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Abstract: Tungsten oxide (WO3), MXene, and an WO3/MXene nanocomposite were synthesized to
study their photocatalytic and biological applications. Tungsten oxide was synthesized by an easy
and cost-effective hydrothermal method, and its composite with MXene was prepared through the
sonication method. The synthesized tungsten oxide, MXene, and its composite were characterized by
X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform
infrared (FTIR), energy-dispersive X-ray analysis (EDX), and Brunauer–Emmett–Teller (BET) for their
structural, morphological, spectral, elemental and surface area analysis, respectively. The crystallite
size of WO3 calculated from XRD was ~10 nm, the particle size of WO3 was 130 nm, and the average
thickness of MXene layers was 175 nm, which was calculated from FESEM. The photocatalytic
activity of as-synthesized samples was carried out for the degradation of methylene blue under solar
radiation, MXene, the WO3/MXene composite, and WO3 exhibited 54%, 89%, and 99% photocatalytic
degradation, respectively. WO3 showed maximal degradation ability; by adding WO3 to MXene,
the degradation ability of MXene was enhanced. Studies on antibacterial activity demonstrated that
these samples are good antibacterial agents against positive strains, and their antibacterial activity
against negative strains depends upon their concentration. Against positive strains, the WO3/MXene
composite’s inhibition zone was at 7 mm, while it became 9 mm upon increasing the concentration.
This study proves that WO3, MXene, and the WO3/MXene nanocomposite could be used in biological
and environmental applications.

Keywords: WO3; MXene; XRD; FESEM; EDX; photocatalysis

1. Introduction

In the last few decades, environmental remediation technologies have been the most
challenging for effective and efficient water cleaning, primarily through the photocatalytic
method [1–6]. Such catalysts are cost-effective and have a suitable energy and electronic
structure. Minimal amounts of contaminants such as phenols, textile dyes, and poly chlori-
nated biphenyls (PCBs) not only pollute the water, but also reduce the growth of aqueous
organisms [7]. For the removal of such pollutants from water, various physical and chemi-
cal methods were reported [8,9]. However, these methods are either expensive or suitable
for large amounts of contaminants [10]. So, the photocatalytic degradation of organic
contaminants has gained much attention due to its efficiency and cost-effectiveness [7,11].

Owing to their surface, electronic and crystal structure, various semiconductors,
mainly metal oxides such as ZnO, TiO2, Fe2O3 and WO3, and sulfides (ZnS, CdS) showed
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exceptional photocatalytic behavior [10,12,13]. Among all of these metal oxides, TiO2
exhibited good photostability and photocatalytic activity in an aqueous medium [14,15].
However, due to its high charge recombination and wide band gap, its applications are
restricted [16]. Meanwhile, Fe2O3 and ZnO are quite unstable in wastewater at various pH
values, which limits its applications [10]. Sulfide-based catalysts are also not suitable for
water remediation because they release toxic sulfides on illumination [10]. Among several
metal oxides, WO3 is a more appropriate candidate for photocatalytic degradation owing to
its abundance and narrow band gap, physical and chemical stability, and photosensitivity
in visible-light area [17]. Among major global problems, cancer is the most important, and
scientists are striving to solve it [18,19]. Recently, they succeeded in tracking cancer using
tungsten oxide in mice [20]. So, the preparation of tungsten oxide is quite interesting. So far,
various technologies have been used and reported for the synthesis of tungsten oxide, such
as hydrothermal method, acid precipitation, and sol-gel [21–27]. By controlling the reaction
time, precursor material, hydrothermal temperature, and capping agents, the optical
properties, crystallinity, and morphology of WO3 nanostructures can be varied. MXene, an
emerging 2D material, is a layered structured transition metal, nitride or carbide, having
both a hydrophilic nature and high electrical conductivity. They have large interlayer
spacing, a greater surface area, and a large number of active surface sites [28]. They can
also sequester and remove dyes, heavy metals, and radioactive nuclides [29].

