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Abstract: We report a unique phenomenon, the opposite color response of a giant polyoxometalate,
(NH4)42[Mo132O372(CHCOO)30] (H2O)72 ([Mo132]), to the existing states of human papillomavirus
(HPV) major capsid protein, L1-pentamer (L1-p), and virus-like particles (VLPs). The color responses
originate from the different assembly forms between [Mo132] and the capsid protein. The latter were
inspected and separated by using CsCl gradient centrifugation, and validated in detail by sodium
dodecyl sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE), dynamic light scattering (DLS),
and transmission electron microscopy (TEM) imaging. Furthermore, the intrinsic mechanisms were
investigated in-depth by using XPS-based semi-quantitative analysis and well-designed peptides,
revealing the critical points of L1 that determine the charge–transfer ratio between Mo(V) to Mo(VI),
and consequently, the levels of [Mo132] hypochromic in different assemblies. Such a unique phe-
nomenon is significant as it supplies a colorimetry approach to distinguish the existing states of the
HPV capsid protein and would be significant in the quality assay of the HPV vaccine and existing
states of other viruses in the future.

Keywords: colorimetric discrimination; giant polyoxometalate; HPV capsid protein; hypochromic of
molybdate clusters; opposite color response

1. Introduction

Human papillomavirus (HPVs) causes commonly transmitted infections that occur in
humans [1,2]. Some types of HPV lead to severe diseases including a series of verrucas and
cancers [3]. To effectively prevent the occurrence of infections, vaccines that specifically
target the virus-induced diseases have been developed recently, and many efforts have
focused on building a security shielding system [4] Virus-like particles (VLPs), formed
from the self-assembly of pentamer subunits comprising major capsid protein L1 without
the participation of DNA, have been demonstrated to be an essential resource of vaccines
because of the similar surface structure and antigenic epitopes to those of actual viruses.
As a kind of prophylactic vaccine, VLPs were shown to be effective for protecting several
subtypes of HPV from infections [5,6]. On one hand, these assembled particulate struc-
tures are also resilient to most environmental stresses and are promising for eliciting an
efficient and potent immune response [7]. On the other hand, during the development of
prophylactic vaccines against high-risk types of HPVs, VLPs can also be adopted directly in
mimicking more closely to the neutralized epitopes, morphology, and keeping the size of
native ones [8]. However, the production and usage of spherical capsids as vaccines relies
significantly on the VLP’s integrity, and any disassembly may result in losing effectiveness
in producing antibodies. Therefore, the quick and convenient detection for the existing state
of VLPs or their disassembly is crucial. Since the normal subunits of VLPs are the pentamer

Nanomaterials 2022, 12, 736. https://doi.org/10.3390/nano12050736 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12050736
https://doi.org/10.3390/nano12050736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4883-5982
https://orcid.org/0000-0001-7739-1386
https://doi.org/10.3390/nano12050736
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12050736?type=check_update&version=1


Nanomaterials 2022, 12, 736 2 of 15

of capsid protein L1(L1-p), the sensitive determination of the species can demonstrate
the incomplete state of VLPs [9]. Spectroscopic, dynamic light scattering, and electron
microscopic measurements are commonly used characterization techniques [10,11], but
they are not suitable for in situ quality assays during the preparation of vaccines. Therefore,
it is imperative to develop a rapid and straightforward method for differentiating complete
capsids and dissembled pentamers via a quick and direct procedure.

Polyoxometalates (POMs) are a kind of negatively charged inorganic clusters com-
prising early transition metal oxides [12]. The uniform shape and nanoscale size of POMs
provides useful functional properties that can be useful in several emerging technologies
including medicine [13,14]. Typically, the reduced coordination metal ions allow the deep-
color clusters to have extended light absorption in the visible region. In the presence of
oxidants, the reduced clusters exhibit reversible oxidation properties, shifting absorption
toward another state [15]. Among the POM family, the giant molybdate clusters realized by
Müller’s group exhibited an elegant architecture and morphology with larger sizes of more
than 2.5 nm [16]. As giant clusters, which have been extensively studied including, for
example, self-assemblies into nanoscale capsules and forming co-assemblies together with
cationic organic components via electrostatic interactions [17], and their functionalization
was either performed on biomedical applications [18]. We have reported the electrostatic
interaction of the giant clusters with cationic amphiphiles for synergistic self-assembly, the
behavior with biomolecules in solutions in adhesion, anti-bacterial properties as well as
bio-imaging [19,20]. However, up until now, there have been no reports concerning the use
of these POMs and other inorganic clusters on the detection of the existing state of virus
capsids, either in the assembly or disassembly state, neither the ionic binding position with
capsid proteins.

