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Abstract: Hyperbolic metamaterials (HMMs) exhibit high tunability in photonic devices. This study
numerically investigates light propagation in photonic crystal (PhC) membranes containing HMMs.
The proposed HMM PhC membranes contain square HMM rods, which comprise dielectric (Si) and
metallic (Ag) layers. Owing to their property of subwavelength field localization, HMMs can be
applied to PhCs to improve tunability and thus enhance the self-collimation (SC) effect of PhCs.
The SC points were obtained in the second HMM PhC band, wherein the nearby dispersion curves
change significantly. In addition, the effect of the HMM filling factor (i.e., the ratio of the metal-layer
to unit-cell thicknesses) on the SC point frequency is studied. Finally, we demonstrate the efficient
control of beam behaviors using HMM PhC membranes while considering the nonlinearity of Ag.
The findings of this study confirm that high-performance HMM PhC membranes can be employed in
nonlinear all-optical switches, filters, tunable lenses, and other integrated optical devices.

Keywords: hyperbolic metamaterials; self-collimation effect; photonic crystals; beam behavior

1. Introduction

Photonic crystals (PhCs) are periodic spatial variations in dielectric permittivity on
the wavelength scale [1–3]. The periodicity allows PhCs to acquire unique dispersion
properties, which originate from Bragg scattering by the nanorods inside PhCs. For such
periodic systems, we can investigate their Bloch modes, which are important to achieve
many excellent properties of PhCs. Over the past decade, PhCs have attracted increasing
research attentions, owing to their fascinating abilities. PhCs have become essential parts
for novel nanophotonic devices [4–7]. The phenomena of PhCs include: total reflection from
their bandgaps, negative refraction [8], and super-prism effect [9]. One of the dispersion
properties of PhCs is a self-collimation (SC) effect. In a PhC that support the SC effect, the
energy flow of waves that propagate inside the PhC can remain in one direction. Without
any additional structure, a PhC can support waves propagating with field confinement,
acting as a waveguide. Most SC effects only support a limited range of the angle of the
incident beam. However, one kind of SC effect can support the SC propagation of waves
from any angle, which is called an all-angle SC effect. Having an all-angle SC property
means that they will have the strongest field confinement, and the mode volume can
achieve the smallest level. When SC effects have low group velocities, they can be utilized
as high quality-factor (Q-factor) waveguides and cavities. Usually, low group velocity
brings high tunability, as well as effective modulation of the beam behavior of PhCs [10–12].

Metamaterials are another artificial material with subwavelength patterns [13–16].
Usually, they exhibit average effects of the electromagnetic response of the medium. One
branch of metamaterials is hyperbolic metamaterials (HMMs), which comprise layered
metal-dielectric structures [17–20]. HMMs can show high anisotropic properties, owing to
the presence of the opposite components of effective electric tensors. Moreover, both PhCs
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and HMMs exhibit patterns, and both are excellent candidates for high-performance optical
devices. Many researchers have focused on bringing them together. PhCs formed by HMMs
are expected to exhibit unique and excellent properties. Those properties include: omnidi-
rectional bandgaps [21], Goos–Hanchen shift [22], and photonic hypercrystallinity [23–25].

Most previous studies have invariably focused on one-dimensional (1D) PhCs with
HMMs [26–28]. However, in wave propagation, two-dimensional (2D) PhC membranes
are reckoned to afford wide-scale prospects concerning the realization of 2D bandgaps
that can be used in the development of high-Q-factor 2D waveguides and/or resonant
cavities [29,30]; and 2D PhCs demonstrate outstanding dispersion properties. They can be
used to control wave propagation and beam behavior in the second dimension, and this
makes them superior to 1D PhCs [31–33]. Moreover, HMMs could be used to improve the
tunability of conventional PhC devices as well as achieve high efficiency and realize novel
functionalities [34,35]. Therefore, HMMs can be used to enhance all-angle SC effects and
facilitate the design of efficient methods for controlling light propagation in PhCs.