MXene is a potential candidate for the synthesis of electrode material for various
energy storage devices such as supercapacitors and batteries. Metal-oxide- and metal-
sulfide-based composites were reported to be better electrode materials for supercapacitor
electrodes [30–38]. Therefore, MXene-based composites were also explored for better
properties [39,40]. The capacitance of MXene-based devices can be further enhanced by pro-
ducing its composites with other materials such as reduced graphene oxide, metal oxides,
and conducting polymers [41,42]. Scientists are also attempting to use certain pristine metal
oxides and their composites with 2D materials in various biological applications [43–47].

The main goal behind this research is to develop a unique WO3/MXene composite
that exhibits potential applications in biological and environmental remediation. In this
paper, MXene was synthesized by etching an Al atomic layer from MAX powder. The
hydrothermal route was used to synthesize tungsten oxide nanorods. The WO3/MXene
composite was synthesized by a simple sonication method. These prepared samples
were characterized for structural, spectral, morphological, and elemental analyses. The
photocatalytic and antibacterial activity of the as-synthesized samples was measured and
is discussed in detail.

2. Experimental Work
2.1. Materials

MAX powder (Ti3AlC2) (98% purity); hydrofluoric acid (HF) (40 wt %, Merck, Darm-
stadt, Germany); deionized (DI) water; sodium tungstate (Na2WO4.2H2O, 99%, Sigma-
Aldrich, Burlington, MA, USA), sodium sulfate (Na2SO4, 99%, Sigma-Aldrich, Burlington,
MA, USA), HCl (36%, Fischer Scientific, Waltham, MA, USA).

2.2. Synthesis of MXene

MAX powder (Ti3AlC2) was used to prepare the MXene with the Ti3C2Tx formula in
a 50 mL Teflon vessel. For this purpose, Al was etched by using an HF solution. For the
preparation of MXene, 10 mL HF was poured inside the Teflon vessel and then placed in a
fume hood. Then, 0.5 g of MAX powder was slowly added into the HF solution pinch by
pinch. Then, the whole mixture was stirred magnetically at room temperature for about
24 h for maximal etching. DI water was added to the resultant product for dilution, and
multilayered MXene was obtained by centrifugation at 5000 rpm. The washing of these
precipitates was repeated continuously until its pH became 6. The vacuum filtration of the
aqueous dispersion was carried out by using a PTFE membrane. The filtrate containing
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Ti3C2Tx was then freeze-dried for 24 h. Schematic illustration for preparation of MXene is
shown in Figure 1.
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Figure 1. Structural representation of MXene.

2.3. Synthesis of Tungsten Oxide (WO3)

2.5 g of sodium tungstate and 3.0 g of sodium sulfate were dissolved in 80 mL of
distilled water. A 3M HCl solution was added dropwise to the clear solution under
continuous stirring, and the pH of the solution was set to 1.5. After 10 min of stirring, the
mixture was transferred into a Teflon-lined stainless-steel autoclave and was kept at 180 ◦C
for 48 h. After that, the product was collected by centrifugation at 4500 rpm, and washed
with distilled water and ethanol to obtain neutral solution; then, the product was obtained
by drying at 60 ◦C in air.

2.4. Synthesis of WO3/MXene Composites

The composite of WO3/MXene (1:1) was fabricated by sonication method. Then, 2 g
of MXene was added in 50 mL of water and sonicated for 3 h. Afterwards, 2 g of tungsten
oxide was added to it, again sonicated for 2 h, and then dried in an oven. Synthesis of WO3
and WO3/MXene composites is shown in Figure 2.

2.5. Characterization

An XRD diffractometer using Cu Kα radiation (λ = 1.54 Å) as a light source, at a scan
rate of 30 min by applying a voltage of 40 kV, was used for the structural and phase analysis
of the as-synthesized samples. ZEISS LEO SUPRA 55 field emission scanning electron
microscope and JEOL JCM-6000Plus SEM were used for morphological characterization
and elemental analysis, respectively. Functional group analysis and the surface properties
of the as-synthesized samples were measured by Fourier transform infrared spectroscopy
(FTIR). For the measurement of the BET surface areas, nitrogen adsorption–desorption was
conducted by flowing liquid nitrogen at 77 K (−196 ◦C) by using the Micromeritics ASAP
2020 Physisorption analyzer.
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2.6. Photocatalytic Degradation

WO3, MXene, and the WO3/MXene nanocomposite were used as a photocatalyst to
measure the photocatalytic degradation of methylene blue in the presence of solar radiation
for 80 min. For these measurements, 100 mL of 5 ppm methylene blue solution was poured
in a beaker, and 5 mg of photocatalyst was added into the solution. It was then stirred
continuously for 60 min in the dark. Adsorption–desorption equilibrium could thus be
achieved between methylene blue and photocatalyst. The solution was then placed in solar
light with constant stirring. In order to measure the degradation percentage of methylene
blue, 5 mL of a solution containing both dye and sample was taken after every 10 min,
and a UV–vis spectrophotometer was used to measure the degradation efficiency of the
samples [5,48].