The Mo(V) have been shown to be essential components in giant molybdate POMs,
making them show colors in solid and solution due to their absorption, corresponding
to the intervalence charge transfer (IVCT) between Mo(V) and Mo(VI) [21,22]. Thus, the
valence state change of giant clusters always yields a color change, and as a result, Mo(V)
can be oxidized into Mo(VI), accompanied by a color fading of brick-red in the presence of
oxidants. Furthermore, the color changes are reversible because the Mo(VI) at the highest
oxidized state are reduced while the cluster structure is maintained, just like the oxidation
at a reduced state [23,24]. These properties of POMs and their charged surface provide an
excellent opportunity to detect the existing state of the proteins comprising capsids through
the electrostatic interaction with free N-terminals bearing redox features. Thus, the states
of some proteins that can be oxidized and reduced can be characterized through the color
fading of giant POMs after the redox process. In this context, we herein selected a giant
brown Keplerate cluster, (NH4)42[Mo132O372(CHCOO)30](H2O)72, abbreviated as [Mo132],
which contains 72 Mo(VI) and 60 Mo(V), to sensitize the status of L1 proteins and the
stability of the capsid [25]. Because L1 proteins at the states of assembly and disassembly
show different binding modes with the [Mo132] cluster through exposing and shielding
amino residues, we successfully realized the vital identification for the capsid proteins
through simple color changes of [Mo132] (Scheme 1). The present method demonstrated
a practical approach to examine the quality of the prophylactic HPV vaccines. Of course,
the obtained results are also significant in widening bio-applications such as qualitative
screening of HPV infections and tracking the differentiation process of HPVs in the human
body by detecting L1 proteins.
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absorbance was observed, and more than 80% of the original absorbance disappeared un-
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more than 90% of absorbance vanished after 24 h (Figure 1B). Interestingly, when [Mo132] 
was added into the solution containing VLPs, only a little color degradation occurred over 
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or VLPs show the apparent differences in the absorbance at the visible region versus the 
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bled shapes in several tens of nanometers in aqueous solution [26] while maintaining a 
mono-dispersed state for a couple of days. As shown in Figure 2A, the DLS curve of the 
cluster alone showed a hydrodynamic diameter of 2.7 nm, similar to the size (2.9 nm) 
calculated from the crystal structure, illustrating the mono-dispersion and structural com-
pleteness [27,28]. The L1-p in buffer A had a size of about 12.0 nm (Figure 2B), being very 
close to the well-dispersed state of the pentamer subunit reported previously [29,30]. 
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Scheme 1. Schematic illustration of the binding modes and different color responses of [Mo132] to
HPV L1-p and VLPs, respectively.

2. Results and Discussion
2.1. Hypochromic Response of [Mo132] to L1-p

The [Mo132] (2.5µM) in buffer A shows a typical absorption band at 456 nm similar
to the cluster in aqueous solution (Figure 1A), which can be assigned to the intervalence
charge transfer (IVCT) between Mo(V) and Mo(VI) centers bridging by O atoms [21,22].
Since the absorption bands of the L1 protein at both states of pentamer and VLP appeared
at wavelengths less than 300 nm, the changes in absorption spectra of the [Mo132] mixture
with L1-p in the visible region was attributed to a source from the inorganic cluster. A
gradual hypochromic behavior of [Mo132] in buffer A solution with time exposure in
air was observed, and nearly 20% absorbance was lost after 4 h, when a turning point
occurred. After that, no further change occurred for the absorption with time over one
day. The hypochromic properties of [Mo132] can be attributed to the oxidation of partial
Mo(V) in the giant cluster by oxygen in air, according to the opposite observation during
its formation [24]. As further confirmed in the characterization, this color change in the
aerobic environment does not affect the structural integrity and the detection for proteins
because of the large number of reduced Mo(V) contained in one cluster.

In comparison to [Mo132] in buffer A, a much stronger hypochromic effect of the
cluster occurred in the same solution along with the addition of L1-p. A linear decrease in
absorbance was observed, and more than 80% of the original absorbance disappeared until
cultured to a turning point at 12 h. Further color fading proceeded continuously, and more
than 90% of absorbance vanished after 24 h (Figure 1B). Interestingly, when [Mo132] was
added into the solution containing VLPs, only a little color degradation occurred over time
(Figure 1C), and over 95% absorbance of the inorganic cluster was maintained at the time
scale. The job plots of the [Mo132] cluster at the states in the presence of protein L1-p or
VLPs show the apparent differences in the absorbance at the visible region versus the time
(Figure 1D).

[Mo132] has been demonstrated to form blackberry-like hollow spherical self-assembled
shapes in several tens of nanometers in aqueous solution [26] while maintaining a mono-
dispersed state for a couple of days. As shown in Figure 2A, the DLS curve of the cluster
alone showed a hydrodynamic diameter of 2.7 nm, similar to the size (2.9 nm) calcu-
lated from the crystal structure, illustrating the mono-dispersion and structural complete-
ness [27,28]. The L1-p in buffer A had a size of about 12.0 nm (Figure 2B), being very close
to the well-dispersed state of the pentamer subunit reported previously [29,30]. When
the inorganic cluster was added into a solution containing L1-p, larger aggregates with
a diameter of about 73 nm (Figure 2C) formed immediately. This size differs from each
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component or typical VLPs, implying the quick interaction between [Mo132] and the pro-
tein. The incubation for 24 h or longer did not lead to precipitation, but maintained a
stabilized aggregate with a slight increase in size to 82 nm (Figure 2D). As already shown,
the negatively charged POMs bind with some peptides containing basic residues through
electrostatic interaction and hydrogen bonding [31,32]. The non-specific interaction can
also induce the combination of the [Mo132] cluster bearing 42 negative charges with L1-p,
causing the formation of larger assemblies or aggregates.
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at 456 nm in (A–C) versus time for 24 h.
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Figure 2. DLS histograms of (A) [Mo132] and (B) L1-p subunit in buffer A; the mixture of [Mo132] and
L1-p (C) right after, and (D) after 24 h of incubation in buffer A; (E) the mixture of [Mo132] and L1-p
after 24 h dialysis in assembly buffer; and (F) that of [Mo132] and the as-assembled VLPs in assembly
buffer, respectively.
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2.2. Visual Response of [Mo132] to the Isolated L1-p and VLPs

