = 0, which represents the situation when ferric ions can only associate—see Figure 7.

Increasing the effective dissociation parameter means that the ferric ions dissociate
more readily and the non-dimensional steady-state MOF pore occupancy can be calculated
from Equation (11),

beq = b(t→ ∞) =
1

1 + s3
. (15)

A similar expression for the number of effective bound receptors at equilibrium is
given in Squires et al. [13], with a different combination of parameters. (The present
authors believe that the equilibrium constant KD in Squires et al. [13] should be defined as
KD = koff/kon rather than KD = kon/koff as stated. This also aligns with working in their
Box 1).

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 7. Results for different values of effective dissociation, s3 = 0, 0.1, 1, 10, and s1 = s2 = s4 = 1.
Arrows indicate the direction of increasing s3. (a) Non-dimensional concentration of ferric ions at
MOF–polymer boundary, c(t, 0). (b) Non-dimensional MOF occupancy, b(t).



Nanomaterials 2022, 12, 887 9 of 19

In the steady state, the occupancy of the pores is lower for larger values of the effective
dissociation parameter, and the steady state is reached more quickly. In the case when the
ferric ions cannot dissociate, that is s3 = 0, the steady state MOF occupancy is equal to its
maximum value (b(t→ ∞) = 1), and the concentration of ferric ions at the MOF–solution
boundary approaches the bulk concentration at large times.

3.1.4. Varying the Effective Flux Parameter, s4

An important consequence of the flux condition is the time taken for the MOF crystal
to approach steady state. Increasing the effective flux parameter (s4 = aB0/`C0) increases
the time taken to reach the steady state (see Figure 8b). The increase affects ferric ion
concentration at the MOF crystal boundary, as ferric ions quickly associate to the MOF
crystal and the ferric ions do not diffuse fast enough for the MOF crystal to reach steady
state in a timely manner, as shown in Figure 8a.

The delay to reaching steady state is attributed to ferric ions associating to the MOF
crystal faster and quickly depleting the ferric ions in the solution. A comparable mechanism
is observed when increasing the effective association parameter, s2. The effective association
parameter is a MOF characteristic, and an increase results in a shorter time for the MOF
crystal to reach steady state (see Figure 6b). The ferric ion concentration at the MOF
boundary is largely unchanged after t = 4, as shown in Figure 6a. However, the effective
flux parameter is a ferric ion characteristic, and an increase in this parameter results in a
longer time for the MOF crystal to reach steady state, as shown in Figure 8b. The ferric ion
concentration at the MOF boundary is very sensitive to the increase in the effective flux
parameter, as seen by the long depletion time for a larger parameter value in Figure 8a.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 8. Results for different values of effective flux, s4 = 0.1, 1, 10, and s1 = s2 = s3 = 1.
Arrows indicate the direction of increasing s4. (a) Non-dimensional concentration of ferric ions at
MOF–polymer boundary, c(t, 0). (b) Non-dimensional MOF occupancy, b(t).

3.2. Dimensionless Two-Dimensional Model

In this section, we return to the dimensionless two-dimensional model and to the
primary aim of the paper, which is to investigate ferric ion diffusion through a solution into
a polymer composite with a MOF sink located at the boundary between the two media.

Figure 9 shows the ferric ion concentration for the domain −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5,
where x2 < 0 is the concentration in the polymer and x2 ≥ 0 is the concentration in
the solution. The MOF crystal is located at |x1| ≤ 1 and x2 = 0. Figure 9a,b show the
ferric ion profiles at time t = 0.5 and 5, respectively. In all cases for the numerical two-
dimensional scheme, ∆x1 = ∆x2 = 0.1 and ∆t = 0.0005, and D = 0.5 (unless otherwise
stated) and L/` = h/` = 10. Figure 10a shows the ferric ion concentration along the line
x1 = 0, which shows the changes through the mixed media over time. In comparison to
the one-dimensional model (Figure 4a), the two-dimensional model requires additional
time to reach steady state. This is due to the size of the MOF crystal and the time taken
to reach steady state in the two-media system. The MOF occupancy at the centre of the
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MOF (b(t, 0)) and the total MOF occupancy over the whole MOF crystal (Equation (10))
is shown in Figure 10b. By comparing Figure 10b with Figure 4b, we see that the MOF
occupancy as predicted by the two-dimensional model is very similar to that predicted by
the one-dimensional model. However, the two-dimensional model includes the effect of
the polymer on ferric ion diffusion and greater MOF occupancy potential.