Extant studies have seldom investigated all-angle SC effects in HMM PhC membranes.
Optical cavities have strong field confinements, and thus their tunabilities can reach very
high levels. But the cavities will lose their flexibilities. Especially when manufacturing
defects exist, cavity systems would fail. The SC effects of 2D PhCs, however, provide
another method for achieving field confinements, while retaining flexibilities, since SC
effects are overall effects, and can be immune to local defects. However, it is difficult to
achieve high tunability for such overall effects. In this context, we propose the construction
of PhC membranes using HMMs to improve tunability, increase the efficiency of modulating
the dispersion property, and control wave propagation. In this study, we numerically
assessed the dispersion properties and band structures of HMM-based PhC membranes to
investigate their unique properties in controlling light propagation and realizing all-angle
SC operating modes. To this end, we first obtained the band structures of the proposed
HMM PhC membranes, considering specific structural parameters. Operating at the SC
point, the proposed HMM PhC membranes can support all-angle low-group-velocity SC
effects, which facilitate their use as high-Q-factor waveguides and cavities. Second, we
investigated the beam behaviors of divergence, collimation, and convergence during light
propagation in the HMM PhC membranes. The change in the HMM filling factor—i.e.,
the ratio of the metal-layer to unit-cell thicknesses—at the SC frequency was investigated.
Third, we observed that the effective permittivity of HMMs depends significantly on
the operating frequency. These findings reveal that compared to PhC membranes with
conventional dielectric rods, HMM PhCs are more efficient at modulating the dispersion
property and controlling wave propagation in the system near the SC point. Finally, we
investigated the modulation of beam behavior by the proposed HMM PhC membranes
by considering the nonlinearity of Ag. The findings of this investigation confirm the high
tunability of HMM PhC membranes in SC modes, thereby warranting their use in switching
applications. Therefore, the HMM PhC membranes with all-angle SC modes are highly
promising for use in several optical devices, including all-optical switches, filters, and
tunable lenses.

2. Materials and Methods

The proposed PhC membrane consists of HMM square rods inside the background
medium of air (n0 = 1). As shown in Figure 1a, the x and y components of the rectangular
lattice of the PhC are a = 0.2 µm and 2a = 0.4 µm, respectively, and the side length of
the HMM rods is r = 0.5 × a. Because typical HMM structures consist of metal and
dielectric layers, it would be considered appropriate to use the experimental refractive
index data. However, for convenience and universality, we use the Drude model to describe
the permittivity of Ag and use a constant to present the dielectric medium. The Drude
model provides a simplification that facilitates the calculations. In the HMM PhC system,
the SC effect can be very sensitive to permittivity, which makes it difficult to complete
experiments. Using the Drude model will aggravate the deviation between theory and
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practice. Fortunately, the influence here is relatively little. For metal layers, the permittivity
of Ag can be calculated from the Drude model as follows [36]:

εm = ε∞ −
ω2

p

ω(ω + iγ)
(1)

where εm is the high-frequency permittivity, γ is the damping term, and ωp is the plasma
angular frequency. From experimental data of Ag [37], ε∞ = 1.4447, γ = 9.1269 × 1013 rad/s,
and ωp = 1.328 × 1016 rad/s. These parameters are obtained by curve fitting of the
experimental data. For dielectric layers, the refractive index and extinction coefficient of the
dielectric medium were set as nSi = 4.1020 and kSi = 0.043853, respectively, corresponding
to the refractive index and extinction coefficient of Si at a frequency of 550 THz. The
arrangement of the multilayer structure of the HMM is shown in Figure 1b. The thicknesses
of the metal and dielectric layers are dm and dd, respectively. The metal-to-dielectric layer
thickness ratio (dm/dd) can be changed to modify the properties of the HMMs. There exist
20 layers within a single HMM rod, and the thickness of the two layers as a period is
dm + dd = 10 nm; thus, the HMM rods are square shaped with a side length of r = 0.1 µm.
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Figure 1. (a) Schematic of PhC membranes containing HMM square rods. (b) Schematic of HMMs
composed of dielectric layers and Ag layers.