The absorption spectral changes of [Mo132] to L1-p and its VLP assembly (Figure S1)
were examined in parallel with visual inspection through color observation. As shown
in Figure 3, [Mo132] is sensitive in detecting the existing states of protein L1. In a normal
process, the L1 monomer is very unstable and exists typically in a pentamer state, which
further self-assembles into an empty capsid, VLP, under high ionic concentration and low
pH, spontaneously [27,28]. To identify the possible influence of the [Mo132] cluster on the
assembly process, the L1-p in a large amount of assembly buffer is monitored to allow for
the assembly of VLP in the presence of [Mo132], following a published standard process
for other POM [27]. After encountering a dialysis procedure, the DLS assay revealed the
formation of characteristic assemblies accompanied by a size change from 12 nm at the
beginning to an average of 51.8 nm after 24 h of incubation (Figure 2E), in perfect agreement
with the full-sized scale (50–55 nm) of VLPs comprising of the HPV16 L1 protein [29,30].
This result indicates that the presence of [Mo132] does not affect the self-assembly of L1-p
into VLP. However, after this assembly process, the dynamic small size attributed to [Mo132]
was no longer observed, even after 24 h of incubation (Figure 2F), implying that most of the
clusters were trapped either inside or on the outside surfaces of the formed VLPs, or were
eliminated through dialysis. The existence of [Mo132] did not affect the further assembly
of the L1-p as a subunit. Importantly, accompanying the self-assembly of L1-p, the faded
color of [Mo132] recovered because the solution changed from colorless back to brown, the
original color of the [Mo132] in solution (Figure 3).
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2.3. Prevention of [Mo132] Hypochromic by VLPs

More interestingly, the addition of [Mo132] into an assembly buffer containing VLPs
did not result in an obvious hypochromic after 24 h of incubation in the air; in contrast to
L1-p, it showed much less color fading compared to a single cluster in buffer A, indicating
the strong inhibition of VLPs on the color bleaching of [Mo132]. Meanwhile, the DLS
histogram (Figure 2F) confirmed a well-kept full-size of VLPs in 24 h. To identify whether
[Mo132] binds to VLPs or just remains isolated in solution, the ultracentrifugation of various
components in gradient CsCl solution, were performed in tubes based on the principle of
size and density dependence on the position to the rotating center, where components with
the larger size and higher density will be located closer to the bottom.

After the CsCl gradient ultracentrifugation, the photograph of VLP alone in tube #0
showed a single blue band because of the concentrated protein, ascribed to the position
of complete VLPs, at zone F2 (Figure 4A) in the middle of the centrifugation tube. In the
case of VLP mixing with [Mo132] in tube #1, besides a narrower blue belt at the F2#1, a
wideband emerges at the lower position F3#1, suggesting the formation of aggregates with
larger size differing from VLP or L1-p. Because the observed color of the belt near F3#1
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was far from that of VLP at F2#1 while the sole VLP did not show any significant hint at the
F3#0 position, we suggest that the [Mo132] traps VLPs to form larger-sized aggregates. As a
result, the inhibition to the hypochromic effect of [Mo132] can be explained to be derived
from protecting the VLPs from external oxidation. On the other hand, the photograph of
L1-p mixing with [Mo132] in tube #2 presented a weak belt with a pale color at the position
F2#2, similar to that of VLP at F2#0, but there was no obvious belt emerging at zone F3#2.
The result implies that part of L1-p self-assembled into VLPs automatically in the presence
of inorganic clusters, but almost no formation of the proposed aggregates comprising the
formed VLPs, and [Mo132] was shown as the observation at zone F3#1. When L1-p was
mixed with [Mo132] in the assembly buffer, as seen in tube #3, both narrow blue belts at
zone F2#3 and wide yellowish-brown belts emerged simultaneously at F3#3. The identical
phenomenon of F3#3 to F3#1 demonstrates the formation of VLP in the presence of an
inorganic cluster and the induced aggregation. Looking at these results together, we can
draw the following conclusions: (1) the color degradation and the possible interaction with
clusters did not affect the assembly of L1-p; and (2) a cluster induced aggregation of VLPs
occurred, which is consistent with the DLS measurements (Figure 2C,D).
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VLPs@[Mo132] in assembly buffer (tube #1); the mixture of L1-p and [Mo132] before (tube #2) and after
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and #3, respectively. The channel of M is the marker from the standard protein.

The belts at different zones in tubes after CsCl gradient ultracentrifugation were taken
out, and the corresponding protein was assayed via the SDS-PAGE technique (Figure 4C).
Taking two known proteins with molecular weights of 44 and 66 kDa as markers, all
products extracted from F2 zones of tube#1–#3 point to a molecular weight of ~53 kDa,
which is perfectly consistent with the L1-monomer. Besides emerging in the zone F2 in all
tubes, the L1 protein also appeared at zone F3 in tubes #1 and #3, supporting the assignment
for VLP aggregation with [Mo132] at two zones. Meanwhile, the fact that no smaller proteins
were observed in the F1 zones of tubes #2 and #3 shows that all the L1-p have already
self-assembled into VLPs, especially in tube#2. Coincidently, the DLS histograms of the
belts taken from tube #1 showed distributions of particle size that were consistent with
[Mo132] at zone F1#1, and the particle sizes corresponding to that of the VLPs at zones F2#1
and F3#1 were determined (Figure 4C, upper). As the cluster was proposed to be trapped
in VLP aggregates, no isolated [Mo132] was found at zone F3#1 due to the strong interaction
between two components. For the belts extracted from tube #2 (Figure 4C, middle), besides
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identifying the particle that can be ascribed to [Mo132] at F1#2, we also observed the particle
size attributed to VLPs at F2#2. Although a small size close to [Mo132] appeared at F3#2, no
larger particles corresponding to the induced VLPs were observed excluding the possibility
of it being there for [Mo132]. Again, the DLS histogram of tube #3 (Figure 4C, bottom)
shows the full spectra of size distributions similar to [Mo132] at zone F1#3, VLPs at zone
F2#3, and the cluster-triggered VLPs aggregation at zone F3#3, which were identical to the
case observed in tube #1.