The degradation percentage of the as-synthesized samples was measured by using
following equation:

%degradation =
(C0 − Ct)

C0
× 100 (1)

where, Ct is the concentration of the solution at time t, and C0 is the concentration of the
solution at time zero.

2.7. Antibacterial Activity

The disc diffusion method was utilized to study the antibacterial activity of WO3,
MXene, and WO3/MXene nanocomposite. Staphylococcus aureus (S. aureus) was used as a
positive strain, and Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumonia) and Proteus
vulgaris (P. vulgaris) were used as negative strains. For standard/positive control, an
antimicrobial agent (ciprofloxacin) was used. First, the aqueous solution of the as-prepared
samples was prepared by sonicating the samples with distilled water. Then, they were
placed on the corners of a nutrient agar plate with the use of forceps. After incubating the
samples for 24 h at 37 ◦C, the zone of inhibition could be seen on the edges of the agar plate.
The formation of these zones of inhibition confirmed the antibacterial activity, while the
lack of these zones of inhibition showed no antibacterial activity. The mm units were used
for the measurement of these inhibition zones.



Nanomaterials 2022, 12, 713 5 of 19

3. Results and Discussion
3.1. XRD

The different phases of the as-fabricated WO3, MXene, and their composite (WO3/
MXene) were studied by utilizing the Cu Kα radiation (λ = 1.5406 Å) with an X-ray
diffractometer. Figure 3 shows the X-ray diffractograms. Tungsten oxide (WO3) produced
the diffraction peaks at 2 theta values 23◦, 26◦, 33◦, 41◦, 49◦ and 55◦. The Miller indices
corresponding to these peaks are (001), (101), (111), (110), (220) and (202) [49,50]. At
2θ = 23◦, tungsten oxide (WO2.95) gave a characteristic peak. For WO3, peaks were more
prominent at 2θ = 26◦, corresponding to the Miller indices (111) [51]. The structure of the
as-prepared WO3 nanoparticles was compared with JCPDS card 00-002-0310.
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The pure MAX XRD pattern showed 2θ peaks at 9.11◦, 18.7◦, 33.58◦, 35.65◦, 38.61◦,41.44◦,
51.93◦, 56.08◦, and 60.23◦, which corresponds to Miller indices (002), (004), (101), (103),
(104), (105), (108), (109), and (110), respectively [52,53]. Due to the presence of the Al, the
pure MAX powder showed a characteristic peak at 2θ = 38.61◦, which corresponds to (104).
Al was completely etched by using HF in order to fabricate good-quality MXene [54,55].
During the first 2 h of the reaction, the peak intensity at 38.61◦ increased [56]. After 24 h of
the reaction, the characteristic peak of MAX at (104) vanished, as shown in Figure 3a. A
peak shift was also observed in the peak at 9.11◦ [57].
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The XRD pattern was used for studying the phases of the composite (WO3/MXene).
Figure 3c shows the XRD pattern of the composite (WO3/MXene), which possessed diffrac-
tion peaks at 23◦, 26◦, 33◦, 41◦, 49◦, 55◦ and 60.23◦ corresponding to Miller indices (001),
(101), (111), (110), (220), (202) and (110), respectively. All these peaks included almost all
the specific peaks of tungsten and MXene, and no additional peak was observed in the case
of composite.

By using the Debye–Scherer equation, the crystallite size of the as-fabricated tungsten
oxide was calculated [58].

D = Kλ/βCosθ (2)

where D is the crystalline size; K is the Scherer constant; λ is the X-ray wavelength of the
copper source used in XRD, which was equal to 1.5406 Å; Bragg’s angle was given by θ;
and β represents full width at half maximum (FWHM) [59]. The crystalline size of WO3
nanoparticles, determined by XRD, was 6.19 nm. The measurement of the crystalline size
of MXene was not possible by using the Debye–Scherer formula because MXene is a 2D
layered material.