(a) (b)

Figure 9. Non-dimensional concentration of ferric ions across two media c(t, x1, x2): (a) at time
t = 0.5; (b) at time t = 5.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 10. (a) Non-dimensional concentration of ferric ions through MOF-mid point across two
media, c(t, 0, x2). Arrow indicates the direction of increasing time, t = 0.5, 1, 1.5, 2, 5. (b) Non-
dimensional MOF occupancy, b(t, 0) and btot(t). Here, s1 = s2 = s3 = s4 = 1, and D = 0.5.

3.2.1. Varying the Non-Dimensional Parameters

Variation of the dimensionless constants has the same effect on the two-dimensional
MOF occupancy b(t, 0) profile when compared to the one-dimensional MOF occupancy b(t).
The two-dimensional ferric ion concentration at the centre of the MOF crystal behaves in a
similar way to that of the one-dimensional ferric ion profile shown in Figure 4a. However,
more time is needed for the ferric ion concentration to reach steady state due to a larger
MOF crystal surface area.

Figure 11 shows the effect of varying the non-dimensional diffusion coefficient
(s1 = 0.1, 1, 5). For all values of s1, the concentration in the solution near the MOF sur-
face initially decreases before increasing towards the steady state value. For larger values of s1,
the decrease is more significant, which is in contrast to the one-dimensional results, as shown
in Figure 5.

The changes in the other non-dimensional parameters (s2, s3, s4) produce similar results
to those discussed for the one-dimensional model. Figures showing the details can be
found in Appendix C.
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Figure 11. Results for different values of non-dimensional diffusion, s1 = 0.1, 1, 5, s2 = s3 = s4 = 1, and
D = 0.5. Arrows indicate the direction of increasing s1. (a) Non-dimensional concentration of ferric ions
through MOF mid-point across two media, c(t, 0, 0). (b) Non-dimensional MOF occupancy, b(t, 0).

3.2.2. Varying the Relative Diffusion Coefficient, D

If ferric ion diffusivity in the solution and the polymer is the same, then the relative
diffusion coefficient is unity, D = D2/D1 = 1. In practice, the diffusion coefficient of ferric
ions in the solution will exceed that in the polymer and the larger the difference the smaller
the relative diffusion coefficient. Figure 12 shows the effects of varying the relative diffusion
coefficient.

Decreasing the relative diffusion coefficient means that ferric ions take longer to diffuse
in the polymer and away from the solution–polymer boundary. This affords the ferric ions
more opportunity to associate to the MOF crystal. Figure 12c shows that the occupancy in
the crystal is highest in the case of the smallest relative diffusion coefficient.

(a) (b)

0 1 2 3 4 5
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0.2

0.4

0.6

0.8

1

(c)

Figure 12. Results for different values of relative diffusion coefficient, D = 0.1, 0.5, 1, and s1 = s2 =

s3 = s4 = 1. Arrows indicate the direction of increasing D. (a,b) Non-dimensional concentration of
ferric ions through MOF mid-point across two media, c(t, 0, x2) at time t = 0.5 and 5, respectively.
(c) Non-dimensional MOF occupancy, b(t, 0).
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4. Conclusions

In this paper, we have modelled a proposed new ferric ion sensor. We first examined a
two-dimensional model to describe the diffusion of the ions through a solution and into a
polymer layer, as well as their attachment to an EuMOF crystal located at the boundary
of the two media. We then examined a simplified model that includes diffusion through
the solution only, together with attachment at the MOF crystal. The solutions to the
corresponding non-dimensional models are then analysed to investigate the importance of
the various non-dimensional parameters.