To further verify the morphology and completeness of the formed VLPs taken from
F2#1 and F2#3, TEM images of [Mo132] in buffer A, the mixture of [Mo132] with L1-p before
and after assembly monitoring, and the mixture of [Mo132] and the as-prepared VLP were
acquired. Because of the tiny size and mono-dispersion, the inorganic cluster (Figure 5A)
could be well discerned from that of L1-p or VLPs in solution (Figure 5C,D). In the mixture
of L1-p and [Mo132], whether assembly monitoring was performed or not, we consistently
obtained spherical particles (Figure 5B,C) that can be ascribed to the formation of VLPs as
they matched the size of VLP cavity [29,30]. The amplified images (inset of Figure 5B,C)
show small particles attributed to the inorganic clusters located inside the inner wall.
Therefore, Figure 5B provides additional evidence for the cluster-triggered assembly of
VLPs from L1-p, even without assembly monitoring. In addition, partial inorganic clusters
were observed encapsulated inside the VLPs during the triggered co-assembly with L1-p,
indicating a strong interaction between [Mo132] and L1-p. The observation of VLPs can
further support this analysis after mixing with [Mo132] (Figure 5D), where the inorganic
clusters are mainly located at the outside surface of VLPs being very different from that of
the co-assembly of the two components.
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Figure 5. TEM images of (A) [Mo132] in buffer A; (B) the mixture of [Mo132] and L1-p in buffer A;
(C) after 24 h dialysis in assembly buffer, and (D) the mixture of [Mo132] and the as-prepared
VLPs in assembly buffer, respectively. All images were acquired directly on samples without the
phosphotungstate stain.

To obtain the essential profile, the TEM images for the samples extracted from zones
F2#0, F2#1, and F2#3 were then acquired with negative staining (Figure 6). The micro-
graphs show that the topography of VLPs and the particle size become more uniform
and precise. Besides the transparent empty shell (Figure 6A), the mono-disperse particles
with a statistical diameter of about 55 nm (Figure 6B,C) were in good agreement with the
reported full-size of VLPs [29,30]. From the foregoing, we concluded that [Mo132] could
quickly bind with L1-p to form irregular aggregates, finally leading to the formation of
VLP containing [Mo132] inside. However, once [Mo132] is mixed with the as-prepared VLPs,
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it assembles into [Mo132]@VLP, where the cluster particles bind to the surface of VLPs
(Figure 6C). As the molecular weight of [Mo132] is much less than that of VLP, the sedimen-
tation coefficient of [Mo132]@VLPs is close to that of the VLPs, thus the encapsulation of a
few [Mo132] clusters does not significantly alter the surface properties of VLPs. Therefore, it
is rational to explain that [Mo132]@VLPs display a close level to VLPs in tubes after the CsCl
gradient ultracentrifugation (Figure 4A). The two adjoining lancet belts at the position of
F2#2 suggest an appreciable difference between VLPs and those encapsulated with [Mo132].
Moreover, whether stained or not, the larger aggregates of VLPs induced by [Mo132] were
clearly discernible in Figures 5 and 6, which supports the observation of proteins in F3#1
and F3#3 (Figure 4B).

Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

VLP containing [Mo132] inside. However, once [Mo132] is mixed with the as-prepared VLPs, 
it assembles into [Mo132]@VLP, where the cluster particles bind to the surface of VLPs (Fig-
ure 6C). As the molecular weight of [Mo132] is much less than that of VLP, the sedimenta-
tion coefficient of [Mo132]@VLPs is close to that of the VLPs, thus the encapsulation of a 
few [Mo132] clusters does not significantly alter the surface properties of VLPs. Therefore, 
it is rational to explain that [Mo132]@VLPs display a close level to VLPs in tubes after the 
CsCl gradient ultracentrifugation (Figure 4A). The two adjoining lancet belts at the posi-
tion of F2#2 suggest an appreciable difference between VLPs and those encapsulated with 
[Mo132]. Moreover, whether stained or not, the larger aggregates of VLPs induced by 
[Mo132] were clearly discernible in Figures 5 and 6, which supports the observation of pro-
teins in F3#1 and F3#3 (Figure 4B). 

 
Figure 6. TEM images of (A) VLPs; (B) the mixture of [Mo132] and L1-p after 24 h dialysis in assembly 
buffer; (C) the mixture of [Mo132] and the as-prepared VLPs in assembly buffer, respectively. All of 
were extracted from the F2 fraction in tubes after CsCl gradient ultracentrifugation and stained with 
2% phosphotungstate for 2 min before measurement. 