3.2. FESEM and EDX Analysis

For FESEM analysis, the samples were gold-sputtered for 120 s at 15 mA before
imaging. Figure 4a,b show the morphology of WO3 and WO3/MXene nanocomposite,
respectively. Figure 4a demonstrates the block-/rodlike morphology of WO3. Figure 4b
clearly shows that MXene was impregnated on the nanorods of WO3. The nanosheet-like
structure in Figure 4c represents the formation of MXene. The particle size of WO3 was
~130 nm, which was calculated from the FESEM image. The average layer thickness of
MXene calculated from micrograph was ~175 nm.
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Energy-dispersive X-ray analysis (EDX) was used for the elemental analysis of the syn-
thesized material. Figure 5a,b show the elemental composition of WO3 and WO3/MXene
composites, respectively, which confirmed the purity of the as-synthesized samples.

Nanomaterials 2022, 12, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 5. EDX analysis of (a) WO3 and (b) WO3/MXene nanocomposite. 

3.3. FTIR 

FTIR spectroscopy was used for the spectral analysis of the samples, which indicates 

the composition of synthesized products. Figure 6 shows the FTIR spectra of MXene, WO3 

and WO3/MXene nanocomposite. In the case of MXene, the absorption band present at 

around 3545 cm−1 was attributed to the absorbed water, which was due to the hydrophilic 

nature of MXene [60]. The bands present in the range of 2000–2500 cm–1 showed a me-

thyl/methylene group (–CH3, CH2). The signals at 603 and 1529 cm−1 were characteristic of 

Ti–O and C–F, respectively. The FTIR spectrum of WO3 featured characteristics bands of 

W–O–W and W–O at around 735 and 836 cm−1 [49]. The spectrum of the WO3/MXene 

nanocomposite showed the absorption bands of both MXene and WO3. 

 

Figure 6. FTIR spectra of MXene, WO3, and WO3/MXene nanocomposite. 

3.4. BET Measurements 

Average particle size, BET surface area, total pore volume, and average pore width 

were determined from nitrogen adsorption-desorption curves (Figure 7) and their values 

are given in Table 1. From the BET results, it was predicted that the formation of the 
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3.3. FTIR

FTIR spectroscopy was used for the spectral analysis of the samples, which indicates
the composition of synthesized products. Figure 6 shows the FTIR spectra of MXene, WO3
and WO3/MXene nanocomposite. In the case of MXene, the absorption band present
at around 3545 cm−1 was attributed to the absorbed water, which was due to the hy-
drophilic nature of MXene [60]. The bands present in the range of 2000–2500 cm–1 showed a
methyl/methylene group (–CH3, CH2). The signals at 603 and 1529 cm−1 were characteris-
tic of Ti–O and C–F, respectively. The FTIR spectrum of WO3 featured characteristics bands
of W–O–W and W–O at around 735 and 836 cm−1 [49]. The spectrum of the WO3/MXene
nanocomposite showed the absorption bands of both MXene and WO3.
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3.4. BET Measurements

Average particle size, BET surface area, total pore volume, and average pore width
were determined from nitrogen adsorption-desorption curves (Figure 7) and their values
are given in Table 1. From the BET results, it was predicted that the formation of the
composite of WO3 with MXene would result in increased surface area and enhanced
average pore width, while average particle size was reduced. The reason behind this
is the 2D layer structure of MXene, which offers a greater surface area. However, the
photocatalytic activity of WO3 was higher than that of the composite because MXene only
enhanced the surface area, but this increased surface area had no effect on the degradation
of dyes because the adsorption capacity and band gap of MXene were much less, due to
which charge separation was not effective.
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Table 1. Surface properties of WO3, WO3/MXene nanocomposite calculated from BET analysis.

