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Abstract: In this study, the thermophysical properties and dispersion stability of graphene-based
nanofluids were investigated. This was conducted to determine the influence of fabrication temper-
ature, nanomaterial concentration, and surfactant ratio on the suspension effective properties and
stability condition. First, the nanopowder was characterized in terms of crystalline structure and size,
morphology, and elemental content. Next, the suspensions were produced at 10 ◦C to 70 ◦C using
different concentrations of surfactants and nanomaterials. Then, the thermophysical properties and
physical stability of the nanofluids were determined. The density of the prepared nanofluids was
found to be higher than their base fluid, but this property showed a decrease with the increase in
fabrication temperature. Moreover, the specific heat capacity showed very high sensitivity toward
the graphene and surfactant concentrations, where 28.12% reduction in the property was achieved.
Furthermore, the preparation temperature was shown to be the primary parameter that effects the
nanofluid viscosity and thermal conductivity, causing a maximum reduction of ~4.9% in viscosity
and ~125.72% increase in thermal conductivity. As for the surfactant, using low concentration demon-
strated a short-term stabilization capability, whereas a 1:1 weight ratio of graphene to surfactant
and higher caused the dispersion to be physically stable for 45 consecutive days. The findings of
this work are believed to be beneficial for further research investigations on thermal applications of
moderate temperatures.

Keywords: density; graphene; specific heat capacity; suspension thermal conductivity; viscosity

1. Introduction

For many years, researchers have focused on continuously enhancing the thermal
performance of heat exchangers (HEs) to reduce their overall consumption of energy as
well as minimize the size of their designs. This is because these systems have major roles in
our everyday lives, where their uses have ranged from domestic boilers up to industrial
scale power generation [1]. Historically, most attempts to improve HEs have fallen into
one of two categories: geometric modifications such as regenerators, plate exchangers, and
extended surfaces (e.g., addition of fins) [2], and varying the operational conditions of the
working fluid by changing the fluid flow patterns (e.g., parallel and crossflow, and single-
or multi-pass arrangements) [3]. The aforementioned has initially caused a substantial
improvement in the performance of these devices. However, the level of enhancement in
the thermal performance from adopting such approaches has reached a point where a new
direction is essentially required to take the current scientific achievements to the next levels.
One of the most successful approaches to accomplish this is through investigating the use of
advanced working fluids than those conventionally used [2]. The primary rule is that these
advanced fluids should possess outstanding thermal properties. Since nanofluids, which
were introduced in 1993 by Masuda et al. [4] and named in 1995 by Choi and Eastman [5],
contain favorable thermal conductivity in comparison with conventional liquids, they have
the potential to be used as a replacement to the currently used working liquids to largely
improve the thermal effectiveness of existing thermal exchanging systems. Generally,
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nanofluids are suspensions made of dispersed nanoscaled particles in a conventional
hosting fluid [6]. As such, when the dispersed nanoparticles used have higher thermal
conductivity compared to the host media, the effective (or overall) thermal property of
their mixture will subsequently overcome that of the base fluid used. Some of the common
nanoparticles used to form nanofluids include carbon-based (e.g., carbon nanotubes (CNTs),
carbon black, graphene, and diamonds), metallic (e.g., iron and copper), oxides (e.g.,
alumina and titania), and alloys such as steel [7]. On the other hand, the commonly used
base fluid is normally water, but other liquids can also be used such as oils, methanol, or a
mixture between them [8,9]. It should be noted that, of the commonly used nanomaterials
for producing nanofluids, CNTs, graphene, and nanodiamonds possess the highest values
of thermal conductivities among the currently known nanomaterials [10–13], as shown
in Figure 1. As such, the scientific community has given large attention to these types of
materials in their nanofluid thermal-based investigations [14]. Some have also introduced
these types of suspensions to heat transfer systems containing structures made of phase
changing materials (PCM), even fabricating nanofluids out of nanocomposites that are
made of, for example, graphene with PCM embedded into the pores [15]. When it comes to
graphene-based nanofluids, researchers have employed it as a working fluid to enhance oil
recovery [16,17], cooling hybrid photovoltaic thermal collectors [18], solar harvesting [19],
and many more [20].
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Even though these advanced suspensions may sound promising, there exist some
factors such as the effect of the production approach on the thermophysical properties
and dispersion stability, which must be considered before commercially presenting these
advanced fluids into industry [22]. In addition, the higher viscosity of nanofluids com-
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pared to that of the base fluid also needs to be taken into account, especially when these
suspensions are targeted toward applications that utilize them in their dynamic status.
This is mainly because the pumping power requirement will eventually increase with the
increase in the working fluid viscosity, and vice versa [23]. Obviously, the greater the
concentration of nanoparticles, the greater the increase in thermal conductivity, but this
would also result in increasing the viscosity of the suspension. As for the physical stability
of the dispersed particles, it has a direct effect on the produced nanofluid thermophysical
properties, in particular, the overall thermal conductivity and viscosity [7]. For example,
when the nanomaterials are homogenously dispersed and physically stable in the hosting
base fluid, the mixture will usually reach its optimum thermal conductivity and would
have the lowest possible increase in viscosity, whereas the unstable status would have the
opposite behavior. Due to the previous, it is important to have a good understanding of
the factors that influence the stability of the dispersion of nanoparticles in the nanofluid.
Factors to be considered include the production process (single-step or two-step approach),
duration of the mixing process, temperature at which the dispersion process is carried out,
the base liquid used, molecular forces between the nanoparticles used and the molecules
of the base liquid, concentration of the nanoparticles, and the type and concentration of
the surfactant used (if any) [24,25]. Changes in any of these factors will result in changes
in the outcome of the thermophysical properties of the nanofluid, even if the same base
liquid and nanoparticles are used. On the molecule scale, researchers have shown that the
diffusive heat conduction and Brownian motion of the nanoparticles have some effect on
the thermal conductivity of nanofluids [26]. Furthermore, the thermal conductivity and
viscosity of a suspension can accurately be obtained through experimental measurements
(Figure 2) [27–30]. However, theoretical correlations also exist with relatively acceptable
prediction capabilities [31–37].
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It must be noted that from the different thermal conductivity characterization devices
that are listed in Figure 2, the transient hot-wire method is the widely used approach to
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obtain this thermal property for these types of dispersions [13,38,39]. The reason behind
this relies on its capability of eliminating measurement errors that can be present from
the natural convection behavior developed with the fluid. In addition, it offers a prompt
measuring response of a couple of seconds and the conceptual design of the device is
considered simple in comparison with other devices made for similar purposes. In terms of
the thermo-economical aspect, scholars have found that the feasibility of using nanofluids
depends mainly on the targeted application. However, more focus is needed toward such
type of studies [40,41].