2.4. Colorimetry Response Mechanism of Mo132 to L1-p and VLP 
Redox nature of [Mo132]. Coordination atoms such as Mo and W of POMs at the high-

est oxidation state are known to be photochemically reduced in the presence of a reduct-
ant, and the reduced POMs showed oxidation properties such as peroxidase for some or-
ganic and bio-molecules [33,34]. [Mo132] has 60 reduced Mo(V) atoms and 72 oxidized 
Mo(VI) atoms, allowing the cluster to be both reduced and oxidized in suitable conditions. 
As the intervalent charge transfer absorption of Mo(V) to Mo(VI) emerged in the visible 
region, the [Mo132] normally appeared as yellowish-brown. However, when Mo(V) atoms 
are oxidized, color degeneration will occur. For example, its incubation with a weak re-
ductant L-ascorbic acid (Vc) for 24 h does not change the [Mo132] cluster’s color through 
reduction (Figure S2A). However, instead of the phenomenon displayed in Figure 1A, 
hypochromic properties are achieved in aerobic conditions when using Vc as a sacrifice 
against the air oxidation. To confirm that the hypochromic properties originate from the 
oxidation of [Mo132] and to accelerate the process, 365 nm irradiation was then performed 
in parallel with and without Vc in buffer A (Figure S2B). After 12 h, 20% of the absorbance 
was diminished for the latter case; however, almost no change was observed for the for-
mer. 

Interaction of capsid protein for colorimetry change of [Mo132]. The non-covalent 
interactions of POMs with several types of biomolecules have been investigated exten-
sively over the past years [35–37]. Based on the structural features of POMs, it is evident 
that the negatively charged [Mo132] mainly provide electrostatic interactions with a variety 
of cationic species of protein. However, the observed hypochromic effect here should be 
essentially conducted by the external oxidation sourced from the protein rather than the 
buffer solution or the aerobic environment, since the color degradation does not fully oc-
cur in such a short time. Several peptides and proteins with specific surface charges have 

Figure 6. TEM images of (A) VLPs; (B) the mixture of [Mo132] and L1-p after 24 h dialysis in assembly
buffer; (C) the mixture of [Mo132] and the as-prepared VLPs in assembly buffer, respectively. All of
were extracted from the F2 fraction in tubes after CsCl gradient ultracentrifugation and stained with
2% phosphotungstate for 2 min before measurement.

2.4. Colorimetry Response Mechanism of Mo132 to L1-p and VLP

Redox nature of [Mo132]. Coordination atoms such as Mo and W of POMs at the
highest oxidation state are known to be photochemically reduced in the presence of a
reductant, and the reduced POMs showed oxidation properties such as peroxidase for some
organic and bio-molecules [33,34]. [Mo132] has 60 reduced Mo(V) atoms and 72 oxidized
Mo(VI) atoms, allowing the cluster to be both reduced and oxidized in suitable conditions.
As the intervalent charge transfer absorption of Mo(V) to Mo(VI) emerged in the visible
region, the [Mo132] normally appeared as yellowish-brown. However, when Mo(V) atoms
are oxidized, color degeneration will occur. For example, its incubation with a weak
reductant L-ascorbic acid (Vc) for 24 h does not change the [Mo132] cluster’s color through
reduction (Figure S2A). However, instead of the phenomenon displayed in Figure 1A,
hypochromic properties are achieved in aerobic conditions when using Vc as a sacrifice
against the air oxidation. To confirm that the hypochromic properties originate from the
oxidation of [Mo132] and to accelerate the process, 365 nm irradiation was then performed
in parallel with and without Vc in buffer A (Figure S2B). After 12 h, 20% of the absorbance
was diminished for the latter case; however, almost no change was observed for the former.

Interaction of capsid protein for colorimetry change of [Mo132]. The non-covalent
interactions of POMs with several types of biomolecules have been investigated extensively
over the past years [35–37]. Based on the structural features of POMs, it is evident that
the negatively charged [Mo132] mainly provide electrostatic interactions with a variety
of cationic species of protein. However, the observed hypochromic effect here should be
essentially conducted by the external oxidation sourced from the protein rather than the
buffer solution or the aerobic environment, since the color degradation does not fully occur
in such a short time. Several peptides and proteins with specific surface charges have been
used to examine the hypochromic effect of [Mo132] (Figure S3). Under neutral conditions,
the negative peptide of pTau-aac (pI = 4.5) and protein of BSA (pI = 4.6) do not induce a
significant absorption change of [Mo132]; however, the positively charged ones of dTau30
(pI = 10.4) and lysozyme (pI = 11.0) drive a significant decrease in absorption, indicating
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the vital role of positive partners to the [Mo132] hypochromic effect. We can infer that the
exposed basic residues in L1 accelerate the oxidation of [Mo132].

The cryo-electron microscopy and image analysis on capsid proteins [37] revealed that
the L1-p bind together to form VLPs via a long segment of the C-terminal (Figure S4A).
The images revealed that the sequence after Asp401 at the C-terminal extended from
one pentamer to the adjacent one to strengthen the VLPs structure. This segment was
dominated by cationic residues such as arginine or lysine (Figure S4B), which are firmly
prone to bind with the negatively charged [Mo132]. After L1-p assembles into VLP, however,
this segment is embedded in the wall of the VLP sphere, and the charged environment
varies widely (Figure S4C). To further confirm the binding site of [Mo132] with capsid
protein, the sequence of two peptides, pep1–401 and pep401–495, were constructed and
expressed separately, through identical approaches as the full-length L1.

