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Abstract: Dimensional nanomaterials can offer enhanced application properties benefiting from
their sizes and morphological orientations. Tin disulfide (SnS2) and carbon are typical sources of
dimensional nanomaterials. SnS2 is a semiconductor with visible light adsorption properties and
has shown high energy density and long cycle life in energy storage processes. The integration of
SnS2 and carbon materials has shown enhanced visible light absorption and electron transmission
efficiency. This helps to alleviate the volume expansion of SnS2 which is a limitation during energy
storage processes and provides a favorable bandgap in photocatalytic degradation. Several innovative
approaches have been geared toward controlling the size, shape, and hybridization of SnS2/Carbon
composite nanostructures. However, dimensional nanomaterials of SnS2 and SnS2/Carbon have
rarely been discussed. This review summarizes the synthesis methods of zero-, one-, two-, and
three-dimensional SnS2 and SnS2/Carbon composite nanomaterials through wet and solid-state
synthesis strategies. Moreover, the unique properties that promote their advances in photocatalysis
and energy conversion and storage are discussed. Finally, some remarks and perspectives on the
challenges and opportunities for exploring advanced SnS2/Carbon nanomaterials are presented.

Keywords: tin disulfide; carbon materials; composite nanomaterials; photocatalysis; energy
storage batteries

1. Introduction

The fast depletion of fossil fuel and its environmental implications have led to the
development of technologies for green-energy production and storage as well as environ-
mental remediation. These technologies are of great interest to the research community to
minimize carbon footprints. Therefore, breakthroughs in nanotechnology research could
enable the creation of unique materials at the molecular level, opening up a slew of green
industrial possibilities.

Dimensional nanomaterials have become a trendy topic in recent years and have
aroused tremendous research interest due to their unique physicochemical and structural
properties [1–3]. These dimensional nanomaterials have integrated architectures that
exhibit well-oriented dimensions of zero-, one-, two-, or three-dimensional (0D, 1D, 2D,
3D) architectures, such as quantum dots, nanofibers, nanorods, nanowires, nanosheets,
nanoflowers, and nanospheres [4–6]. This development has allowed for diverse applications
in catalysis, optoelectronics, and electronic devices [7,8].

SnS2 nanomaterials have made impactful strides in the synthesis of dimensional nano-
materials, due to their unique hexagonal nanostructures and the ability to have sulfur
chains with variable lengths. In addition, SnS2 has a favorable energy bandgap, low cost,
low toxicity, excellent stability, and abundant reserves in nature. However, its wide applica-
tion in batteries is hindered by low intrinsic conductivity and poor cycling stability [9,10].
One of the most effective techniques used to tackle these problems is the synthesis of
SnS2 in composite nanomaterials. Carbon materials are economically abundant and have
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presented numerous advantages because of their unique physio-chemical and electrochem-
ical properties, such as a high specific surface area, outstanding electrical and mechanical
properties, and narrowing bandgap effect [11–14]. This makes carbon materials a great
candidate to be used as a hybrid material. At the nano level, carbon materials offer a diver-
sity of morphologies and structures (e.g., quantum dots, nanotubes, nanowire, graphene,
nanospheres, graphene oxide, etc.), each of which is unique to its respective application
technology [15–19]. The characteristic properties of composite nanostructures are inherited
from the individual precursor components, leading to dimensionally synthesized hybrid
architectures that are fit for various applications [20–25]. Moreover, the synergistic features
of these functional nanocomposites can be achieved through the manipulation of their
dimensions during synthesis. Therefore, a combination of SnS2 and carbon materials can
lead to integrated SnS2/Carbon nanomaterials with enhanced properties in photocatalysis,
electrochemical conversion, and energy storage applications.

Progress has been made in the synthesis and applications of SnS2 nanomaterials
using wet and solid-phase synthesis methods [26–28]. In the last five years, a number of
exciting reviews on SnS2 have been published, focused on preparation, microstructure
characterization methods, and application [29,30]. However, a focus on dimensional SnS2
nanocomposite architectures has not yet been reported. With the growing number of
publications on SnS2 composite nanomaterials, there is a need to present an updated
review article on the state-of-the-art development of SnS2/Carbon composites at the nano
dimensional level. This review thus aims to give an overview of the progress made in the
synthesis, dimensional characterization, and applications of SnS2/Carbon nanomaterials.
SnS2 and SnS2/Carbon nanomaterials have some similarities in synthesis methods and
application fields. So, the synthesis of SnS2 nanomaterials was first presented in this
review for an overview of the fabrication methods, followed by SnS2/Carbon composite
nanomaterials. The various nanostructural architectures were dimensionally classified in
terms of zero, one, two, and three dimensions (0D, 1D, 2D, and 3D). Furthermore, this
review examines the advances in the development of SnS2/Carbon hybrid nanomaterials
in photocatalysis as well as electrochemical energy conversion and storage applications.

This review adopted a scoping review approach because it offers qualitative and
quantitative opportunities to identify the scope of a body of literature relating to a particular
topic, identify and clarify concepts associated with the research topic, and understand the
research methods associated with the research topic [31]. The review used articles sourced
from the Web of Science database starting with the keywords “SnS2”, “Tin disulfide”,
“carbon”, “photocatal*”, and “batter*”. These were further enhanced by an iterative process
of searching for articles around the three main focal areas that underpin this research,
namely (i) synthesis, (ii) dimensional characteristics, and (iii) applications of synthesized
material. This in turn became part of the criteria for selecting articles to be reviewed.
In addition, all articles used were peer-review articles to ensure that the findings that
are included in this review were based on sound science. Each article was reviewed to
provide inputs for the three focal areas of this research. This subsequently informed the
themes or categories which formed the sub-focal areas for this review. In situations where
new themes were emerging, but the search did not capture more publications, further
search was conducted. For instance, to identify additional and specific concepts related
to the synthesis method, keywords such as wet or solid-state synthesis were applied to
capture additional publications. This was the same when choosing articles with different
morphological dimensions. As a result, there is no specific count of articles for each search
and inclusion, which is typical of a scoping review.