S. No. Properties WO3
WO3/MXene

Nanocomposite

1 BET surface area 1.63 m2/g 3.15 m2/g

2 Average particle size 3. 6 µm 1.9 µm

3 Total adsorption pore volume 0.0111 cm3/g 0.0307 cm3/g

4 Average pore width 27.3 nm 39 nm

3.5. Photocatalysis

The photocatalytic activity of WO3, MXene, and the WO3/MXene nanocomposite was
measured for the degradation of methylene blue under solar radiation for 80 min. The
initial concentration of methylene blue was determined by measuring the blank absorption
of the dye solution. For the achievement of adsorption–desorption equilibrium between
photocatalyst and methylene blue, the solution was placed in the dark for 1 h with continu-
ous stirring. The solution containing both methylene blue and sample was then kept under
solar radiation. By taking 5 mL solution after regular intervals, the degradation of the dye
was measured by using a UV–vis spectrophotometer [61].

The absorption spectra of methylene blue using WO3, MXene, and the WO3/MXene
nanocomposite as photocatalyst are shown in Figure 8a–c). For the description of the
experimental data given in Figure 9, a pseudo-first-order model was utilized, and the
values of K measured by this model were 0.05682, −0.0084, and 0.0346 for WO3, MXene,
and the WO3/MXene nanocomposite, respectively.
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Figure 10 demonstrates the removal efficiency of WO3, MXene, and the WO3/MXene
nanocomposite. WO3 showed higher degradation ability as compared to that of MXene
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and the WO3/MXene composite. The reason behind this high photocatalytic activity is
the greater band gap of WO3, which allowed for them to absorb a wide-spectrum range of
sunlight and degrade the dye solution with this solar energy. MXene exhibited very low
removal efficiency, while the degradation ability of WO3/MXene composite was between
those of WO3 and MXene. MXene is a 2D material that acts as a supporting material. WO3 is
material that involves the generation of photo produced electrons and holes. MXene merely
increases the surface area and reduces the chances of recombination of these photogenerated
electrons and holes. Figure 11 shows the comparison of the degradation percentage of
methylene blue by WO3, MXene, and the WO3/MXene nanocomposite.
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Mechanism

An emerging degradation technology that leads to the removal of most contaminants
is heterogeneous photocatalysis [44]. The comparison of current reported catalysts with
already reported similar materials is given in Table 2.
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Table 2. Comparison between the degradation percentage of the current research with values reported
in the literature.

Sr. No. Photocatalyst Pollutant Light Source % Degradation Time
(min) Reference

1. ZnO/Ag Methyl orange Visible light 78% 180 [62]

2. NiO/Ag Methyl orange Visible light 42% 180 [62]

3. TiO2/Ag Methyl orange Visible light 86% 180 [62]

4. AgO Methyl orange Visible light 60.5% 50 [63]

5. CoO Methyl orange Visible light 71.24% 50 [63]

6. CdO Methyl orange Visible light 80.2% 50 [63]

7. AgO–CoO–
CdO/PACSGO Methyl orange Visible light 97.4% 50 [63]

8. CdO Methylene blue Sunlight 78% – [64]

9. CdO Congo red Sunlight 81% – [65]

10. SnO2 Congo red Sunlight 90% – [66]

11. CdO Alizarin red S Sunlight 78% – [67]

12. MgO Alizarin red S Sunlight 70% – [67]

13. ZrO2 Methylene blue UV-light 99% – [68]

14. MgO Methylene blue Sunlight 88% – [69]

15. NiO Evans blue Sunlight 88.13% – [70]

17. CdO–NiO–ZnO Methylene blue Sunlight 89% – [71]

18. CdO–ZnO–MgO Methylene blue Sunlight 91% – [72]

19. CdO–MgO Alizarin red S Sunlight 82% – [73]

20. WO3 Methylene blue Sunlight 99% 80 Current Work

21. WO3/MXene Methylene blue Sunlight 89% 70 Current Work

22. MXene Methylene blue Sunlight 54% 80 Current Work

The proposed mechanism involved in photocatalytic degradation consists of the
following steps [74] and also depicted in Figure 12:

1. Efficient photons from sunlight are absorbed by WO3:

(WO3) + hυ → e−CB + h+VB (3)

2. Ion sorption of oxygen takes place (start of oxygen reduction where the oxidation
state of oxygen changes from 0 to −1/2).