After carrying out DNA sequence assays (Figure S5) and protein purification, each
peptide was mixed with [Mo132] in buffer A. This procedure yielded different phenomena.
A quick decrease in [Mo132] absorption at 456 nm was shown when mixed with pep401–495
(Figure 7A). The band disappeared completely, and the solution became pale within 90 min.
The time-dependent plot of absorption (Figure 7C) revealed that the peptide drives the
hypochromic effect of the cluster much faster than that of L1-p (Figure 1A), confirming a
decisive role of pep401–495 in this process. In contrast, mixing pep1–401 with [Mo132] only
led to a very slight decrease in absorption centered at 456 nm (Figure 7B), indicating its
feeble contribution in L1 to the [Mo132] hypochromic effect. The plots of absorption intensity
vs. time (Figure 7C) clearly illustrate the responsive differences between pep401–495,
pep1–401, and L1-p to [Mo132], further demonstrating that the binding with basic residues
of pep401–495 causes the enhanced hypochromic effect by L1. Thus, it can be speculated
that during the assembly of L1-p to VLP, the stronger binding affinity between L1-p subunits
could force [Mo132] to be released from the positive sites of L1-p and electrostatically attach
to other positions of VLPs. Considering the positive areas at the interior surface of VLPs [38],
the negatively charged [Mo132] are easy to adsorb on the inner surface of VLP, which shield
[Mo132] from oxidation and consequently protect it from the hypochromic effect. Moreover,
the observed larger aggregates of VLPs induced by [Mo132] (Figures 5 and 6) suggest an
additional protection of [Mo132].
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vs. time for comparison.

Redox nature of [Mo132] in the presence of L1-p and VLP. X-ray photoelectron spec-
troscopy (XPS) was used to analyze the redox state of pristine [Mo132] (Figure 8A) and in the
presence of L1-p (Figure 8B) or VLP (Figure 8C) under aerobic conditions. The characteristic
Mo3d doublet, composed of the 3d5/2 and 3d3/2 levels resulting from spin-orbit coupling,
was observed in the spectra. Suitable fits of the data points, corresponding to two possible
3d doublets of Mo in different oxidation states of Mo(VI) and Mo(V), were achieved using
two pairs of Lorentzian–Gaussian functions. The peaks centered at 232.4 and 235.5 eV were
assigned to Mo(V), while those at 233.6 and 236.6 eV were attributed to Mo(VI), respec-
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tively [39,40]. Semi-quantitative calculations showed that the characteristic ratio of peak
area for Mo(VI) and Mo(V) was 1.45:1 for [Mo132] (Table 1), which was slightly over the
value of 1.2 calculated from the ratio of 72 Mo(VI) to 60 Mo(V). The reason for this deviation
can be deduced from the aerobic oxidation of partial Mo(V) atoms (approximate 10) in
[Mo132] solution during sample preparation.
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Table 1. Integrated area of the simulated peak for Mo(V) and Mo(VI) from the XPS results in
Figure 8A–C, respectively, and their ratio.

Samples [Mo132] [Mo132] + L1-p [Mo132] + VLPs

Mo(V) 115,359.60 + 43,910.59 15,696.10 + 18,827.48 17,349.15 + 21,444.59
Mo(VI) 147,757.50 + 82,513.98 58,321.11 + 28,475.33 26,737.09 + 32,049.94

Ratio of Mo(VI) to Mo(V) 1.45:1 2.5:1 1.5:1

The fitting curves of [Mo132] in mixing with L1-p (Figure 8B) were vastly different from
[Mo132] alone. Besides the binding energy pairs attributed to Mo(V) and Mo(VI), the third
coupled binding energy bands were observed. The latter were attributed to the intermediate
of Mo during the transition. Furthermore, the quantitative calculation revealed that the
ratio of peak area for Mo(VI) and Mo(V) increased to 2.5:1 (Table 1), indicating that more
Mo(V) atoms had been oxidized. Larger amounts of Mo(V) (approximate 31) in [Mo132]
were oxidized into Mo(VI) after binding with L1-p, which is solid evidence for the enhanced
hypochromic effect in the mixture.

Accompanying the assembly of L1-p, the XPS results of [Mo132] almost returned back
to the state of [Mo132] alone in solution (Figure 8C). Although the intermediate component
of Mo atoms still appeared in the fitting model, the calculation revealed a reduction in
band ratio for Mo(VI) to Mo(V) of approximately 1.45:1 (Table 1). Seventeen of the oxidized
Mo(VI) were reduced back to Mo(V). As a result, the L1-p presented here is similar to
a sensitizer for [Mo132] hypochromic properties. The electrostatic interaction between
[Mo132] and pep401–495 connecting the positive residue and [Mo132] directly allows for the
oxidation of Mo(V) to Mo(VI) more easily. Consequently, the intervalence charge transfer
between Mo(V) and Mo(VI) centers was vastly weakened, and the color finally disappeared
with time. As illustrated, such a process is accompanied by the binding with free basic
residues in protein (Scheme 2) and the elimination of them in L1-p after assembly into VLP
(Figure S4C).
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3. Conclusions and Perspectives