There are many available literatures on the viscosity and thermal conductivity of
carbon-based nanofluids. For example, Aravind et al. [42] studied the changes in viscosity
of four groups of carbon nanotube (CNT)-based nanofluids at relatively low volume per-
centage (vol. %) of concentrations, precisely 0.005 vol. % and 0.03 vol. %, using water and
ethylene glycol (EG) as the base fluids, respectively. The scholars measured the viscosity
of their as-prepared nanofluids at various temperatures (i.e., 30 ◦C to 70 ◦C) where they
found that this thermal factor has a dominant impact on the property. Halelfadl et al. [43]
investigated the effect of CNT concentration and suspension temperature on the viscosity
of CNT-based dispersions. They found that raising the nanomaterial concentration caused
the viscosity to increase due to the higher aggregates of CNTs formed. However, the rise in
temperature demonstrated a reduction in the viscosity of their as-prepared nanofluids. In
addition, the study performed by Ding et al. [44] also confirmed the previous conclusion
of Halelfadl et al. [43]. In terms of the effect of preparation parameters on the thermal
conductivity of CNT-based nanofluids, Ding et al. [44] found that the thermal property
could increase by 10% over the base fluid by dispersing 0.49 vol. % of the carbon-based
nanomaterial. However, this level of improvement in the thermal conductivity could
be further enhanced to 79% by increasing the produced suspension temperature from
20 ◦C to 30 ◦C at the same nanomaterial concentration. The previous work published
by Yang et al. [45] also support the previous findings, where they attribute this enhance-
ment in nanofluid thermal conductivity toward the increase in Brownian motion of the
dispersed nanoparticles as the result of the rise in temperature. Furthermore, the review
conducted by Murshed and Castro [46] showed that the thermal conductivity of CNT-based
nanofluids increased more pronouncedly with temperature compared to the concentration.
Yarmand et al. [47] studied the thermal property of graphene nanoplatelets-based nanoflu-
ids. The authors used water as their base fluid and 0.02–0.1 wt. % of the carbon-based
nanomaterial to form their suspensions after the nanopowder was functionalized through
the acidic treatment of the H2SO4 and HNO3 mixture (1:3 weight ratio). Furthermore,
the as-prepared powder was then dispersed at 20–40 ◦C through the two-step nanofluid
production route. The scholars discovered that the production temperature had a strong
effect on the as-produced nanofluid thermal property as well as the concentration of the
as-prepared graphene that was employed. In addition, the highest enhancement recorded
was 19.68% over that of the base fluid when using 0.1 wt. % concentration and a 40 ◦C
preparation temperature. Ghozatloo et al. [48] investigated the influence of dispersed nano-
material concentration, preparation temperature, and time on the thermal conductivity of
graphene–water suspensions. The researchers used two groups of graphene, namely, pure
and functionalized graphene. They then produced their nanofluids through ultrasonicating
the carbon-based nanomaterials with the base fluid with concentrations of 0.01–0.05 wt. %.
It was found that the pure graphene-based nanofluids promptly lost their physical stability,
whereas the functionalized group had a high level of physical stability. Moreover, the
thermal conductivity of the functionalized group demonstrated an enhancement of 17%
(at 50 ◦C and 0.03 wt. %) and 13.5% (at 25 ◦C and 0.05 wt. %) over the base fluid at the
same temperature condition. Askari et al. [49] studied the effect of the surfactant on the
thermal conductivity of graphene-based nanofluids. They used water from South Iranian
cooling towers as their bas fluid, after which they dispersed graphene (0.1–1.0 wt. %) with
different surfactants, namely gum Arabic, Tween 80, Triton X-100, acumer terpolymer, and
cetrimonium bromide. It is important to note that the authors used these types of base
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fluids to reflect the actual case scenario for the possibility of future implementation of these
advanced working fluids. Furthermore, the scholars used both zeta potential analysis as
well as image capturing technique to determine the stability of their suspensions. They
found that Tween 80, as a surfactant, provided a highly stable nanofluid that lasted for
about 2 months. Moreover, the level of enhancement in the thermal conductivity of their
as-prepared nanofluids with Tween 80 reached 16% (at 45 ◦C and 1.0 wt. %) over that
of the base fluid. The authors also noted that using a low nanomaterial concentration is
preferable for industrial applications, since they would have less impact on the viscos-
ity and density of the working fluid, which would consequently result in less pumping
power requirement.