2. Synthesis Methods
2.1. Wet Chemical Synthesis of SnS2 and SnS2/Carbon Nanomaterials

Wet chemical syntheses of nanomaterials involve chemical reactions in the solution
phase using precursors at suitable experimental conditions. The synthesis technique varies
depending on the solvent medium used. The wet chemical synthesis approach is a bottom-
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up method; as such, it offers a high degree of controlling and fabricating nanomaterials.
Hydrothermal synthesis, [32,33] solvothermal synthesis, [34,35] template synthesis, [36]
self-assembly, [37] hot-injection [38], and interface-mediated synthesis [39] all fall under
wet-chemical synthesis routes. Amongst these, hydrothermal and solvothermal approaches
are easy and reproducible methods and have been widely adapted for the preparation of
inorganic nanomaterials.

2.1.1. Wet Chemical Synthesis of SnS2 Nanomaterials

Several synthesis strategies have been reported, and new ones are being discovered
to fabricate and better understand nanostructures of SnS2 nanomaterials. Through wet-
chemical synthesis, Chaki et al. achieved 0D semiconductor SnS2 nanoparticles synthesized
at room temperature using Tin(IV) chloride pentahydrate (SnCl4·5H2O) and thioacetamide
(C2H5NS) as precursors [40]. Hexagonal crystal structures of SnS2 nanoparticles were also
synthesized in a similar fashion without the addition of any surfactants or needing further
purification [41].

As a typical wet-chemical synthesis method, hydrothermal treatment has often been
used in the synthesis of SnS2. V-doped binary SnS2 buffer layers and SnS2 nanoflakes were
prepared hydrothermally [42–44]. The obtained porous structures were interconnected with
each other, displaying a high surface area. In other studies, using the solvothermal route,
SnS2 nanomaterials were fabricated with different types of solvents [45,46]. This method
has been used to achieve sheet-like, flower-like, and ellipsoid-like SnS2 nanostructures as
potential electrode material [47]. The influence of thiourea concentration, solvent system,
and reaction time have been proposed as vital in the solvothermal synthesis method. Wang
et al. also added that high-boiling-point and low-viscosity solvents are needed for the
reaction and product separation [48]. As such, the system can provide suitable surface
energy that could effectively stabilize their 2D structures and suppress nanomaterials from
further aggregation. In addition, using surfactants is a typical way to adjust the surface
energy; as such, Triton X-100 was used, which played a crucial role in controlling the
morphology of hexagonal SnS2 nanoflakes [49].

Chemical vapor deposition (CVD) and the high-temperature hot injection method
have also been successfully used to fabricate SnS2 nanostructures composed of verti-
cally oriented 2D sheet arrays with high crystallinity and single-phased SnS2 nanosheets,
respectively [50,51]. Solvents and precursors play important roles in catalyzing and in-
creasing the kinetics of a reaction. Thus, for the controlled synthesis of nanomaterials,
the focus should not only be on their fundamental shape or size-dependent properties
and technological applications but also on the synthesis and assembly properties [52].
Another unique process was illustrated by Jana et al., using ionothermal synthesis to
achieve SnS2 nanoflowers at low and high temperatures with exceptional nanostructures
as depicted in Figure 1a [53]. The crystal structures of the synthesized nanostructures were
determined by XRD analysis, highlighting the hexagonal SnS2 structures with (001) and
(101) crystallographic planes (Figure 1b). This hexagonal nature is common in SnS2 and
composite associations. The medium for synthesis was water-soluble ionic liquids. The
ionic liquid served as a template at a low temperature to achieve the hierarchical layered
polycrystalline 2D SnS2 nanosheet petals. These were combined by the effects of hydrogen
bonding, imidazolium stacking, and electrostatic and hydrophobic interactions. On the
other hand, a high-temperature reaction yielded plate-like nanosheets with well-defined
crystallographic facets because of the rapid inter-particle diffusion across the ionic liquid.
The various synthesis processes of SnS2 nanomaterials have allowed the integration of
diverse hybrid materials to enhance their application properties.
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flowers at lower and higher temperatures. Adapted with permission from [53]. Copyright 2014,
Elsevier. (c) Self-assembly synthesis process (d) XRD, of 3D SnS2/Graphene aerogels. Adapted with
permission from [54]. Copyright 2013, Elsevier.

2.1.2. Wet Chemical Synthesis of SnS2/Carbon Nanomaterials

Just like SnS2 nanomaterials, the structure of SnS2/carbon composite nanomaterials
depends on the precursors and the synthesis conditions. Normally, SnS2/carbon compos-
ites result in different dimensional architectures, where the SnS2 nanostructures anchor
themselves onto interpenetrated carbon materials with varied architectures. Figure 1c is a
clear representation of self-assembled SnS2/carbon composite nanostructures. It shows 3D
SnS2/graphene aerogel nanostructures fabricated through in situ macroscopy self-assembly
using a hydrothermal process, followed by freeze-drying to preserve its 3D architectures.
Figure 1d shows the crystalline structure of SnS2 in composite materials; however, it
could not detect the carbon peaks due to its amorphous form. For that matter, Raman
spectroscopy was proposed for the detection of carbon in the composite.

Controlling the growth orientations of SnS2 nanostructures on nanocarbon surfaces
has been reported as a challenging concept as seen in the fabrication of parallel and verti-
cally aligned SnS2 nanostructures on graphene nanosheets [55]. Hence, an understanding
of the mechanism of SnS2/carbon hybrid synthesis, with desired properties and varied
nanostructures, is important in nanotechnological applications. Liu et al. synthesized
SnS2/bacterial-cellulose-derived carbon nanofiber (BC-CNF) first by the hydrolysis of
thioacetamide, followed by in situ metathesis reactions, and finally by self-assembly and
oriented crystallization processes [56]. The resultant BC-CNFs had a highly porous 3D
network with an average diameter of 30–50 nm. Among the methods adopted for syn-
thesizing SnS2/Carbon nanomaterials, the most prevalent is the hydrothermal process.
This technique can enhance the characteristics and stability of nanomaterials while concur-
rently controlling the structures of the hybrid composites. These allow for interconnected
networks with a high surface area which enhances the synergetic interactions between
the layered SnS2 and the carbon by increasing their contact areas [57]. Furthermore, the
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interconnected network helps SnS2 in alleviating the mechanical stress, preventing its
aggregation, and accommodating its volume change during cycling [58,59]. For instance,
SnS2/graphene oxide nanocomposites were synthesized by reflux condensation together
with a hydrothermal strategy using an anionic surfactant, sodium dodecyl sulfate (SDS) [60].
Zhang et al. also proposed a means for fabricating hierarchical polyaniline/SnS2@carbon
nanotubes onto the carbon fiber (CF) surface [61]. However, synthesis limitations, such
as low pressure and temperature can seriously affect the rate performance of composite
materials [62,63].