(O2)ads + e−CB → O.−
2 (4)

3. Photogenerated holes neutralize the –OH group and produce OH◦ radicals.

(
H2O ↔ h+ + OH−

)
ads + h+VB → H+ + OH

◦
(5)

4. Protons neutralize the O
◦
2
−

O
◦
2
−
+ H+ → HO

◦
2 (6)

5. Dismutation of oxygen occurs, and transient H2O2 is formed:
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2HO
◦
2
− → H2O2 + O2 (7)

6. Oxygen is reduced for the second time, and the decomposition of H2O2 occurs:

H2O2 + e− → OH
◦
+ OH− (8)

7. OH◦ radical attacks the organic pollutant (dye) and ultimately causes its oxidation:

Dye + OH
◦ → Dye

◦
+ H2O (9)

8. Direct oxidation takes place when it reacts with holes:

R + h+ → R+
◦
→ Degradation products (10)

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

7. OHo radical attacks the organic pollutant (dye) and ultimately causes its oxidation: 

 𝐷𝑦𝑒 + 𝑂𝐻0  →  𝐷𝑦𝑒  +  𝐻2𝑂 (9) 

8. Direct oxidation takes place when it reacts with holes: 

𝑅 + ℎ+  →  𝑅+  → 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠  (10) 

 

Figure 12. Z-scheme mechanism for the photocatalytic activity of WO3. 

3.6. Antibacterial Activity 

Among metal oxide nanoparticles, ZnO is a competitive candidate for the study of 

antibacterial activity. Recent studies showed that ZnO nanoparticles could activate endo-

plasmic reticulum stress and ultimately kill mammalian cells [75]. Therefore, scientists 

have been striving to explore new nano-antibacterial agents with better compatibility. Re-

cently, WO3-x was verified to exhibit good biocompatibility and antibacterial activity [76]. 

In the current study, WO3, MXene, and the WO3/MXene nanocomposite were used as an-

tibacterial agents for the study of antibacterial activity (Figures 13–16). Table 3 shows the 

zones of inhibition of WO3, MXene, and the WO3/MXene nanocomposite. The disc diffu-

sion method was utilized to measure the inhibition zones of the as-prepared samples, and 

various positive strains (S. aureus) and negative strains E. coli, K. pneumonia and P. vulgaris 

were used for antibacterial activity measurements. Due to the structural differences of cell 

membranes and cell walls, the as-synthesized samples exhibited different sensitivity lev-

els towards the positive and negative strains [77,78]. Table 3 shows that, with the positive 

strain (S. aureus), all samples showed good antibacterial activity, which increased with the 

increase in concentration. In the case of negative strains, all samples were active against 

K. pneumoniae, and the WO3/MXene composite showed good activity at a low concentra-

tion. When the concentration of MXene and WO3 increased, activity also increased. The 

WO3/MXene nanocomposite showed no activity against E. coli and P. vulgaris, while WO3 

and MXene exhibited good antibacterial activity, which was enhanced on the increase in 

concentration. The reason behind the low or zero antibacterial activity of the WO3/MXene 

Figure 12. Z-scheme mechanism for the photocatalytic activity of WO3.

3.6. Antibacterial Activity

Among metal oxide nanoparticles, ZnO is a competitive candidate for the study of
antibacterial activity. Recent studies showed that ZnO nanoparticles could activate endo-
plasmic reticulum stress and ultimately kill mammalian cells [75]. Therefore, scientists
have been striving to explore new nano-antibacterial agents with better compatibility.
Recently, WO3−x was verified to exhibit good biocompatibility and antibacterial activ-
ity [76]. In the current study, WO3, MXene, and the WO3/MXene nanocomposite were
used as antibacterial agents for the study of antibacterial activity (Figures 13–16). Table 3
shows the zones of inhibition of WO3, MXene, and the WO3/MXene nanocomposite. The
disc diffusion method was utilized to measure the inhibition zones of the as-prepared
samples, and various positive strains (S. aureus) and negative strains E. coli, K. pneumonia
and P. vulgaris were used for antibacterial activity measurements. Due to the structural
differences of cell membranes and cell walls, the as-synthesized samples exhibited different
sensitivity levels towards the positive and negative strains [77,78]. Table 3 shows that,
with the positive strain (S. aureus), all samples showed good antibacterial activity, which
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increased with the increase in concentration. In the case of negative strains, all samples
were active against K. pneumoniae, and the WO3/MXene composite showed good activity
at a low concentration. When the concentration of MXene and WO3 increased, activity
also increased. The WO3/MXene nanocomposite showed no activity against E. coli and
P. vulgaris, while WO3 and MXene exhibited good antibacterial activity, which was en-
hanced on the increase in concentration. The reason behind the low or zero antibacterial
activity of the WO3/MXene composite against negative strains was the presence of an extra
outer membrane that increased the resistance of Gram-negative strains to WO3/MXene.
The WO3/MXene nanocomposite showed a decrease in antibacterial activity on an increase
in concentration due to certain factors such as size and agglomeration. Due to these factors,
these nanocomposites were not able to penetrate the bacterial cell wall; hence, its toxic-
ity decreased. On the other hand, the pristine WO3 and MXene showed an increase in
antibacterial activity on increasing concentration.
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Table 3. Results of antibacterial activity of as-synthesized samples.