In light of the previous literature survey and other published work [50–52], this
research studied the effect of production parameters on the thermophysical properties
and physical stability of carbon-based dispersions. Graphene nanoplatelet nanopowder
was used at a concentration of 0.01–0.1 vol. % to form the suspensions. In addition,
sodium dodecyl sulfate (SDS) surfactant was added with a weight ratio of 0.5–1.5:1 (SDS to
graphene) in order to improve the dispersion physical stability. This is because graphene
is physically unstable in water due to the π-conjugative structure of the nanomaterial
and high hydrophobicity of its surface [53], and thus the use of a surfactant is essential
in the production process to improve the stability of such types of suspensions [54,55].
The two-step controlled production temperature method was employed to disperse the
nanomaterial. This was conducted by ultrasonicating the mixture for a total duration of
1.5 h while controlling the temperature of the water bath from 10 ◦C to 70 ◦C with a probe
type ultrasonicator. After the production phase, the density and specific heat capacity of the
suspensions were determined. In addition, the effective thermal conductivity and viscosity
of the as-produced suspension were experimentally determined with a hot-wire instrument
and a viscometer device, respectively. These measured thermophysical properties were
then compared to those obtained for the base fluid to assess the degree of change in the
properties. Furthermore, the short- and long-term physical stability was also determined
using the UV–Vis approach and image capturing approaches for 45 days. To the best of
the authors’ knowledge, there is no previous work that has focused on determining the
physical stability as well as all the thermophysical properties of graphene nanoplatelet–
water nanofluids using the previous experimental setup and conditions. Since these types of
suspensions are very sensitive to temperature, nanomaterial concentration, and the type as
well as the amount of surfactant used, the outcome of this work is believed to be beneficial
for interested scholars in simulating studies that include graphene–water suspensions
in moderate temperature applications such as gas turbine intercooling units [22], liquid
cooled computers [56], low temperature parabolic trough solar collectors [57,58], and other
thermal energy systems [59]. It will also provide an insight into future experimental work
for these applications.

2. Experimental Procedure
2.1. Materials and Equipment

Commercial graphene nanoplatelet powder with a purity of >99.5 wt. %, thickness of
2 to 8 nm, diameter of 4 to 12 µm, and formed with an average of three to six layers was
supplied by from US Research Nanomaterials Inc. (Houston, TX, USA). Sodium dodecyl
sulfate (SDS), of type ReagentPlus® and with ≥98.5% purity, was obtained from SIGMA-
ALDRICH Inc. (St. Louis, MO, USA) and then added as a surfactant to the suspensions
at different concentrations. Clear glass vials of 100 mL volume, 1.6 mm wall thickness,
40 mm outer diameter, and 95 mm height were purchased from Glass Solutions Limited
(Hertfordshire, UK). A paraffin and polyolefin wax-based thin film was obtained from
PARAFILM® M (Neenah, WI, USA). This wax film will be used later to seal the vials
throughout the nanofluid dispersion process to prevent volumetric losses of the base fluid
due to the evaporation mechanism. Figure 3 shows the nanomaterial, surfactant, wax
film, and vial that were used in the experiment. Deionized water was produced from an
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Elga PR030BPM1-US Purelab Prima 30 water purification system (Buckinghamshire, UK),
after which it was used as the base fluid for the suspension following neutralizing its pH
(i.e., pH of 7 at a 20 ◦C surrounding). The adjustment of the pH value was conducted
by adding sodium hydroxide solution (+pH), of type 1.09956. Titrisol® and hydrochloric
acid ~37% (−pH) were of ACS reagent grade. Both chemicals used for adjusting the
pH value were obtained from SIGMA-ALDRICH Inc. (St. Louis, MO, USA), and while
the pH was modified, the liquid was monitored with a PHC20101 Intellical gel filled Ph
electrode (Loveland, CO, USA) connected to a HACH HQ11D portable pH meter (Loveland,
CO, USA) with a ±0.002 pH accuracy. Furthermore, the calibration of the pH meter was
conducted using pH 10, 7, and 4 commercial calibration fluids that were purchased from
Metrohm USA Inc. (Fountain Valley, CA, USA).
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2.2. Powder Analysis