Solvothermal synthesis has been used to investigate the synthesis of SnS2/carbon
composite nanomaterials, but only a handful of reports exist on the use of this method.
For example, Zhang et al. synthesized one-pot flexible SnS2/CNT (2D nanosheet/3D
self-assembled flower) composites which were controlled by a time-dependent process [64].
Moreover, functionalized graphene sheets (FGS) were used to synthesize graphene-SnS2
nanocomposites via a solvothermal method [65]. In most cases, annealing is used for
further treatment to improve the phase purity and crystallinity of nanomaterials before use
in various applications [10,66].

2.2. Solid-Phase Synthesis of SnS2 and SnS2/Carbon Nanomaterials

Solid-phase synthesis is a top-down approach to synthesizing inorganic nanomateri-
als. The procedure involves milling and may include many annealing steps with several
intermediate milling procedures to heighten the uniformity of the mixture and reduce the
sizes of the fabricated materials [67–71]. Additional milling tends to make the particles
more sinter active in the heat treatment procedures that follow [72,73]. Furthermore, huge
quantities of materials can be synthesized in a reasonably straightforward method, but the
resulting nanomaterials have a comparatively high agglomeration compared to the wet
synthesis processes discussed above [74,75]. As a result, solid-phase synthesis produces
relatively large particle sizes and poor homogeneity which are somewhat unavoidable.

2.2.1. Solid-Phase Synthesis of SnS2 Nanomaterials

Solid-phase synthesis of SnS2 nanomaterials is an alternative fabrication method that
helps the growth of SnS2 nanostructures by supplying an adequate amount of precur-
sors [76]. Usually, this is carried out without the aid of a template, inert gas protection, or
a vacuum environment but by heating the solid precursor mixtures in air at certain tem-
peratures and time followed by washing treatment [77]. In some reports, SnS2 nanoflakes
were fabricated using a suitable amount of SnCl4·5H2O and thiourea mixed and grounded
thoroughly until a homogeneous mixture was acquired and subsequently heated in a
crucible [78,79]. Owing to the intrinsic anisotropic nature of SnS2 crystals, solid-phase
synthesis tries to enhance its surface area to achieve desired nanostructures through the
milling process. Xiao et al. and Wang et al. prepared SnS2 nanomaterials by heating the
precursors at their liquid–solid phase, i.e., at the melting points and boiling points of tin
(Sn), sulfur (S), and ammonium chloride (NH4Cl) in air [80,81]. In addition, the presence of
NH4Cl aided and promoted the synthesis of pure SnS2 under mild conditions. It is worth
noting that the annealing process of nanomaterials can also bring about self-purification
due to the impurities and intrinsic material defects that prefer moving toward the surface
during the annealing process.

2.2.2. Solid-Phase Synthesis of SnS2/Carbon Nanomaterials

To the best of our knowledge, limited literature exists on the solid-state synthesis
of SnS2/Carbon nanomaterials. The solid synthesis of SnS2/Carbon nanomaterials may
involve microwave heating, calcination, milling, or a combination of these processes to
achieve a homogeneous crystalline product. The mechanical energy used creates phase
transformations and chemical reactions at very low temperatures. For instance, ball milling
enables the reduction in particle sizes and characteristic lengths in addition to the effective
mutual dispersion of the processed phases. Wang et al. synthesized a SnS2/Carbon compos-
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ite by annealing metallic Sn, S powder, and polyacrylonitrile (PAN) mixed in a sealed glass
tube under vacuum at 600 ◦C for 3 h [82]. This resulted in SnS2 nanostructures embedded
in the carbon matrix that was generated by the carbonization of PAN. The morphologies
are shown in Figure 2a and the synthesis process is schematically shown in Figure 2b.
Furthermore, the synthesized SnS2/carbon composite was directly milled in NaCl which
reduced the crystal structure of the SnS2/Carbon nanocomposite, and this improved the
overall battery performance of the synthesized SnS2/Carbon nanomaterial [83]. Figure 2c
shows the SEM of un-milled and directly milled SnS2/Carbon structures, respectively and
Figure 2d shows the schematic fomation of SnS2/Carbon composite.
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In some other processes, solid-state synthesis has been indicated to require low tem-
peratures and help to improve the purity of the resultant substances [84,85]. The solid-state
syntheses have also been applied in the synthesis of other SnS2/composites including
Phosphorus-SnS2 composites, which is not the focus of this review [86]. Figure 3a demon-
strates the simple synthesis routes of SnS2/Carbon nanomaterials by wet chemical and
Figure 3b by solid-state synthesis. Table 1 shows the various SnS2/Carbon nanomaterials
achieved through wet and solid-state synthesis approaches. In other instances, a hybrid
synthesis method was employed to achieve SnS2/carbon composite nanomaterials [87,88].
In one instance, the carbon precursor was synthesized at elevated temperatures before it
was further combined with the Sn2+ and S2− precursors to form the composite SnS2/carbon
nanomaterials [89,90].
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SnS2 and SnS2/Carbon nanomaterials.

Table 1. Comparison of the various SnS2/Carbon nanomaterials achieved through wet and solid-state
synthesis approaches and their applications.

Dimension Synthesis Method SnS2/Carbon Composites Applications Ref.