Because the HMM layer thickness is much smaller than the wavelength, an effective
medium approximation can be used to investigate the PhCs containing multilayer HMM
rods. Through further investigation, we found that 20 layers is sufficient for metama-
terial approximation. Using the effective medium model, the dielectric components in
the directions parallel and perpendicular to the incident wave vector can be written as
follows [38,39]

εxx =
εmεd

(1− f )εm + f εd
(2)

εyy = εzz = f εm + (1− f )εd (3)

where εxx and εyy are the transverse and longitudinal components of the effective permittiv-
ity of the HMM, respectively. In Equations (2) and (3), εm and εd are the permittivities of
the metal (Ag) and dielectric (Si), respectively. The permittivity of Ag is given by the Drude
model in Equation (1). The coefficient f in Equations (2) and (3) is the ratio of the metal-layer
thickness to the total thickness of a unit-cell of HMM, defined as the filling factor:

f =
dm

dd + dm
(4)

For Hz polarization, the effective permittivity of HMMs is anisotropic, and the signs
of its transverse and longitudinal components could be positive, negative, or zero. Thus,
HMMs can be classified as effective dielectric (εxx > 0, εyy > 0), effective metal (εxx < 0,
εyy < 0), Type I HMM (εxx < 0, εyy > 0), and Type II HMM (εxx > 0, εyy < 0) [40]. Different
types of HMMs can support different electromagnetic modes in a system. In a PhC system,
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when HMM rods are applied instead of conventional dielectric rods in unit cells, the
dispersion property of the entire PhC is different. Unique modes in PhCs can be generated
when the operating type of HMM is Type I or Type II because such materials differ from
both dielectrics and metals. Moreover, light propagation in HMM PhC systems is highly
complicated. In bulk HMM systems, the effective dielectric and Type II HMM can support
the propagation of incident light; in the effective metal and Type I HMM, propagating
waves result in total reflections because no real wave vector satisfies the dispersion relation.
Thus, HMM PhCs are periodic HMM systems because of the complicated diffraction of
light by HMM rods, and Bloch modes would be unique.

According to Equations (2) and (3), the transverse and longitudinal components of
the permittivity at various frequencies are shown in Figure 2. At different frequencies, the
HMM has different optical properties. For instance, when the operating frequency is less
than 400 THz, the HMM with f = 0.4 functions as a Type II HMM; when the operating
frequency is between 420 THz and 590 THz, the HMM with f = 0.4 functions as an effective
dielectric; when the operating frequency is between 600 THz and 1750 THz, the HMM
with f = 0.4 functions as a Type I HMM; when the operating frequency exceeds 1750 THz,
the HMM functions as an effective dielectric again. As shown in the figure, by changing
the HMM filling factor, the signs of the transverse and longitudinal components of the
permittivity of HMMs can be changed, thereby modifying their optical properties. An
HMM system can be adjusted to realize a specific type of performance. Moreover, the
transition of the types of HMMs can provide high-performance optical switches. By
calculating the band structures of the HMM PhCs, we can observe that the propagation
modes of the PhCs are determined by the effective permittivity of the HMMs.
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of HMMs with different filling factors of f = 0.2 (blue), f = 0.3 (black) and f = 0.4 (red), respectively, at
different frequencies. (a,b) show the real and imaginary parts of the effective permittivity, respectively.

By replacing the dielectric or other bulk materials in a conventional PhC membrane
with HMMs, the former can be made to support new operating modes, and therefore,
unique dispersion properties can be realized. We numerically calculated the band structure
of an HMM PhC membrane and investigated the light propagating in the PhC. Band
structures and wave propagation properties were calculated using the commercial software
COMSOL, where only Hz polarization was considered. The effective permittivity of the
HMM is an anisotropic tensor given by