Elemental examination was conducted on the graphene feedstock using a 9 kW X-ray
diffraction (XRD) analyzer (Rigaku SmartLab, Tokyo, Japan). The utilized XRD device runs
on commercial software, SmartLab Guidance, which was supplied with the system and a
CuKα source type of X-ray as well as a 2θ diffraction angle. Furthermore, the incidence
beam step used was 0.1◦ with a diffraction scanning angle in the range of 10◦ to 80◦,
and 1◦/min scanning rate. The aforementioned parameters were used to determine the
Bragg’s peaks in the analyzed specimen’s elemental content. Moreover, the morphology
of the as-received feedstock nanopowder as well as the impurities were explored using a
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field emission scanning electron microscopy (FE-SEM) system, of type JEOL JSM-IT700HR
(Tokyo, Japan), along with its integrated energy dispersive X-ray spectroscopy (EDS) unit,
and InTouchScope (ver. 1.12) supplied software. The FE-SEM images were recorded at
two different magnifications by the secondary electron mode from the surface region of the
tested sample. It should be noted that the powder sample was initially coated with gold
(Au) to increase its conductivity; the working distance in which both FE-SEM and EDS
analyses were performed was 12 mm above the examined sample; and a 5 kV accelerating
voltage was employed to lower the potential damage to the nanomaterial. In terms of
the density, this property was determined for the graphene nanoplatelets so that it can
be used later to determine the required amount of nanomaterial based on the planned
nanofluid vol. %. As such, 3 g of the nanopowder was measured using an analytical balance
of type ae-ADAM PW 214 (Oxford, CT, USA) with accuracy: ±0.2 mg, and readability:
0.1 mg). The as-measured graphene nanoplatelets were then placed carefully in the sample
holder located inside the gas pycnometer-volumetric device of type HumiPyc trademark
(Model 1). The device was afterward operated at 20 ◦C to measure the allocated graphene
nanoplatelets volume (VGN), then we calculated its density (ρGN) from the initially known
powder mass (mGN) through the following equation:

ρGN =
mGN
VGN

(1)

The device output showed that the value of ρGN was 127 kg/m3.

2.3. Base Fluid Property Analysis

The thermophysical properties, which include the density, specific heat capacity, ther-
mal conductivity, and viscosity, were determined for the base fluid through experimental
means in a 10–70 ◦C range of controlled temperature. For the density measurement, a den-
sity meter instrument of type DMA 4500M (Anton-Paar Co., Washington County, CO, USA)
was employed. The device has an automatic cleaning and calibration feature and utilizes
20 mL of the examined liquid to determine its density at the required targeted temperature.
For the specific heat capacity, a DTA/DSC device, of type LABSYS evo (SETRAM Instru-
mentation Co., Caluire-et-Cuire, France), was used. This system requires the user to include
a small amount of the liquid, using a pipette type dropper, within the sample holder to
the reference height. Next, the device was activated with the inputted set of controlled
temperatures to obtain the property. Furthermore, the base fluid thermal conductivity was
determined with a hot-wire instrument of type THW-L2 (Thermtest Co., Hanwell, NB,
Canada). The measurements were conducted by first placing the glass vial on a hot/cold
plate (Thermtest Co., Hanwell, NB, Canada), then 75 mL of the base fluid was added, after
which the temperature of the thermal source was set to the required controlled temperature
(i.e., 10–70 ◦C). Following the previous step, the THW-L2 probe was immersed in the liquid
and three measurements of the thermal property were taken, with a duration of 5 min
between them, then the values were averaged. On the other hand, the viscosity of the
base fluid was obtained with a viscometer device of type RV-2T (provided from Brookfield
Co., Toronto, ON, Canada) at the same range of temperatures that were used with the
previous thermophysical property tests. Initially, the liquid was placed in the vial, then its
temperature was controlled in a similar manner to that used with the thermal conductivity
tests. Afterward, the viscometer spindle was inserted into the base fluid to its reference
point (i.e., a thin line placed by the manufacturer). The device was then set to its scanning
mode to obtain the rpm value best suited to analyzing the examined sample, which was
afterward employed to determine the value of the property at each controlled temperature.