Sr.
No. Sample Concentration S. aureus K. pneumoniae E. coli P. vulgaris

1. WO3/MXene 10 mg/mL 07 mm 08 mm 00 mm 00 mm

20 mg/m 09 mm 00 mm 00 mm 00 mm

Ciprofloxacin 10 ug/mL 22 mm 12 mm 12 mm 13 mm

2. MXene 10 mg/mL 00 mm 00 mm 08 mm 00 mm

20 mg/m 08 mm 10 mm 08 mm 10 mm

Ciprofloxacin 10 ug/mL 22 mm 12 mm 12 mm 13 mm

3. WO3 10 mg/mL 07 mm 07 mm 06 mm 00 mm

20 mg/m 07 mm 10 mm 07 mm 11 mm

Ciprofloxacin 10 ug/mL 22 mm 12 mm 12 mm 13 mm
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against Klebsiella pneumonia (K. pneumonia).
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3.7. Mechanism of Antibacterial Activity

The mechanism involved with the antibacterial activity of the as-synthesized nanopar-
ticles was the cell damage by electrostatic interactions between the cell membrane and metal
oxide nanoparticles. The main sites of attraction of metal cations are the chemical groups
of polymers on membranes of bacteria that are electronegative in nature. The carboxylic
groups present in the proteins are the main reason behind the negative charge on the surface
of bacteria. Electrostatic attraction is created due to the charge difference between bacterial
membrane and metal oxide nanoparticles; thus, these nanoparticles accumulated on the cell
surface and ultimately entered the bacteria. This interaction between membrane polymer
and cationic metal oxide nanoparticles resulted in the cytoxicity of microorganisms. The
available surface area and ratio of particle size to surface area determine the efficiency of
metal oxide nanoparticles in bacterial growth inhibition. The permeability and structure of
the cell membrane are changed due to the attachment of metal oxide nanoparticles. The
disorganization of cell wall was due to the strong bond between positively charged metal
oxide nanoparticles and membrane. Apart from binding with the cell membrane, these
metal oxide nanoparticles also bind with mesosomes, resulting in the alteration of cell
division, DNA replication, and cellular respiration [79].

4. Conclusions

In the current work, we prepared WO3, MXene, and a WO3/MXene nanocomposite,
which exhibited their potential applications in the biological and environmental reme-
diation fields. WO3, MXene, and the WO3/MXene nanocomposite were synthesized by
hydrothermal method, wet chemical etching, and sonication method, respectively. XRD,
FTIR, EDX, and FESEM were used to characterize the as-synthesized samples for struc-
tural, spectral, elemental, and morphological analysis, respectively. BET analysis was
conducted for surface area determination. The photocatalytic degradation of methylene
blue using WO3, MXene, and the WO3/MXene nanocomposite was 99%, 54%, and 89%,
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respectively. The photocatalytic activity of WO3 was significant. MXene is a 2D material,
its photocatalytic activity is very low, and it only acted as supporting material by enhanc-
ing the photocatalytic ability of its composite with WO3. The as-prepared samples also
exhibited good antibacterial activity against positive strain bacteria; in the case of negative
strains, WO3, MXene, and the WO3/MXene nanocomposite exhibited antibacterial activity
at high concentrations.
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