εHMM =

 εxx 0 0
0 εyy 0
0 0 εzz

 (5)
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where εxx, εyy, and εzz are given by Equations (2) and (3) described above. For Ez polar-
ization, waves have the components of Hx, Hy and Ez. We can see that since we already
have Ex = 0 and Ey = 0, the x and y components of the electric displacement vector D
also are 0; thus, for Ez polarization waves only the z component of the permittivity tensor
(Equation (5)) needs to be considered. For Hz polarization where Ez = 0, waves have the
components of Ex, Ey and Hz. In this case, the z component of the permittivity tensor
is useless since the z component of the electric displacement vector is 0. Moreover, the
different Ex and Ey make the material with such an anisotropic tensor hyperbolic in Hz
polarization. Thus, from Equation (5), for Ez polarization waves, we only need to consider
εzz, and the multilayers of metal and dielectric are no longer hyperbolic. Therefore, HMMs
can operate as hyperbolic materials with Hz polarization waves exclusively. Accordingly,
Hz polarization is exclusively investigated in this study.

3. Results and Discussion
3.1. Dispersion Properties and SC Modes of HMM PhC Membranes

The band structure of the HMM PhC membrane was calculated by setting the filling
factor to f = 0.2, as shown in Figure 3a. Note that Figure 3a is the projection of the three-
dimensional band structure, which contains kx, ky and frequency, onto the kx-frequency
plane. We have applied the filling factor of f = 0.2 to optimize the result. The SC point
exists when the filling factor is between 0.1 and 0.45, which will be discussed later. In the
frequency range where the HMM performs as an effective dielectric, the band structure of
the HMM PhC membrane is similar to that of a conventional PhC membrane containing
dielectric rods. However, at other frequencies, when the HMM performs as a Type I
HMM or Type II HMM, the electromagnetic modes are significantly different and unique
bands emerge. Here, we only focus on the second band, with point A, f SC = 554.57 THz.
Because the same frequency can have different y components of vectors (ky), the point
has an all-angle SC effect for waves propagating along the x-axis. Figure 3b shows the
equifrequency contours of the second band. The equifrequency contour of 554.57 THz is a
flat contour, corresponding to the SC point of the band in Figure 3a. The flat equifrequency
contour shows that the Bloch wave vectors are all in the same direction, explaining the
occurrence of the all-angle SC effect. Furthermore, the sparse equifrequency contours in
Figure 3b indicate a low-group-velocity; thus, the HMM PhC can be effective in increasing
localized electromagnetic fields. The magnetic field profiles |H| of the SC point with
different ky are shown in Figure 3c, which also depicts the field localization of the SC modes.
Moreover, the shapes of the contours change significantly around the SC point; thus, light
propagating in the PhC would be frequency-sensitive. When considering nonlinearity, the
frequency-sensitive aspect results in high tunability of the all-optical functionalities.

According to Figure 3a, when the filling factor f = 0.2, the second band of the HMM
PhC membrane is located in the frequency range of 350–630 THz, and the corresponding
permittivity of HMM indicates that it is now functioning as an effective dielectric. The SC
point arises at the frequency of 554.57 THz, and the transverse and longitudinal components
of effective permittivity of the HMM at 554.57 THz are 30.99 + 0.42i and 10.85 + 0.08i,
respectively. However, the generation of the SC point does not require the HMM to
perform as an effective dielectric, which will be discussed later.