2.4. Dispersion Fabrication

SDS surfactant was added to the base fluid at different weight ratio of SDS:graphene
(i.e., 0.5–1.5:1) then stirred for 10 min using a magnetic stirrer to ensure that the powder
was fully dissolved. Then, graphene powder was inserted in a vial, then 75 mL of the
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previously prepared base fluid was injected above the nanomaterial. Afterward, a Sonics
Materials VCX 750 ultrasonic microprocessor, which is a probe type sonicator obtained from
Fisher Scientific Co. (Portsmouth, NH, USA), was used to disperse the nanoparticles within
the base fluid for 1.5 h while tightly sealing the vial opening with the sealing film. It is
important to note that the ultrasonic device operated at 750 W net power output and 20 kHz
with a 19 mm solid probe made of a high-grade titanium alloy (Ti–6Al–4V). Furthermore,
the mixture temperature was controlled (i.e., 10–70 ◦C) throughout the dispersion process
using a BUENO BIOTECH company cooling and heating water bath, of type BGDC, with a
0.1 ◦C accuracy while being monitored using the ultrasonic temperature probe accessory,
which is made of stainless steel and has a 1 ◦C accuracy. The previous fabrication process is
based on the well-known two-step nanofluid production approach [7,60], and was adopted
for the formation of the nanofluid samples of different concentrations (i.e., 0.01–0.10 vol. %)
at a lab temperature of 25 ◦C. Furthermore, the calculation of the required vol. % of
nanomaterial toward base fluid volume (Vb f ) used (i.e., 75 mL) was conducted using the
mixing theory [7,61], as shown in Equations (2) and (3).

vol.% =
VGN

VGN + Vb f
× 100; (2)

vol.% =

mGN
ρGN

mGN
ρGN

+ Vb f
× 100; (3)

2.5. Suspension Thermophysical Property and Physical Stability

Thermophysical property of the as-prepared graphene-based nanofluid was deter-
mined using a similar approach as the one previously used for the base fluid. As such,
the values of the thermal conductivity, specific heat capacity, density, and viscosity of the
dispersions were obtained. Moreover, the viscosity and thermal conductivity enhancement
over the hosting fluid (i.e., water) were explored. On the other hand, the physical stability
of the suspension was determined through two approaches, namely the photograph cap-
turing route and the UV–Vis spectrum method. In the photograph capturing approach, a
Canon EOS 700D professional camera (Canon Inc., Tokyo, Japan) equipped with a 105 mm
micro lens of type Sigma F2.8 EX DG (Sigma Co., Fukushima, Japan) was used to capture
the images of the as-prepared suspensions following their preparation and after 45 days of
shelving. As for the UV–Vis analysis, a SHIMADZU UV-2600 device (SHIMADZU Co., Ky-
oto, Japan) was used along with its software, UVProbe ver. 2.61, to examine the as-prepared
samples’ absorbance directly after production and on the 45th day. The wavelength range
used was from 200 nm to 800 nm, and the sampling interval was 0.5 nm.

3. Results and Discussion
3.1. X-ray Diffraction Characterization

In the XRD characterization conducted on the obtained commercial graphene
nanoplatelets, the electromagnetic beam that generates from the X-ray source is reflected
from the crystalline plane. The reflection angle obtained corresponds to the crystalline
structure of the tested sample. When comparing the outcome of the reflected beam from
the different crystalline planes to the device database, the spectra of the nanomaterial
can be revealed for the examined powder. Furthermore, comparing the generated diffrac-
tion pattern from the conducted characterization (Figure 4) to the available literature
(e.g., Jiang et al. [62] and Prolongo et al. [63]), it can be seen that the results acquired were
almost similar. The previous concluded that the examined nanopowder was graphene
nanoplatelets. This was also confirmed from the device database (i.e., PDF# 04-014-0362). In
addition, the highest peak (0 0 2) shown in the XRD pattern corresponded to the graphene
sheets stacking together [64], and therefore supports the manufacturer claims of providing
multi-layered graphene nanoplatelets (i.e., of three to six layers). It should be noted that the
XRD patterns of carbon nanotubes and graphite are relatively similar to that of graphene
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because of the intrinsic nature of these carbon-based nanomaterials [65]. Moreover, the crys-
tallite size of each crystalline structure was calculated using the Scherrer formula [66–69],
which is demonstrated in Equation (4).