0D Solid-State Synthesis SnS2/Fullerene - [91]

1D Facile Electrospinning
Technique SnS2/ NSDC 1 Nanofibers SIBs 2 [92]

Hydrothermal Method Polypyrrole@SnS2@Carbon
Nanofiber LIBs 3 [93]

Facile Sintering Route SnS2 Cross-Linked/ CNTs 4 SIBs [94]
Solvothermal Method SnS2 Nanoflakes/CNT LIBs [95]
Hydrothermal Method SnS2@rGF 5 SIBs [96]

Plasma Evaporation and Post
Sulfurization SnS2 Semi-Filled CNT LIBs [97]

2D Hydrothermal Method SnS2/rGO 6 LIBs [98]
Hydrothermal Method SnS2/Graphene Aerogel SIBs [99]
Hydrothermal Method SnS2/Graphene SIBs [100]

Thermal Annealing SnS2/rGO SIBs [101]
Ultrasonication SnS2/Graphene LIBs/ SIBs [102]

Hydrothermal Method Carbon-Doped SnS2 CO2 Reduction in Fuel Cell [103]
Solvothermal Method SnO2-rGO/SnS2 NO2 detection [104]

Thermal Annealing SnS2/N-Doped rGO LIBs [105]

Wet Chemical Transfer Method Graphene/SnS2
Heterojunction Photoelectric Performance [106]

3D Solvothermal Method SnS2/GO Nanoflower Ultrasensitive Humidity
Sensor [107]

Hydrothermal Method SnS2/Graphene Monolith SIBs [108]

Thermally Annealing SnS2/N-Doped Cubic-Like
Carbon LIBs [109]

Solvothermal Method SnS2/Carbon Yolk-Shell SIBs [110]

Hydrothermal Method SnS2 Flowers/Carbon
Nanotubes SIBs [111]

Hydrothermal Method SnS2@Carbon Hollow
Nanospheres SIBs [112]

Hydrothermal Method SnS2/rGO Spheres Asymmetric Supercapacitors [113]

Hydrothermal Method SnS2/g-C3N4
7 Amorphous

Spheres
Supercapacitors [114]

1 NSDC, Nitrogen, Sulfur-doped carbon nanofibers; 2 SIBs, Sodium ion batteries; 3 LIBs, Lithium ion batteries;
4 CNT, Carbon nanotube; 5 GF, Graphene fiber; 6 rGO, Reduced graphene oxide; 7 g-C3N4, graphitic carbon
nitride.
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3. Dimensional Characteristics of SnS2 and SnS2/Carbon Nanomaterials

Nanomaterials possess a variety of shapes and sizes. In some cases, their names are
generated and characterized by their shapes or orientations. For example, nanospheres are
spherical, nanotubes are tube-shaped, etc. Nanostructure classifications are also based on
their dimensions, compositions, uniformity, and agglomeration. Classification based on
dimensionality is a generalization of the concept based on the aspect ratio of 0D, 1D, 2D, or
3D. These dimensions or morphologies result from a variety of precursors, temperature,
pH, templates, the mode of reagent dosage during synthesis, etc. The ability to control the
morphology of nanomaterials is crucial in exploiting their properties for applications. As a
measure of the dimensional characteristics of SnS2 and SnS2/Carbon nanomaterials in this
review article, TEM and SEM analyses were mainly used.

3.1. Dimensional Characteristics of SnS2 Nanomaterials
3.1.1. Zero-Dimensional (0D Nanodots) SnS2 Nanomaterials

SnS2 quantum dots (QDs) possess strong luminescence, good aqueous stability, and
biocompatibility. Therefore they are often used in the field of sensing and biology [115]. Ex-
citation and emission properties exhibited by SnS2 QDs were credited to the polydispersity
of SnS2-QDs and its characteristic feature of quantum confinement and edge effects [116].
Negatively charged SnS2 QDs were made by inserting electrons into vacant molecular
orbitals, whereas positively charged SnS2 QDs were made by injecting holes into the high-
est occupied molecular orbitals, and these collided with the stable SnS2 QDs to produce
excited SnS2 QDs that could emit light [117]. Figure 4a–d show representative transmission
electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM)
details of SnS2 QDs. Figure 4a,b are nearly monodispersed SnS2 QDs with a mean size of
6.5 nm. A single particle lattice spacing of 0.32 nm is seen in Figure 4d corresponding to
the (200) plane of hexagonal SnS2 [118].
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The surface energy and crystal structures of the SnS2 QDs are dependent on synthesis
conditions. Optimized synthesis conditions could result in a significant increase in the
surface-to-volume ratio and influence the surface energy and phase stability greatly. Hy-
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drothermally synthesized SnS2 QDs are in situ functionalized and pH sensitive [115,119].
In application, these nanomaterials can connect and partly fuse to adjacent ones leading to
much flatter structures after annealing. In the end, this is valuable to form good contact
between the active layer and the electrode material [120].

3.1.2. One-Dimensional (1D) SnS2 Nanomaterials

One-dimensional nanostructures are of interest due to their potential to serve as the
basis for determining the size and dimensionality dependence of a material’s physical
properties. Many solid structures of chalcogenide grow from 1D nanostructures. One-
dimensional nanomaterials have been exploited as a novel model while investigating the
size and dimensional dependence of functional properties. They also play an important
role as interconnected nanostructures and as the key units in fabricating electronic, opto-
electronic, and electrochemical energy devices with nanoscale dimensions. SnS2 nanowires
were synthesized by sulfurizing the Sn nanowires, which were embedded in the nanochan-
nels of anodic aluminum oxide (AAO) templates. The characterization of these nanowires
is shown in Figure 5 [121]. After detaching from the AAO templates, SnS2 nanowires
achieved a diameter of about 40 nm. It is worth noting that reports on the synthesis of 1D
nanomaterial are rare, owing to the fact that most synthesized SnS2 nanomaterials are the
building blocks for achieving other dimensionally structured nanomaterials.
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Figure 5. Field Emission Scanning Electron Microscope (FE-SEM) micrographs of (a) top view of the
AAO templates for SnS2 nanowire formation, (b) cross-section view of SnS2 nanowires embedded in
an AAO template, (c) the magnified FE-SEM micrograph of SnS2 nanowires, and (d) SnS2 nanowires
detached from the AAO templates. Reproduced from [121]. 2009, Springer. CC BY 2.0.