Figure 4 depicts light propagation in the HMM PhC membrane observed at different
frequencies. Incident light was introduced on the left side of the PhC with a Gaussian
shape, as shown in Figure 4, and the width of the beam was set to be 4a (Figure 4a,b)
or 8a (Figure 4c,d). The wave propagation clearly indicates different beam behaviors of
divergence (Figure 4a), collimation (Figure 4b,d), and convergence (Figure 4c). We used
finite-size PhCs in the calculations, and the boundary condition is set as perfect match layer
(PML); thus, the waves have no reflection on the boundary of the PhCs and air. Normally,
divergence is accompanied by an increase in beam width and vice versa. However, because
waves are reflected back and forth by rods inside the PhC, both beam broadening and
narrowing result in the spreading of the field, as shown in Figure 4a,c. Thus, in the
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divergence and convergence situations (Figure 4a,c), neither broadening nor narrowing
causes any transverse localization of the beam, and we can observe that the fields are
continuously distributed throughout. In the collimation situation (Figure 4b,d), the modes
are localized transversely, and the PhC now acts as a straight waveguide. Note that in
Figure 4d, field intensity along the propagating path is decreasing. This is caused by the
absorption of waves by the Ag layers. The material loss of Ag is no longer negligible at the
operating frequencies. In the collimation situation, the beam shows transverse localization;
therefore, the SC modes are also called spatial solitons [41]. As previously mentioned,
the beam behavior around the SC point changes significantly with the parameters of the
structure or the operating frequency. For instance, at the SC frequency, beams exhibit
the SC effect, in which the beam width remains the same throughout the propagation.
On the one hand, when the operating frequency is increased to a larger value, the beam
behavior correspondingly changes to converge, as indicated by the equifrequency contours
in Figure 3b. In contrast, when the operating frequency is decreased, the beam behavior is
divergent. Thus, such an SC effect indicates immense potential for application in optical
devices, such as nonlinear optical switches, filters, and tunable lenses.
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Figure 5 shows the position of the SC point when the HMM has different filling factors.
When the filling factor is 0.4, the SC frequency is 637 THz, with εxx = −157.46 + 28.08i,
εyy = 6.27 + 0.10i, where the HMM is now functioning as Type I HMM. Both the structural
parameters of the PhC membrane and HMM affect the position of the SC point. Thus, SC
modes can be adjusted according to the requirements of applications in various situations.
The SC point exists only when the filling factor is between 0.1 and 0.45.
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3.2. Tunability of the HMM PhCs

HMMs exhibit immense potential for controlling the beam behavior in PhC systems.
From Figure 2, it is understood that the effective permittivity of the HMM changes signifi-
cantly according to different filling factors. Here, we investigate the effect of nonlinearity on
the beam behavior in HMM PhC membranes. The strong field confinement of the HMM en-
hances the nonlinear effects; thus, the effective permittivity of the HMM changes according
to the incident field intensity; accordingly, the beam behavior in PhCs can be modified.

The nonlinearities of the Ag and Si layers are different. The real part of the nonlinear
susceptibility of Si is about 10−10 esu, while that of Ag is about 10−8 esu. With a certain
incident power, the nonlinear effect of Si layers is negligible compared with the nonlinear
effect of Ag layers. Because the nonlinearity of Ag is significantly larger than that of Si, we
only consider the nonlinearity arising from the metal layers. The Kerr effect modifies the
permittivity of the metal layers of HMMs in accordance with the relation

εNL = εm + χ(3)|E|2 (6)
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where χ(3) is the third-order nonlinear optical susceptibility of Ag, and E is the electric field
intensity. The nonlinear susceptibility of Ag is χ(3) = 2.49 × 10−8 + 7.16 × 10−9i esu [42].
According to Equations (2) and (3), the transverse and longitudinal components of the
effective permittivity of the HMM can be modified by changing the field intensity, as shown
in Figure 6. As shown in Figure 6, the modification is highly efficient, particularly near the
transferring point of the HMM. When changing the intensity of the incident light, owing to
the permittivity change, the HMM could transfer between two types, for instance, from a
Type I HMM to an effective dielectric. In the PhC system, this leads to a significant change
in the dispersion properties of Bloch modes. In fact, a small change in the permittivity
results in a notable change in the band structure. One reason is that the modes of the second
band of the HMM PhC have fields concentrating inside the HMM rods, where they are
also enhanced by the metamaterial; another reason is that the SC point of the band has a
low-group-velocity. Note that in Figure 6, the dashed blue and dashed black lines have
been covered by the dashed red line. This is because the change of εxx is very small when
field value changes. It also means that in HMMs, εxx provides the main contribution to
nonlinearity, and εyy can be neglected.
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Not only do HMMs generate unique modes, but HMMs can also amplify the nonlinear
effect. Here, we compare the permittivity changes of bulk materials and HMMs at different
incident powers. When the operating frequency is 554.57 THz and the filling factor is
0.2, by comparing the permittivity changes (εNL − ε) of Ag and HMM, we obtain the
following: (a) when |E| = 1 ×107 V/m, (εNL − ε)Ag = 0.035 + 0.010i, (εNL − ε)HMM, εxx