Dhkl =
Fλ

βhklcosθhkl
(4)

where F, θhkl , βhkl , and λ are the shape factor (equals ~0.9), Bragg angle at the (hkl) peak,
full width at half the maximum of the (hkl) diffraction peak, and wavelength of the CuKα

X-ray radiation source (~0.1541 nm), respectively. At the (0 0 2) peak (i.e., the highest peak),
the crystallite size was found to be 40.88 nm.
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3.2. FE-SEM and EDS Characterization

The FE-SEM characterization of the commercially obtained graphene powder showed
that the nanomaterial used has platelets with a morphological shape. It also showed that
there exists some sort of stacking between these nanoplatelets, which can be attributed to the
high surface energy of such nanomaterials as a result of their large surface to volume ratio.
The nanoplatelets tend to attract each other to lower their surface energy, and hence achieve
a more stabilized state of thermodynamic condition. Moreover, the apparent diameter
was found to be between ~2 to 10 µm, which was very close to what was reported by the
manufacturer (i.e., 4 to 12 µm). Such variation in diameter in commercial nanopowders is
normal and has been previously experienced by Singh et al. [70]. Figure 5a,b shows the
FE-SEM patterns at high and low magnifications, where the stacking of the nanoplatelets
can clearly be observed. Furthermore, the elemental spectrum and mapping through the
EDS analysis (Figure 5c,d) demonstrated that the nanopowder sample was made purely
of carbon, which is the key element of graphene. However, the Au element seen in the
EDS X-ray spectrum (i.e., Figure 5c), which was excluded from the analysis outcome, was
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present due to the coating material that was required in the characterization process, as
explained previously in Section 2.2.
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3.3. Base Fluid Thermophysical Properties Measurement

The water properties that were determined at 10–70 ◦C are demonstrated in
Figures 6 and 7. Furthermore, the density showed a reduction in its value with the rise in
fluid temperature. The lowest and highest values recorded were 0.97843 g/cm3 (at 70 ◦C)
and 0.99973 g/cm3 (at 10 ◦C), respectively. These values show good agreement to the
results obtained by Baboian [71], with a variation of less than ~1.16%. In terms of specific
heat capacity, the measurement results did not seem to follow a certain trend behavior
with temperature changes, however, they were confined between 4.178 kJ/kg.K (lowest
value) and 4.193 kJ/kg.K (highest value) at 30 ◦C and 10 ◦C, respectively. On the other
hand, the thermal conductivity demonstrated a maximum increase in its value of ~13.75%
with the rise in fluid temperature. The average values of the property at 70 ◦C and 10 ◦C
were found to be 0.662 W/m.K and 0.582 W/m.K, respectively. It should be noted that
such thermal conductive behavior of water is natural (i.e., increases when raising the fluid
temperature), whereas oil and other organic liquids tend to behave oppositely, as reported
by Poling and Prausnitz [72]. Furthermore, the dynamic viscosity demonstrated a high
sensitivity to temperature variation of the fluid, where it showed a maximum reduction of
~69.06% when the temperature of the liquid was raised to 70 ◦C. Both thermal conductivity
and viscosity analysis of the base fluid at controlled temperatures (i.e., 10 ◦C to 70 ◦C) can
be seen in Figure 7. It should be noted that the kinematic viscosity (ϑb f ) can be determined
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at any temperature from the dynamic viscosity (µb f ) and density (ρb f ) of the fluid at that
given temperature through Equation (5)

ϑb f =
µb f

ρb f
(5)
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3.4. Suspension Thermophysical Properties Characterization

The thermophysical properties, which included the density, specific heat capacity, ther-
mal conductivity, and viscosity, of the nanofluids were measured following the fabrication
of the suspensions. It was found that the density increased with the increase in both the sur-
factant as well as the dispersed nanomaterial concentration, with the second having a more
dominant effect on the property due to its solid nature compared to the dissolved surfactant
in the examined temperature range (i.e., 10 ◦C to 70 ◦C). However, due to the low concen-
tration of nanomaterial used in the nanofluid fabrication (i.e., 0.01–0.1 vol. %), the changes
in the density value were small. For example, the 1.5:1 surfactant ratio and 0.1 vol. % of
dispersed graphene, which represent the samples with the highest concentration, showed
an increase in the property of ~0.17% and ~1.09% at 10 ◦C and 70 ◦C, respectively. It was
also noticed that the deviation between the density values clearly widened when the high
SDS ratio and graphene concentration nanofluid fabrication temperature was controlled at
40 ◦C and above to 70 ◦C, whereas the property for the other lower concentration samples
at these temperatures were roughly close to that of the base fluid. It should be pointed out
that, since density is defined through the amount of packed atoms within a volume, adding
more surfactant and/or nanomaterial to the base fluid would cause the property to increase.
However, increasing the temperature (i.e., 10 ◦C to 70 ◦C) of the dispersion would cause
the bond distances between the base fluid atoms to widen, and thus the density reduces.
The aforementioned has less effect on the dispersed graphene due to its solid nature and
stronger atomic bonds. The variation in nanofluid density with temperature is illustrated
in Figure 8. Moreover, the specific heat capacity value of the nanofluids was seen to reduce
when increasing the graphene concentration as well as the surfactant ratio. Such behavior is
common with these types of fluid [73,74], as increasing the dispersed nanomaterial concen-
tration and/or adding surfactant in the base fluid (i.e., water) would lead to increasing the
liquid heat transfer capability, but at the same time, would reduce its initial thermal storage
capability. Figure 9 demonstrates the variation in the produced suspensions’ specific heat
capacity with respect to their fabrication temperature. Further analysis of the obtained data
in Figure 9 illustrates that using 0.1 vol. % of graphene nanoplatelets with a 1.5:1 surfactant
ratio caused the thermal property of the base fluid to be reduced to values between ~28.12%
(70 ◦C) and ~27.47% (10 ◦C). It can be concluded from such relatively high variation in the
values that the specific heat capacity is highly sensitive in graphene-based nanofluids, even
when low concentrations are used. In Figures 8 and 9, it should be noted that the NF in the
plot refers to nanofluid and the ratio between brackets refers to the SDS:graphene ratio.