The one-dimensional model indicates that at steady state, the occupancy of the MOF
crystal is given by Equation (15), and this occupancy depends only on the initial concentra-
tion of ferric ions in the solution and the effective dissociation constant, s3 = koff/C0kon.
As a consequence, if the steady-state occupancy, Beq = B(t→ ∞), can be measured with
the new sensor, and the association rate kon, dissociation rate koff, and maximum occu-
pancy B0 are known, then the concentration of ferric ions in solution can be calculated (in
dimensional terms) using

C0 =
koffBeq

kon(B0 − Beq)
. (16)

In practice, it is most likely to be useful to minimise the time taken to reach steady
state so that sensing of multiple samples can be carried out quickly and efficiently. To
achieve this, it would be helpful to have a large non-dimensional diffusion coefficient s1
and effective association constant s2 with a small effective flux constant s4.

While the two-dimensional model is more representative of the proposed sensor and
provides more information about the behaviour of the ferric ions in the solution and the
polymer, many of the broad behaviours and impacts of changing the system parameters are
captured by the one-dimensional model. The relative diffusion coefficient D suggests that the
polymer composite should hinder ferric ion diffusion in that region. A final sensor design is
likely to include MOF crystals embedded within the polymer matrix rather than on the surface
only, so the polymer composite should be designed so that the relative diffusion coefficient is
close to unity in order for ferric ions to associate to MOF crystals inside the polymer composite.
This situation is not examined here but will be the subject of future work. In this case, a
two-dimensional model is likely to provide more insight.
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Appendix A. Algorithm for Dimensionless One-Dimensional Model

The functions describing the ferric ion concentration c(t, x) and MOF occupancy b(t)
are discritised, and the following definitions are used,

c(tn, xi) = cn
i , c(t, 0) = cn

0 , c(t, L/`) = cn
I , b(tn) = bn.

We first update the value of the MOF occupancy bn+1 so that we can use the updated
value to calculate the ferric ion concentration cn+1

0 at x = 0. A Runge–Kutta 4 scheme is used

f (y) = s2 cn
0 (1− y)− s2 s3y,

k1 = ∆t f (bn), k2 = ∆t f
(

bn +
k1

2

)
,

k3 = ∆t f
(

bn +
k2

2

)
, k4 = ∆t f (bn + k3).

At time step n + 1, the MOF occupancy is

bn+1 = bn +
1
6
(k1 + 2k2 + 2k3 + k4),

where b(0) = b0 = 0.
Next, we update the ferric ion concentration throughout the solution using the Crank–

Nicolson central forwards time, centred space. The following difference formulas for the
first and second derivatives were used

c(t, x) =
1
2
(cn

i + cn+1
i ),

∂

∂x
c(t, x) =

1
2

[
cn

i+1 − cn
i−1

2∆x
+

cn+1
i+1 − cn+1

i−1
2∆x

]
,

∂

∂t
c(t, x) =

cn+1
i − cn

i
∆t

∂2

∂x2 c(t, x) =
1
2

[
cn

i+1 − 2cn
i + cn

i−1
∆x2 +

cn+1
i+1 − 2cn+1

i + cn+1
i−1

∆x2

]
.

Substituting these formulas into the ferric ion diffusion equation gives

cn+1
i − cn

i
∆t

=
s1

2

[
cn

i+1 − 2cn
i + cn

i−1
∆x2 +

cn+1
i+1 − 2cn+1

i + cn+1
i−1

∆x2

]
.

We collect terms with time step n + 1 on the left and n on the right hand side of the
equation so that the general scheme is

−α cn+1
i+1 + (2 + 2α)cn+1

i − α cn+1
i−1 = α cn

i+1 + (2− 2α)cn
i + α cn

i−1,

where α = s1∆t/∆x2. The boundary conditions concerning the ferric ion concentration need
to be incorporated, and so, the flux at the MOF–polymer boundary (Equation (12)) becomes

s1

[
cn

1 − cn
−1 + cn+1

1 − cn+1
−1

]
= 2s4s2∆x(cn

0 + cn+1
0 )(1− bn+1)− 4∆xs4s2s3 bn+1.