=
0.038 + 0.015i, (εNL − ε)HMM, εyy

= 0.007 + 0.002i; (b) when |E| = 5 × 107 V/m, (εNL − ε)Ag
= 0.869 + 0.250i, (εNL − ε)HMM, εxx

= 1.035 + 0.439i, (εNL − ε)HMM, εyy
= 0.173 + 0.050i; and

(c) when |E| = 1 × 108 V/m, (εNL − ε)Ag = 3.477 + 0.010i, (εNL − ε)HMM, εxx
= 5.447 +

3.519i, (εNL − ε)HMM, εyy
= 0.695 + 0.200i. Thus, the nonlinear effect of the HMM is more

efficient than the nonlinear effect of the bulk material of Ag. Compared to conventional bulk
materials (such as Ag), HMM applied in PhC membranes could afford a larger tunability.

Consider an incident light with frequency f SC = 554.57 THz propagating in the PhCs
with f = 0.2. By increasing the incident power, the beam behavior changes from collimation
to divergence, as shown in Figure 7. In the figure, the incident light source is located
on the left side of the PhC, and the source is Gaussian-shaped with a beam width of 4a.
Light propagation in the PhCs shows collimation and divergence when |E| = 1 V/m and
|E| = 5× 107 V/m, respectively. Such phenomena can be utilized as an all-optical switch or
tunable lens. Considering the collimation modes of the HMM PhC membrane as “on” state
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and the non-collimation modes as “off” state, we obtained a nonlinear optical switch whose
state could be modulated by the incident power. We measured the transmitted power on
the right side of the PhCs, as shown by the solid line in Figure 7. The transmissions of
the switch in the “on” and “off” states equal 68% and 17%, respectively. Note that if we
use another frequency of 637 THz with f = 0.4, a larger field-intensity-sensitivity can be
obtained because the effective permittivity of the HMM changes more significantly near the
SC points. In this situation, owing to the transition of the HMM from an effective dielectric
to Type I HMM, bandgap engineering of the PhCs would be more complicated, but SC
effects in the 2D HMM PhCs would still be feasible, and one can expect more fascinating
phenomena. Owing to the absorption of light by Ag, the transmission of the HMM PhC
membrane switch in the “on” state is not very high (68%). This problem could be solved
using materials that have less absorption of light, such as doped semiconductors.
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4. Conclusions

In this study, we propose PhC membranes that contain HMM square rods and investi-
gated their unique properties in the enhancement of the SC effect in PhCs. Such 2D systems
are very suitable to be applied in controlling beam behaviors, which is a capability that
1D systems do not have. The dispersion properties and band structures of the 2D HMM
PhCs were calculated, indicating that the 2D HMM PhC system can support an all-angle
SC mode in the second band. Near the SC point, the dispersion curves change significantly,
indicating that they are highly effective in changing the divergence, collimation, or con-
vergence beam behaviors, and controlling light propagation. These are properties that
a 1D system cannot achieve, which confirms the superiority of 2D structures. Moreover,
the HMM PhC membranes demonstrate not only unique dispersion properties but also
enhanced tunability owing to HMMs and SC effect of PhCs. Accordingly, compared to PhC
membranes with conventional dielectric rods, HMM PhCs are more efficient in modulating
the dispersion property and controlling the wave propagation. The tunability of HMM
PhC membranes is large and suitable to be applied in an optical switch. Overall, HMM
PhC membranes demonstrate great potential for use in compact integrated optical devices.
In a large-scale system, the absorption of light by the Ag layers is expected to significantly
affect the performance of the proposed optical switch. Accordingly, in future endeavors,
we intend to focus on increasing the efficiency of HMM PhC membranes by reducing the
material absorption. The prospect for future work will also focus on the enhancement of Si
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nonlinearity with the hyperbolic structure when the filling factor of Ag layers is very small,
and the HMM can be treated as approximate Si.
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