3.1.3. Two-Dimensional (2D) SnS2/Flake Nanomaterials

Researchers have made significant advances in the preparation, characterization, ad-
justment, and theoretical investigation of 2D materials. The abundance of 2D materials
has elevated them with a range of material frameworks in methodological studies for the
development of nano- and atomic-level applications. Two-dimensional SnS2 nanocrystals
exhibit semiconductor characteristics, [122] owing to their high carrier movement and large
bandgap [123]. SnS2 has a sandwich-like structure with an S plane held in between two Sn
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planes, all in hexagonal order. The adjacent sulfur atoms in the sulfur layers are bonded,
allowing for easy layer separation via chemical or mechanical exfoliation [41]. However,
vacancy defects in 2D SnS2 nanomaterials are known to have a major influence on material
characteristics and are unavoidable during exfoliation [124]. Sun et al. confirmed the
formation of micrometer-sized SnS2 nanosheets with exposed (011) facets as the primary
surfaces [125]. These 2D nanosheets could be reconstructed by lateral confinement with lon-
gitudinal extension, and a typical 2D SnS2 structure is displayed in Figure 6. The as-grown
SnS2 nanosheets were quasi-vertically oriented and standing free on the fluorine-doped
tin oxide (FTO) substrate (Figure 6a–c). The SnS2 nanostructures displayed a well-defined
semi-hexagonal shape. Similarly, Li et al. achieved 2D SnS2 nanoflakes grown perpen-
dicular to the substrate in a low-temperature zone of a SiO2/Si substrate [123]. Strong
light absorption, short minority-carrier transport distances, and a wide exposed surface
area for catalytic reactions have all helped 2D SnS2 nanomaterials to effectively harvest
photocurrent [50]. Furthermore, 2D SnS2 with characteristics such as mono-dispersity,
high compactness, open morphology, well-defined structures, and maximally exposed
surfaces/edges are favorable [51].
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Figure 6. (a,b) Low-magnification SEM images. (c) High-magnification SEM image of vertical SnS2

nanosheet taken at 45◦ from a normal viewing angle. (d) Typical cross-sectional-view SEM image
of one vertical SnS2 nanosheet grown on FTO substrate. Reproduced with permission from [126].
Copyright 2017, Royal Society of Chemistry.

3.1.4. Three-Dimensional (3D) Self-Supporting SnS2 Nanoflowers

Three-dimensional SnS2 nanomaterials have hierarchical flower-like architectures
with nanosized building blocks and a complex assembled architecture. Their large sur-
face area can reduce the concentrated polarization and offer more sites for accommo-
dation [127]. Figure 7a,b are flower-shaped nanostructures analyzed by TEM and SEM
analysis. Figure 7c,d represents the TEM images of SnS2 nanoflowers and the fringe inter-
val with the d-spacing of hexagonal SnS2, respectively. The schematic approach leading
to the formation of SnS2 nanoflowers is demonstrated in Figure 7e [128,129]. Xiong et al.
also described well-defined SnS2 nanoflowers for NH3 detection by a facile solvothermal
method [130]. On the other hand, 3D hierarchical SnS2 microspheres consisting of thin-
layered nanosheets were synthesized via a one-pot hydrothermal method [131]. By altering
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the ratio of SnCl4 to L-cysteine, they were able to keep their morphologies under control. In
addition, mild hydrothermal treatment in the presence of octyl-phenol-ethoxylate (Triton
X-100) at 160 ◦C led to the achievements of 3D nanoflowers with a spot-like appearance
along the [010] axis of the SnS2 crystal [132].
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3.2. Dimensional Characteristics of SnS2/Carbon Composite Nanomaterials

The hybrid structures of SnS2/Carbon materials at the nano level have permitted
the control of desired properties and features. Table 2 suggests the possible hierarchical
formation of SnS2/Carbon composite nanomaterials. It tries to depict the synergies between
SnS2 nanostructures and carbon nanomaterials in the hybridized structures. The concept of
composites further tries to enhance the nanomaterials’ internal and external capabilities
as well as the physical/chemical compatibility. The unique properties of these composite
nanomaterials are of great interest for their environmental and energy storage applications.

3.2.1. Zero-Dimensional (0D) SnS2/Carbon Composite Nanodots

Various questions come up about what constitutes 0D hybrid materials. The literature
captures this concept of zero-dimensional composites giving preference to one component.
The individual nanostructures of SnS2 and carbon have achieved great heights in many
applications, for example, in the fields of photoelectric detectors, solar photocatalysts, and
photovoltaic solar cell applications. To the best of our knowledge, there are no reports on
zero-dimensional composite SnS2/Carbon nanomaterials. SnS2/Carbon nanostructures
could result from a combination of SnS2 QDs and Carbon QDs in a hybridized synthesis
approach. The achievement of this structural material at a low dimension has proven
beneficial in its application in catalysis and electrochemistry [133]. Chen et al. found
that the tiny size of SnS2 QDs makes them easy to insert into graphene nanosheets which
prevents the restacking of graphene nanosheets [134]. Meanwhile, the inserted SnS2 QDs
showed an enhanced photocatalytic effect. The carbon dots-SnS2 nanomaterials could
show excellent photocatalytic adsorption capacity by acting as a good electron acceptor.
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Therefore, a synergetic combination of SnS2 QDs and carbon QDs could be a powerhouse
for future applications.

Table 2. Schematic comparison of different hybrid nanostructures of SnS2/Carbon composite nano-
materials.

Dimension SnS2 Structures Carbon Structures Published Composite
Nanomaterials Ref.
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3.2.2. One-Dimensional (1D) SnS2/Carbon Composite Nanomaterials