We report the opposite color response of a giant polyoxometalate,
(NH4)42[Mo132O372(CHCOO)30] (H2O)72 ([Mo132]), to the existing states of human pa-
pillomavirus (HPV) major capsid protein, L1-pentamer (L1-p) and virus-like particles
(VLPs), originating from the assembly between [Mo132] and capsid protein. Assembly
with L1-p resulted in the improved hypochromic of [Mo132] while assembly with the
as-assembled VLPs led to an obvious protection of [Mo132] from the hypochromic effect,
compared to the single cluster in solution. Furthermore, both the size and morphology
of the assemblies were characterized by using CsCl gradient centrifugation, SDS-PAGE,
DLS, and TEM imaging. Remarkably, the in-depth mechanism studies determined by XPS
and two well-designed peptides from L1 disclose that the electrostatic interaction between
[Mo132] and pep401–495 induces the change of Mo(V) into Mo (VI), which facilitates the
hypochromic effect of [Mo132]; however, the assembly from L1-p to VLPs reduced the
binding possibility of [Mo132] to pep401–495 and the transition from Mo(V) to Mo (VI),
which protects [Mo132] from the hypochromic effect. Therefore, the present study not only
reports a unique phenomenon of contrasting color responses of [Mo132] to HPV capsid
protein, 16 L1-p and VLPs (which affords an easily performed colorimetry approach to eval-
uate the states of the HPV capsid protein), but also extends the potential of the molybdate
polyoxometalate family toward new applications in medical science and could possibly be
extended to other kinds of POMs.

4. Experimental Section
4.1. Reagents and Materials

Tryptone was purchased from OXOID Ltd. (Basingstoke, UK). Isopropyl-β-D-
thiogalactoside (IPTG) and kanamycin were acquired from Tianjia Tech, China. Ethy-
lene diamine tetraacetic acid (EDTA), acetic acid, ethanol, and methanol were obtained
from BCIGC Ltd., China. Coomassie blue G-250 and Tween 80 were produced from Ding-
Guo Ltd. (Beijing, China). 3-(N-morpholinyl) propanesulfonic acids (MOPs), and NaCl
used for buffer preparation were purchased from Aladdin, China. D,L-dithiothreitol (DTT)
and Tris(hydroxymethyl)aminomethane (Tris) are products from the Coolaber Company in
China. The purity of all chemicals was higher than 99.9% and used as received.

4.2. Expression, Purification of HPV 16 L1 Protein and Peptides

The coding sequences and preparation of major capsid protein (L1) for HPV 16 fol-
lowed the procedures described in a previous work where pET-30a vector and BL21 StarTM

(DE3) were employed for better expression [40]. Briefly, the recombinant Escherichia coli
strain BL21 StarTM (DE3) was cultured at 37 ◦C with stirring at 220 rpm, where the bacteria
were induced by 0.1 mM IPTG. When OD600 reached 0.6–0.8, the cells were further culti-
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vated at 25 ◦C for another 17 h, and then they were harvested by centrifugation. The cell
pellets were re-suspended in buffer A (50 mM MOPs, 250 mM NaCl, 10 mM DTT, pH 7.0)
with a concentration of 1.0 g in 10 mL. After being lysed by sonication and separated by
centrifugation, a supernatant rich with L1 protein was obtained and further stabilized for
another 30 min with increased DTT (20 mM) in buffer A. Then, purification was performed
again by using a cationic exchange column filled with POROS® XS (xk16/10), where the
supernatant was introduced into the column after being equilibrated with buffer A. A
solution of 1.2 M NaCl finally eluted the target protein L1, and its final concentration
was determined using the BCA method. The purity of L1 was finally identified by using
12% (wt/vol) SDS-PAGE. The obtained HPV 16 L1 existed essentially in the form of VLPs,
which was further dialyzed against disassembly buffer (50 mM tris, 100 mM NaCl, 2 mM
EDTA, 20 mM DTT, 0.01% Tween 80, pH 8.0) at 4 ◦C for 24 h (being changed every 4 h) to
disassemble VLPs into L1-p for co-assembly monitoring.

The coding sequences of HPV 16 pep1–401 and pep401–495 were the same as the
corresponding segment of HPV 16 L1 [40]. The pET-30a vector containing the respect
gene was transformed into Escherichia coli strain BL21 StarTM (DE3) and cultured at 37 ◦C.
The experimental conditions and method used for their expression and the following
purifications were the same as that of the HPV 16 L1 protein described above.

4.3. Preparation of (NH4)42[Mo132O372(CH3COO)30]·72H2O

The synthesis and structural characterization of the [Mo132] cluster followed proce-
dures similar to those reported elsewhere [18]. Briefly, 0.8 g N2H4·H2SO4 was added into
250 mL of H2O containing 5.6 g of (NH4)[Mo7O24]·4H2O and 12.5 g of CH3COONH4. After
stirring for 10 min, 83 mL of 50% CH3COOH (v/v) was added to replace the involved
–SO4

2−, further stabilizing and giving the product a crystalline precipitate. After desiccation
in air, the product was characterized by X-ray diffraction, IR, and elemental analysis. The
100 µM of stock solution of [Mo132] was then prepared in deionized water, which was
further diluted to the desired concentration when ready for use.