Now, adjust the general scheme at and near the boundaries:
for i = 0, the MOF–polymer boundary,

−2α cn+1
1 + [2 + 2α + 2αs4s2∆x(1− bn+1)/s1]cn+1

0

= 2α cn
1 + [2− 2α− 2αs4s2∆x(1− bn+1)/s1]cn

0 + 4∆xs2s3s4 bn+1/s1,
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for i = I, far-field boundary (Equation (13)),

cn
I = 1, ∀n,

for i = I − 1,
(2 + 2α)cn+1

I−1 − α cn+1
I−2 = (2− 2α)cn

I−1 + α cn
I−2 + 2α.

The finite difference scheme can be written as a linear system,

Lcn+1 = Rcn + A,

where

L =



2 + 2α + 2αs4s2∆x(1− bn+1)/s1 −α 0 0 · · · 0 0 0 0
−α 2 + 2α −α 0 · · · 0 0 0 0
. . . . . . . . . · · · 0 0 0 0
0 0 0 0 · · · −α 2 + 2α −α 0
0 0 0 0 · · · 0 −α 2 + 2α 0
0 0 0 0 · · · 0 0 0 1


,

R =



2− 2α− 2αs4s2∆x(1− bn+1)/s1 α 0 0 · · · 0 0 0 0
α 2− 2α α 0 · · · 0 0 0 0
. . . . . . . . . · · · 0 0 0 0
0 0 0 0 · · · α 2− 2α α 0
0 0 0 0 · · · 0 α 2− 2α 0
0 0 0 0 · · · 0 0 0 0


,

A = [4∆xs2s3s4 bn+1/s1, 0, · · · , 0, 2α, 1]T,

and

cn = [cn
0 , cn

1 , cn
2 , · · · , cn

I−2, cn
I−1, cn

I ]
T,

where L and R are real (I + 1)× (I + 1) matrices, and A and cn are (I + 1)-vectors.
The system describing the concentration of ferric ions through the solution can be

evaluated as

cn+1 = L−1(Rcn + A),

where c(0, x) = c0
i = 1. Table A1 provides the numerical values for the graphs shown

in the main text. Tests were performed for various timesteps and mesh sizes to ensure
numerical accuracy.

Table A1. Numerical values for one-dimensional simulation.

∆t ∆x L/`

0.005 0.1 10

Appendix B. Algorithm for Dimensionless Two-Dimensional Model

The functions describing the ferric ion concentration c(t, x) and MOF occupancy
b(t, x1) are discritised, and the following definitions are used:
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c(t, x1, x2) = c(tn, xi, xj) = cn
i j, c(t,−L/`, x2) = cn

0 j, c(t, L/`, x2) = cn
I j,

c(t,−1, x2) = cn
il j, c(t, 1, x2) = cn

ir j, c(t, x1, 0) = cn
i jm,

c(t, x1,−h/`) = cn
i 0, c(t, x1, L/`) = cn

i J , b(t, x1) = b(tn, xi) = bn
i .

In the same way as the one-dimensional model was solved, the MOF occupancy is first
updated for the next time step bn+1

i and later used to update the ferric ion concentration
cn+1

i j at |x1| ≤ 1 and x2 = 0. A Runge–Kutta 4 scheme is used to discritise b(t, x1) at
|x1| ≤ 1,

f (y) = s2 cn
i jm(1− y)− s2 s3y, for i = il, ..., rl,

k1 = ∆t f (bn
i ), k2 = ∆t f

(
bn

i +
k1

2

)
,

k3 = ∆t f
(

bn
i +

k2

2

)
, k4 = ∆t f (bn

i + k3).

At the next time step n + 1 for i = il, ..., ir, the MOF occupancy is

bn+1
i = bn

i +
1
6
(k1 + 2k2 + 2k3 + k4),

where b0
i = 0.

We update the ferric ion concentration and use a forwards time, two-dimensional
centred space scheme. The following difference formulas for the first and second derivatives
were used:

∂

∂t
c(t, x) =

cn+1
i j − cn

i j

∆t
,

∂

∂x1
c(t, x) =

cn
i+1 j − cn

i−1 j

2∆x1
,

∂

∂x2
c(t, x) =

cn
i j+1 − cn

i j−1

2∆x2
,

∇2c(t, x) =
cn

i+1 j − 2cn
i j + cn

i−1 j

∆x2
1

+
cn

i j+1 − 2cn
i j + cn

i j−1

∆x2
2

.