Controlling the orientation and polymer chain alignment of 1D nanostructures can
increase their multifunctional features such as thermal and electrical conductivity [151]. The
characteristic properties of hierarchical 1D composite nanomaterials are usually realized by
using one of the components as a backbone or template material, and the other component
is deposited on the surface or within it [152–154]. An understanding of 1D nanostructures
has been intensively covered by Wei et al. [155], where the fabrications and applications
of 1D mono and hybrid nanomaterials are touched on. In most 1D SnS2/Carbon hybrid
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formations, the SnS2 part, usually nanosheets or nanoflakes is embedded in the 1D carbon
template parallelly or inclined at an angle. This enhances the properties of SnS2/Carbon
nanomaterials and correspondingly influences their applications [138]. SnS2/CNT com-
posite nanomaterials are gaining attention because of their large surface area and the
improved conductivity compared to SnS2. The sheet size of SnS2 is greatly reduced when it
is clustered in SnS2/CNT hybrid nanocomposites, indicating that the introduction of CNTs
refined the sheet size of SnS2 [156]. This leads to the CNTs evenly wrapped on the surface
of or interspersed in the SnS2 sheets which is beneficial for improving the conductivity of
the SnS2. In addition, SnS2/CNTs can be attached to the surface of the separators without
any peeling and blanking, thus showing good flexibility and mechanical stability [94,157].
In an extraordinary case, the CNTs could act as templates for SnS2 materials. Jin et al.
demonstrated this by filling hard CNT templates with Sn materials and sulfurizing beyond
300 ◦C to achieve SnS2 nanostructures as a dominant phase within the CNTs [97]. Again,
the diffraction peak corresponding to the (001) plane of SnS2/CNT hybrid nanostructures
exhibits preferentially oriented growth along this plane. Figure 8 demonstrates a typical
formation of 1D SnS2/Carbon composite nanostructure through a facile templating synthe-
sis using MnOx nanorods as templates [136]. By adjusting the sulfurization temperature, it
aided in the structural control during the formation of the nanocomposite, such that the
SnS2 nanosheets were encapsulated in amorphous carbon nanotubes.
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Figure 8. (Characterization of SnS2@CNTs in terms of morphology and structure, (a,b) FE-SEM
images, (c) TEM image, (d) HRTEM image showing SnS2 nanosheet with evident lattice fringe
space of 0.59 nm, (e) High-angle annular dark-field scanning transmission electron microscope
(HAADF-STEM) image of one individual SnS2@C nanotube, and (f) elemental mapping of SnS2@C
nanotube, corresponding to C, S, and Sn elements. (g) Synthesis of SnS2@CNTs depicted schematically.
Reproduced with permission from [136]. Copyright 2018, Elsevier.

The carbon nanofiber network has also made feasible contributions in terms of
SnS2/Carbon nanomaterial formation. For instance, Xia et al. prepared SnS2 embedded in
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nitrogen and sulfur dual-doped carbon (SnS2/NSDC) nanofibers by a facile electrospinning
technique as indicated in Figure 9 [92]. Figure 9d–f illustrates the various morphologi-
cal features of the SnS2/Carbon composite nanofibers. The carbon nanofiber framework
provides a conductive host and is tolerant to the volume variation of SnS2 during the charg-
ing/discharging processes, thereby maintaining the structural stability of the SnS2/Carbon
electrode [158]. Furthermore, the microstructures of SnS2 nanosheets can provide rich
migration paths of sodium ions and electrons; therefore, the hybridized synergy realizes
a rapid and efficient electron transport, which leads to an enhanced performance of the
SnS2/Carbon system [159–162].
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3.2.3. Two-Dimensional (2D) SnS2/Carbon Composite Nanomaterials

The sheet-like nature of 2D nanomaterials makes them attractive for resolving diverse
application demands. Coupled with SnS2, 2D SnS2/carbon nanomaterials display a wide
range of extraordinary properties especially in alleviating volume expansion [163]. Es-
pecially, minimal stacking of 2D layered materials can be achieved for better application
performance due to the introduction of the conductive graphene layers, which conveniently
protects the SnS2 nanosheets from breakdown and weakens their agglomerating and re-
stacking trends. Through an all-solid-state synthesis approach, Lonkar et al. achieved
the minimal stacking of SnS2 nanosheets and realized a scalable 2D SnS2 and graphene
layered nanosheets (SnS2/G) via ball milling using robust mixed precursors and sufficient
metal-sulfur intercalation within the GO substrate [141]. Furthermore, it showed great
inherent conductivity, high specific surface area, and high catalytically active planes, which
is a plus in battery applications.

Two-dimensional nanostructures are considered as architectural building blocks to
hasten reaction kinetics and shorten the transport paths of electrons and ions. Therefore, the
2D synergetic combination of SnS2 with 2D carbon materials would be vital in enhancing
its application. For example, SnS2 itself experiences low catalytic and electrical activity,
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but the existence of strong interfaces between SnS2 and graphene might facilitate and
ease charge transportation [164]. Furthermore, the carbon component serves as a bridge
for SnS2 nanomaterials which serves as a transfer highway to improve the efficiency of
charge transportation. This has proven to be beneficial in improving the overall charge
transportation of the resulting nanocomposites. Figure 10 shows fabricated 2D SnS2
nanoplates anchored on rGO nanosheets by a one-step controllable hydrothermal synthesis
approach followed by a slight reduction reaction [165]. The face-to-face (FTF) nanostructure
allowed for a large contact area, which improved the composite’s conductivity and reduced
the migration distance of Na+ and electrons between rGO and SnS2.
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Figure 10. (a) Schematic illustration of the fabrication process for the SnS2/rGO composite, (b,c) TEM
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In addition, the charge transfer resistance tests of 2D nanocomposites demonstrated
superior transportation kinetics as shown in Figure 11, which may originate from the fast
electron transport of FTF SnS2/Carbon composites [104]. These features have also been
seen in photocatalytic SnS2/Graphene hybrid nanosheets with identically 2D structural
configurations where SnS2 nanoplates were evenly distributed across the graphene frame-
work [166]. Wang et al. used mixed processes of hydrothermal and vapor-phase polymer-
ization to successfully produce triaxial nanocables of conducting polypyrrole@SnS2@carbon
nanofiber (PPy@SnS2@CNF) [93]. The nanostructures showed a porous and interconnected
nanofiber network with outstanding battery application.
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Figure 11. (a) Schematic diagram of the construction of ternary SnO2-rGO/SnS2 gas sensor with n-g-n
junctions. (b) Subsequent TEM images. (c) Schematic images of charge transfer modification between
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junctions. Reproduced with permission from [104]. Copyright 2021, Elsevier.