In addition to the previously examined nanofluid thermophysical properties, the
level of improvement in the thermal conductivity was shown to increase with the in-
crease in graphene concentration and fabrication temperature, whereas increasing the SDS
concentration caused the thermal property to decrease. This can be justified through un-
derstanding the mechanism in which the SDS dispersant enhances the dispersion stability
of the suspension, since they have a tendency to form a thin layer on the outer surface of
the nanomaterial to reduce its tendency to attract or cluster with other nanoplatelets [7].
This newly introduced thin layer has a much lower thermal conductivity compared to the
dispersed graphene, and thus reduces the actual exposure surface of the nanoplatelet to
the surrounding base fluid and consequently reduces the overall thermal conductivity of
the mixture. However, the increase in thermal conductivity with the rise in temperature is
attributed to the increase in Brownian motion and kinetic energy of the dispersed nano-
material as a result of the temperature elevation [75]. Figure 10 demonstrates the level of
improvement in the fabricated suspensions’ thermal conductivity compared to the base
fluid. The largest level of enhancement in the thermal conductivity was ~125.72%, which
was obtained using the 0.1 vol. % suspension, made at 70 ◦C with a dissolved surfactant
ratio of 0.5:1.
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Figure 10. Variation in the thermal conductivity ratio of the suspension to the base fluid at different
temperatures and surfactant concentrations, where (a–c) shows the samples made with the 0.5:1, 1:1,
and 1.5:1 ratio of SDS to graphene, respectively.

In terms of the viscosity, the outcome from the measurements revealed that the increase
in the property that resulted from dissolving the SDS, at the three different sets of ratios,
had a negligible effect. On the other hand, increasing the dispersed graphene concentration
showed a low effect on the viscosity of the suspension. This is mainly attributed to the
low concentration (i.e., 0.01–0.1 vol. %) of dispersed graphene nanoplatelets employed; in
many cases, researchers prefer to use a nanomaterial concentration of <1 vol. % to maintain
the Newtonian behavior of the base fluid [21]. However, the fabrication temperature was
found to have a dominant effect on the viscosity. For instance, the nanofluids produced
with 0.1 vol. % graphene showed an increase in their viscosity over that of their base
fluid by ~4.9% and ~1.38% at 10 ◦C and 70 ◦C, respectively. Figure 11 demonstrates
the variation in the dynamic viscosity ratio with respect to graphene concentration and
temperature. Generally, the Max. and Min. enhancement in viscosity over that of water
were found to be ~4.9% (0.1 vol. % and 10 ◦C suspension) and ~0.28% (0.01 vol. % and 70 ◦C
suspension), respectively.
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In addition to the earlier property characterizations, the physical stability of the
suspensions was examined for 45 days. The results showed that all three ratios of dissolved
SDS had initially provided the nanofluids with good physical stability behavior of up to one
day. However, the samples with a 0.5:1 ratio (SDS:graphene) could not maintain their long-
term dispersion stability (i.e., for 45 days). This finding was also supported by the UV–Vis
absorbance analysis, where the 0.5:1 samples showed very poor absorbance after 45 days of
shelving compared to the other two higher SDS ratios. For example, at 30 ◦C, the low SDS
ratio samples showed a reduction of ~75% in UV absorption capability on day 45 compared
to when they were analyzed directly after their production. The aforementioned illustrates
the important role that the surfactant concentration has on the suspension physical stability
on both short- and long-term shelf life. Figure 12 shows the UV–Vis absorbance results and
visual examples of the 0.1 vol. % as-prepared nanofluid (at 30 ◦C) after their production
and on the 45th day. However, it should be noted that if these nanofluids were to be used in
real-life applications (e.g., heat exchangers), the selection between low surfactant ratio and
the other two higher ones mainly depends on the time of fabrication and implementation
of these working fluids. This means that if the user is capable of producing and using
their nanofluids on site without having to store the suspension, then the stability issue
will be of less importance and the focus should be directed toward the thermophysical
properties of the working fluid (i.e., density, specific heat capacity, thermal conductivity,
and viscosity), especially since mixing does occur naturally when these fluids are under
dynamic condition.
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4. Limitations and Future Research Direction