Substituting the formulas into the ferric ion diffusion equation in the solution for
x2 ≥ 0 gives

cn+1
i j − cn

i j

∆t
= s1

[
cn

i+1 j − 2cn
i j + cn

i−1 j

∆x2
1

+
cn

i j+1 − 2cn
i j + cn

i j−1

∆x2
2

]
.

We collect terms with time step n + 1 on the left and n on the right hand side of the
equation so that the general scheme ∀i and j = jm + 1 : J − 1 is

cn+1
i j = (1− 2sx − 2sy)cn

i j + sx(cn
i+1 j + cn

i−1 j) + sy(cn
i j+1 + cn

i j−1).

Similarly, diffusion in the polymer ∀i and j = 1 : jm− 1 is

cn+1
i j = (1− 2sxD− 2syD)cn

i j + sxD(cn
i+1 j + cn

i−1 j) + syD(cn
i j+1 + cn

i j−1),

where sx = s1∆t/∆x2
1 and sy = s1∆t/∆x2

2. We need to account for the boundary conditions
of the system and update the numerical scheme accordingly:
for ∀i, n, and j = J, far-field boundary condition (Equation (4)) at x2 = L/`,

cn
i J = 1,
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for i = 0 and j = jm + 1 : J − 1, no-flux boundary condition (Equation (5)) for solution
medium at x1 = −L/`,

cn+1
0 j = (1− 2sx − 2sy)cn

0 j + sx(cn
1 j + cn

1 j) + sy(cn
0 j+1 + cn

0 j−1),

for i = 0 and j = 1 : jm− 1, no-flux boundary condition (Equation (5)) for polymer medium
at x1 = −L/`,

cn+1
0 j = (1− 2sxD− 2syD)cn

0 j + sxD(cn
1 j + cn

1 j) + syD(cn
0 j+1 + cn

0 j−1),

for i = I and j = jm + 1 : J − 1, no-flux boundary condition (Equation (5)) for solution
medium at x1 = L/`,

cn+1
I j = (1− 2sx − 2sy)cn

I j + sx(cn
I−1 j + cn

I−1 j) + sy(cn
I j+1 + cn

I j−1),

for i = I and j = 1 : jm− 1, no-flux boundary condition (Equation (5)) for polymer medium
at x1 = L/`,

cn+1
I j = (1− 2sxD− 2syD)cn

I j + sxD(cn
I−1 j + cn

I−1 j) + syD(cn
I j+1 + cn

I j−1),

for i = 1, ..., I − 1 and j = 0, no-flux boundary condition (Equation (5)) for polymer–optic
fibre at x2 = −h/`,

cn+1
i 0 = (1− 2sxD− 2syD)cn

i 0 + sxD(cn
i+1 0 + cn

i−1 0) + syD(cn
i 1 + cn

i 1),

for i = 0 and j = 0, no-flux boundary condition (Equation (5)) at x1 = −L/` and x2 =
−h/`,

cn+1
0 0 = (1− 2sxD− 2syD)cn

0 0 + sxD(cn
1 0 + cn

1 0) + syD(cn
0 1 + cn

0 1),

for i = I and j = 0, no-flux boundary condition (Equation (5)) at x1 = L/` and x2 = −h/`,

cn+1
I 0 = (1− 2sxD− 2syD)cn

I 0 + sxD(cn
I−1 0 + cn

I−1 0) + syD(cn
I 1 + cn

I 1),

for i = 1, ..., I− 1 and j = jm, solution–polymer boundary continuity condition (Equation (3))
at x2 = 0,