3.2.4. Three-Dimensional (3D) Self-Supporting SnS2/Carbon Nanomaterials

Three-dimensional nanostructures of SnS2/Carbon nanomaterials are usually not
confined to the nanoscale in any dimension. Three-dimensional nanostructures offer appre-
ciable expanded levels of functionality compared to 2D counterparts because the strains of
the 3D shape can induce bending and twisting below the maximum endurance limit for
each layer in the construct [167]. Three-dimensional SnS2/Carbon composite nanostruc-
tures could result from different synthesis approaches with different combinations of SnS2
and carbon precursors. In general, 0D, 1D, and 2D nanomaterials are the building blocks
to achieving desired structural nanocomposites. The dispersions of the nanomaterials
could include, for example, nanodots, nanotubes, or nanosheets as well as multi-nano
layers. These structural elements are usually in close contact with each other, thereby
resulting in 3D interfaces. Many 3D nanocomposite combinations have been reported
in the literature [168–170]. For example, through the hydrothermal synthesis method,
carbon nanotubes formed a cross-winding network on the surface of SnS2 nanoplates. This
resulted in flower-like SnS2/Carbon composite nanostructures via electrostatic interactions
as shown in Figure 12a–d [111]. The diameter of the CNTs was 25 nm with a length of
1–3 µm (Figure 12d). The hybridized 3D SnS2/Carbon structures could alleviate the inter-
nal stress induced by the volumetric expansion/contraction during Li+ insertion/extraction
processes [148]. Liu et al. obtained uniform 3D interpenetrating porous membrane nanos-
tructures of SnS2/Carbon fabricated via non-solvent-induced phase separation (NIPS)
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membrane technology, and this technology offered an abundant membrane pore space for
uniform SnS2 nanosheet development via C–S covalent bonding [171].
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Aside from 3D network composite nanomaterials, hollow 3D composite nanostruc-
tures are quite common and have shown unique properties in energy storage fields. Li
et al. reported hollow 3D SnS2/Carbon nanospheres that were designed through a facile
solvothermal route followed by an annealing treatment (Figure 13a). The SnS2/Carbon
nanocomposite resulted from using SnO2@C hollow nanospheres as a template and thioac-
etamide as a sulfur source as shown in Figure 13c. Moreover, the hollow structure and mor-
phology were maintained during the synthesis process. The 3D SnS2/Carbon nanospheres
showed substantial structural integrity reinforcement during electrochemical reactions
with improved sodium storage properties. Furthermore, there was high reversible capacity
due to a large number of active sites, ideal void space and porosity for volume expansion,
high surface permeability, and favorable kinetics due to the high face-to-volume ratio of
the hollow structure.

Nowadays, 3D composites of SnS2/Carbon architectures are becoming an academic
hotspot with optimal rate capability and cycling stability owing to the synergism of active
SnS2 particles and an extremely conductive carbon framework. Three-dimensional carbon
fiber and graphene foam have served as a conductive and robust skeleton for SnS2, and
their TEM imaging demonstrated that the SnS2 nanoflakes were strongly attached to
these materials [172,173]. The graphene-assembled architectures can adapt hierarchical
morphology with high surface-area-to-volume ratios and construct macroscopic and large-
size monolithic materials, indicating that they have considerable technological promise for
a variety of sustainable applications [174].
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4. Applications of Synthesized SnS2 and SnS2/Carbon Nanomaterials in
Environmental Remediation, Electrochemical Energy Conversion, and Storage

Due to its extensive availability, biocompatibility, cheap cost, low toxicity, and high
chemical stability, SnS2 is one of the most economically viable materials exploited in a wide
range of applications. In addition, SnS2 possesses good qualities such as a high surface
area with increased active sites, good ion exchange capability, and loading capacity. The
hybridization of SnS2 with carbon materials has been explored in catalysis, biomedicine,
supercapacitors, electrochemical sensors, batteries, photocatalysis, and so on. In particular,
their capacity to build dimensionally variable structures gives SnS2 and SnS2/Carbon
nanomaterials significant structural advantages in environmental remediation and elec-
trochemical energy conversion and storage. The applications of SnS2 and SnS2/Carbon
nanomaterials have been briefly summarized in Figure 14.

4.1. Photocatalyst in Pollutant Degradation

Photocatalysis has shown great potential in hydrogen production, antibacterial activ-
ity, pollutant degradation, air purification, etc. [175–179]. Amongst them, photocatalytic
pollutant degradation is a particularly appealing technology since organic pollutants can
be entirely degraded into CO2, H2O, and inorganic compounds leaving minimum detri-
mental leftovers [180,181]. For decades, semiconductor-based photocatalysts such as SnO2,
ZnO, TiO2, etc., have gained prominence as breakthrough material for organic pollutant
degradation [182]. This is due to their ability to use solar energy to carry out the catalytic
reaction [183]. Amongst them, TiO2 has gained wider recognition due to its abundance
and low cost. However, drawbacks of TiO2 such as a wide bandgap (3.2 eV), limited active
sites, low absorption of UV light, and low quantum efficiency impede its versatility in the
efficient degradation of pollutants [184]. Therefore, it is imperative to design a unique
photocatalyst with high absorption capacity and a narrow bandgap for photocatalysis. SnS2
and its hybrid nanocomposites are gaining massive recognition in the scientific community
as alternative photocatalytic materials to TiO2 as a result of their narrow bandgap and high
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quantum yield [185–188]. SnS2 composite nanomaterials have also shown higher catalytic
performance than SnS2 nanomaterials themselves in pollutant removal.
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4.1.1. SnS2 Nanomaterials in Photocatalysis

SnS2 nanoparticles are known to exhibit photocatalytic properties under visible
light [189–191]. As a semiconductor metal sulfide, SnS2 can act as capable sensitizers
and harvest visible light for narrow bandgap semiconductors in some photocatalytic appli-
cations. Srinivas et al. found the bandgap of SnS2 nanostructures is around 2.50 eV as the
photocatalyst of the irradiation of visible light [192]. SnS2 QDs have shown a bandgap that
matches the absorption spectra of sunlight, a huge extinction coefficient due to quantum
confinement, and large intrinsic dipole moments. However, the reduction in particle size
has shown an increase in the bandgap of the semiconductor nanomaterials [193]. Nonethe-
less, various dimensions of SnS2 nanomaterials have reported successes in photocatalytic
activities. For example, 1D SnS2 nanotubes have demonstrated big potential in photocatal-
ysis with more active sites for adsorption and catalysis [194]. These properties have also
been exhibited by 2D SnS2 nanomaterials [77,195]. For instance, atomically ultrathin 2D
SnS2 conducting channels helped to achieve rapid carrier transport in photoelectrodes
which greatly reduced the recombination rate with a bandgap of 2.29 eV [196]. Moreover,
the lower thickness of 2D SnS2 structures provided an easy pathway for photogenerated
electrons and holes to move toward the surface reaction sites [195]. Hence, the possibility
of recombination is reduced, and photocatalytic effectiveness is improved. Ullah et al. in a
comparative study observed that SnS2 and conventional cadmium sulfide (CdS) films have
direct bandgap values of 2.20 eV and 2.45 eV, respectively [197].