Part of the limitations of this work is that researchers using different types of mixing
devices such as a stirrer or ball-milling, or even when varying the dispersion intensity and
duration, would likely obtain different thermophysical properties and physical stability.
The users’ experience as well as the brand of the equipment, nanomaterial, and surfactant
would also have some sort of influence on the properties and condition of the nanofluid.
These factors need to be considered by interested scholars in the field.

In terms of the future research direction, it is believed that scholars should focus on
characterizing the thermophysical properties and physical stability of nanofluids made of
other types of carbon-based nanomaterials such as nanodiamonds and carbon black. In
addition, the effect of different two-step production approaches such as ball- or roll-milling
and magnetic stirring on the resulting effective thermal conductivity and dispersion stability
should also be investigated. Furthermore, correlation development from experimental
data will be very useful for those interested in modeling such types of advanced fluids
in different applications. Investigating dispersed graphene in seawater with dissolved
surfactant for solar still systems also needs to be explored. However, it is very important to
include chemical analysis and elemental tests to ensure that no contamination is present
in the produced water due to possible nanomaterial transportation. A feasibility study
is also required and should be considered before employing these nanofluids in real-life
applications. It should at least include a cost analysis, system performance evaluation, and
the environmental impact from utilizing these suspensions.

5. Conclusions

In this study, the thermophysical properties and physical stability of graphene–water
nanofluids were investigated through different controlled production parameters. The
reason behind this investigation was to provide insights into these types of advanced fluids
for potential use in moderate temperature applications. Furthermore, the main param-
eters that were explored are the controlled temperatures at the mixing stage, dispersed
nanomaterial concentrations, and added surfactant weight ratios. A two-step controlled
temperature method from 10 ◦C to 70 ◦C was used to fabricate the suspensions of 0.01
to 0.10 vol. %. In addition, the SDS surfactant was used to enhance the physical stability
of the as-prepared carbon-based nanofluids at different sets of weight ratios, precisely
0.5–1.5:1 SDS to graphene wt. %. The following conclusions were drawn from the con-
ducted research.

• Adding a surfactant (i.e., SDS) increases the physical stability of graphene-based
suspensions. However, it lowers their thermal conductivity and specific heat capacity.

• The density of the base fluid increases with the increase in disperse particle concentra-
tion as well as the surfactant weight ratio. On the other hand, the property decreases
with the rise in base fluid/nanofluid temperature.

• The specific heat capacity was shown to be very sensitive to both surfactant and nano-
material concentrations, where increasing the concentration of either of these factors
resulted in a reduction in the property. However, the production temperature was
shown to have significantly less effect on the specific heat capacity of the suspension.

• The thermal conductivity of the suspension was found to be highly influenced by the
production temperature compared to the concentrations of the dispersed graphene
nanoplatelets and surfactant, which demonstrated that these two factors have less
impact on the property.

• On the other hand, the viscosity was found to increase with the increase in nanomate-
rial concentration and reduce with the increase in production temperature. In addition,
the surfactant concentration showed no effect on the property, which is believed to be
attributed to the low concentration used in the investigation.

• The physical stability analysis showed that the low surfactant weight ratio (i.e., 0.5:1
of SDS to graphene wt. %) could maintain a good dispersion stability for 24 hours.
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However, using higher surfactant weight ratios can extend the physical stability of the
graphene–water nanofluids for 45 days.
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Nomenclature

CNTs Carbon nanotubes
EDS Energy dispersive X-ray spectroscopy
EG Ethylene glycol
F Shape factor (~0.9)
FE-SEM Field emission scanning electron microscopy
HE Heat exchanger
m Mass (kg)
SDS Sodium dodecyl sulfate
V Volume (m3)
vol. % Volume percentage
wt. % Weight percentage
XRD X-ray diffraction
Greek letters
θ Bragg angle
β Full width at half the maximum of the diffraction peak
λ Wavelength (~0.1541 nm)
ϑ Kinematic viscosity (m2/s)
µ Dynamic viscosity (mPa·s)
ρ Density (kg/cm3)
Subscripts
b f Base fluid
GN Graphene nanoplatelets
hkl h, k, and l planes
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