4.4. Assembly/Disassembly Monitoring of Mo132 and HPV 16 L1

Four typical samples were prepared, respectively, for the response assay of [Mo132] to
the HPV capsid protein: (I) the stock solution of [Mo132] was mixed with L1-p and stirred at
4 ◦C for 24 h in buffer A to obtain full binding, where the concentration of inorganic clusters
is 2.5 µM and that of proteins is 10 µM; (II) the mixture of (I) was subsequently dialyzed in
a 1.0 L assembly buffer (10 mM phosphate, 500 mM NaCl, 0.03% Tween 80, pH 5.4) at 4 ◦C
for 24 h to induce the assembly of L1-p into VLPs in the presence of [Mo132]; (III) 10 µM of
L1-p was dialyzed in 1.0 L assembly buffer to obtain full-sized empty VLPs, which was
used either as a control or further mixed with [Mo132] for post-assembly monitoring as the
number (IV) sample, after another 24 h stirring at 4 ◦C.

In a parallel experiment, sample (II) was further dialyzed against 1.0 L of disassembly
buffer (50 mM Tris, 100 mM NaCl, 2 mM EDTA, 20 mM DTT, 0.01% Tween 80) at 4 ◦C
for 24 h to record the disassembly behavior of VLPs into L1-p in the presence of [Mo132].
The concentration of [Mo132] used in all of the above experiments was the same at 2.5 µM
unless mentioned otherwise, while that for HPV 16 L1 was 10 µM, depending on the L1
monomer. In addition, the procedures used to monitor the conversion between L1-p and
VLPs were the same as reported previously [27,28].

4.5. Cesium Chloride Gradient Centrifugation

First, we prepared the discontinuous densities of CsCl aqueous solution at 1.50, 1.35,
and 1.25 g/mL, respectively. Then, the solutions in a volume of 0.5, 3.0, and 3.5 mL were
slowly added into ultracentrifuge tubes in order, respectively. After further adding the
mixture solution of the L1-p protein and Mo132 with equivalent volume to the upper
part separately, the ultracentrifuge tubes were placed in the SW40 rotor and centrifuged
at 220,000× g for 3.5 h at 4 ◦C. Finally, the interest bands and the counterparts were
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collected using a needle and dialyzed in PBS buffer for 24 h to remove the attached CsCl.
The products were identified by 12% SDS-PAGE, dynamic light scattering (DLS), and
transmission electron microscopy (TEM).

4.6. Instruments

UV–Vis absorption spectra were recorded on a Shimadzu (Kyoto, Japan) RF-5301PC
spectrometer for the assembly and/or disassembly of HPV 16 L1 protein or peptides. A
1.0 mL target solution was added in a quartz cuvette, and the spectra in the 300–700 nm
range were collected for each sample. The particle size was assayed by DLS. Briefly, after
pre-filtration performed by placing the sample in a PCS1115 cuvette, the particle sizes were
tested on a Malvern Zetasizer Nano-ZS 90 (Malvern, England) at 25 ◦C. All data were
repeated for each sample in three parallel sets. The procedures in the sample preparation
for TEM imaging were the same as those described previously [21,22]. The samples without
staining were first spotted on copper grids coated with carbon and formvar. After drying
in the air for 2 min, the measurements were carried out on a H-7650 transmission electron
microscope (Hitachi, Tokyo, Japan) under an accelerating voltage of 80 kV. The images of
samples with a stain of 2% phosphotungstate were collected under an accelerating voltage
of 120 kV. The X-ray photoelectron spectroscopy (XPS) measurements were acquired using
Thermo ESCALAB 250, where an Al Kα line (1486.6 eV) was employed as a monochromic
X-ray source and the binding energy of C1s (284.6 eV) was used for correction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12050736/s1, Figure S1: (A) Time-dependent UV-vis absorption spectra of [Mo132]@VLPs
in disassembly buffer, to induce the disassembly of VLPs into L1-p again; (B) The plots of correspond-
ing intensity in (A), which show obvious hypochromicity after 3 h incubation. Finally, more that
90% color was diminished again; Figure S2: Time-dependent UV-vis absorption spectra of [Mo132]
in buffer A (2.5 µM) (A) in the presence of Vc (10.0 µM) under white light; (B) in the absence and
presence of Vc (10.0 µM) under the irradiation of white light or 365 nm, respectively; Figure S3:
Time-dependent UV-vis absorption spectra of [Mo132] in buffer A (2.5 µM) in the presence of the
negative (A) peptide, pTau-aac (10.0 µM, pI = 4.5), (B) protein, BSA (10.0 µM, pI = 4.6); and positive
(C) peptide, dTau30 (10.0 µM, pI = 10.4), (D) protein, lysozyme (10.0 µM, pI = 11.0), respectively;
Figure S4: Illustration of 3D structural relationship between one HPV16 L1-p and its neighbor. The
model is obtained from a Cryo-EM reconstruction structure (PDB ID, 3J6R).S1 (A) Top view on L1-p;
(B) the enlarge part in a box of (A), highlighting the involved arginine and lysine, respectively;
(C) Side view of L1-p to show more clearly the burier of pep401–495 segment by the neighboring L1-p
in VLP; Figure S5: Agarose gel electrophoresis to assay the DNA sequence of two peptides derived
from HPV 16L1. (A) Enzyme digestion of T-easy-peptide 401–495. The gene of peptide 401–495
was 285 bp, corresponding to the site between 250 to 500 bp in marker. (B) Enzyme digestion of
T-easy-peptide 1–401. The gene of peptide 1–401 is 1203 bp, corresponding to the site between 1000
to 1500 bp in marker, Table S1: Integrated area of the simulated peak for Mo(V) and Mo(VI) from the
XPS results in Figure 8A,B, and C, respectively, and the ratio of them.
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