∂c
∂t

= s1
∂2c
∂x2

1
+ s1

∂

∂x2

[
Di

∂c
∂x2

]
= s1

∂2c
∂x2

1
+

s1

∆x2

[
∂c+
∂x2
− D

∂c−
∂x2

]
,

cn+1
i jm − cn

i jm

∆t
= s1

[
cn

i+1jm − 2cn
i jm + cn

i−1 jm

∆x2
1

]
+

s1

∆x2

[
cn

i jm+1 − cn
i jm

∆x2

]
− s1D

∆x2

[
cn

i jm − cn
i jm−1

∆x2

]
,

cn+1
i jm = (1− 2sx − sy(1 + D))cn

i jm + sx(cn
i+1 jm + cn

i−1 jm) + sycn
i jm+1 + syDcn

i jm−1,

for i = 0 and j = jm, solution–polymer boundary continuity condition (Equation (3)) and
no-flux boundary condition (Equation (5)) at x1 = −L/` and x2 = 0,

cn+1
0 jm = (1− 2sx − sy(1 + D))cn

0 jm + sx(cn
1 jm + cn

1 jm) + sycn
0 jm+1 + syDcn

0 jm−1,

for i = I and j = jm, solution–polymer continuity condition (Equation (3)) and no-flux
boundary condition (Equation (5)) at x1 = L/` and x2 = 0,

cn+1
I jm = (1− 2sx − sy(1 + D))cn

I jm + sx(cn
I−1 jm + cn

I−1 jm) + sycn
I jm+1 + syDcn

I jm−1,

for i = il − 1 and j = jm, solution–polymer continuity condition (Equation (3)) and no-flux
boundary condition (Equation (7)) at x1 = −1− and x2 = 0,

cn+1
il−1 jm = (1− 2sx− sy(1+D))cn

il−1 jm + sx(cn
il−2 jm + cn

il−2 jm)+ sycn
il−1 jm+1 + syDcn

il−1 jm−1,
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for i = ir + 1 and j = jm, solution–polymer continuity condition solution–polymer conti-
nuity condition (Equation (3)) and no-flux boundary condition (Equation (7)) at x1 = 1+
and x2 = 0,

cn+1
ir+1 jm = (1− 2sx− sy(1+D))cn

ir+1 jm + sx(cn
ir+2 jm + cn

ir+2 jm)+ sycn
ir+1 jm+1 + syDcn

ir+1 jm−1,

At the solution–MOF–polymer boundary, we use the continuity condition (Equation (3)),
to find

cn
i jm−1 =

−cn
i jm+1 + (1 + D)cn

i jm

D
.

For i = il, ..., ir and j = jm, MOF–solution flux condition (Equation (6)) at |x1| ≤ 1 and
x2 = 0 gives

s1

[
cn+1

i jm+1 − cn+1
i jm−1

2∆x2

]
= s4s2(cn+1

i jm (1− bn+1
i )− s3bn+1

i ),

cn+1
i jm =

s1(1 + D)cn+1
i jm+1 + 2∆x2Ds4s2s3bn+1

i

s1(1 + D) + 2∆x2Ds4s2(1− bn+1
i )

.

Table A2 provides the numerical values for the graphs shown in the main text. Tests
were performed for various timesteps and mesh sizes to ensure numerical accuracy.

Table A2. Numerical values for two-dimensional simulation.

∆t ∆x1 ∆x2 L/` h/` D

0.0005 0.1 0.1 10 10 0.5

Unless otherwise stated, D takes the value found in Table A2.

Appendix C. Results of Varying Parameters in the Two-Dimensional Model

This section contains the figures that show the effects of variation of the remaining
non-dimensional parameters for the two-dimensional model.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure A1. Results for different values of effective association, s2 = 0.1, 1, 10, s1 = s3 = s4 = 1, and
D = 0.5. Arrows indicate the direction of increasing s2. (a) Non-dimensional concentration of ferric
ions through MOF-mid point across two media, c(t, 0, x2). (b) Non-dimensional MOF occupancy,
b(t, 0).
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Figure A2. Results for different values of effective dissociation, s3 = 0, 0.1, 1, 10, s1 = s2 = s4 = 1,
and D = 0.5. Arrows indicate the direction of increasing s3. (a) Non-dimensional concentration
of ferric ions through MOF-mid point across two media, c(t, 0, x2). (b) Non-dimensional MOF
occupancy, b(t, 0).
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Figure A3. Results for different values of effective capacity, s4 = 0.1, 1, 10, s1 = s2 = s3 = 1, and
D = 0.5. Arrows indicate the direction of increasing s4. (a) Non-dimensional concentration of ferric
ions through MOF-mid point across two media, c(t, 0, x2). (b) Non-dimensional MOF occupancy,
b(t, 0).
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