Moreover, it was discovered that SnS2 film has a higher photocurrent of 140 µA
than CdS films with 80 µA. Thus, compared with CdS, SnS2 nanostructures offer a bet-
ter bandgap, superior cycling stability, and bigger reversible capacities that are desirable
for photocatalysis and electrocatalytic applications. Three-dimensional SnS2 nanoflowers
prepared at 120 ◦C in solvent ethylene glycol have been proven to have high adsorption ca-
pability and visible light photocatalytic activity for dyes (Methyl Blue and Methyl Orange)
and heavy metal ions (Pb2+ and Cd2+) [198]. Microwave-assisted synthesis of hexagonal
SnS2 allowed for the simultaneous adjustment of morphologies and nanostructures under
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atmospheric pressure and low temperature [199]. Moreover, it showed advantages in
the photoreduction of stable azo-dye. In addition, SnS2 nanostructures showed excellent
photocatalytic activity in the reduction of hazardous Cr(VI) to harmless Cr(III) in environ-
mental conditions, as well as effectively decomposing mutagenic dyes (Methyl Orange and
Rhodamine Blue) to benign compounds in a brief duration [192].

It is apparent that all dimensional SnS2 nanomaterials can be harnessed for photo-
catalytic applications due to their semiconductor nature. Researchers are drawn to this
exceptional catalytic feat because it allows them to include and synthesize composite nanos-
tructures with improved performance. Moreover, the bandgap is an important parameter
in photocatalytic activities. Besides adsorption capacities, semiconductor catalysts with
a narrow bandgap can absorb more photons, resulting in better catalytic activity when
exposed to visible light [200]. New modifications are being used during synthesis to further
optimize the bandgap for visible light application. One such modification is the introduc-
tion of carbon precursors to achieve SnS2/Carbon composite nanomaterials with desired
morphological orientations and photocatalytic properties.

4.1.2. SnS2/Carbon Nanomaterials in Photocatalysis

Carbon materials can form unique chemical bonding thus providing strong interac-
tions with SnS2, which leads to a bandgap narrowing effect [201]. SnS2/Carbon composite
nanomaterials show more active sites, electron acceptors, and transport channels with
improved structural stability and adsorption ability [202]. SnS2/Carbon nanomaterials
have been reported to have the ability to degrade organic pollutants and carcinogens more
effectively as compared to SnS2 (i.e., CO2) [103,203]. Xue et al. in their research used
heterojunction bio-carbon/SnS2 nanocomposites with a narrow bandgap to efficiently pho-
tocatalyze the conversion of Arsenic(III) and calcium arsenate removal [204]. The -C=Sn-S
bonds efficiently prevented SnS2 agglomeration, extended the photoresponse range, and
enhanced the hydrophilicity of the bio-carbon/SnS2 nanocomposites while reducing their
transfer resistance. For example, Figure 15 shows the sheet-like SnS2 nanoparticles uni-
formly incorporated on rGO sheets. Because of the increase in interfacial charge carriers,
the addition of rGO to the composite nanomaterials improved the photocatalytic activity
of Cr (VI) reduction. The SnS2/rGO composite photocatalysts also outperformed pure
SnS2 QDs in terms of photocatalysis. So, the synergy between SnS2 and carbon materials
at the nanoscale can provide a sufficient bandgap to catalyze photocatalytic reactions. A
substantial bandgap is necessary to significantly promote the photocatalytic abilities of
SnS2/Carbon composite nanomaterials [205].

The recombination inhibition of charge carriers between SnS2 and the carbon materials
has been observed to bring about the optimization of charge carriers at the SnS2/carbon
interfaces to photodegrade Cr(VI) [207]. This was achieved through the coupling effect
and the strong electrostatic attraction of carbon materials, which served as the electron
acceptor to trap the photoinduced electrons from SnS2 and thus enhances the separation
efficiency of electrons and holes [208]. However, the degradation of toxic substances is
further impacted by the concentration of the pollutants and the dosage of the catalysts.
Figure 16 further shows a schematic illustration of the mechanism in the photocatalytic
breakdown of organic and inorganic pollutants by SnS2/Carbon composite nanomaterials.
As shown in the diagram, once illuminated by light, electrons get excited and then migrate
from the valence band (VB) to the conductor band (CB) of SnS2 QDs. Subsequently, the
SnS2 electrons transfer to the associated carbon nanostructures that act as electron acceptors.
This suppresses the recombination of photogenerated electron–hole pairs leading to ˙OH
and ˙O2− radical species, which can lead to the removal of pollutants by their superior
activities.
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Figure 15. SnS2 QDs/rGO nanocomposite photocatalyst (a) TEM and HRTEM images, (b) Cr (VI)
reduction efficiency by photocatalysis, (c) kinetic linear simulation cures of Cr(VI) degradation,
(d) UV–vis absorption spectra of SnS2 loaded with different amounts of rGO, and (e) cycling runs
of the photoreduction of Cr(VI) in the presence of SnS2 QDs/rGO photocatalyst. Adapted with
permission from [206]. Copyright 2016, Elsevier.
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Table 3 shows the comparative photocatalytic performances of SnS2 and SnS2/Carbon
composite nanomaterials under visible light from various literature. It can be observed that
the synergistic combination of SnS2 nanomaterials and the carbon allotropes significantly
enhanced the photocatalytic efficiency of the SnS2/Carbon composite nanomaterials com-
pared with SnS2. Notably, dimensional SnS2/Carbon nanomaterials exhibited remarkable
degrading effects especially on chromium (VI). Overall, SnS2/Carbon nanomaterials hold
great degradation potential toward wastewater treatments. Photocatalysts are usually
made of costly precious metals that are not in abundance. With the availability and low
cost of SnS2 and carbon materials, researchers can venture more into creating SnS2/Carbon
photocatalytic nanomaterials to harness its potential in photocatalysis at a large scale.

Table 3. Comparison of the photocatalytic activity of SnS2 and SnS2/Carbon nanomaterials on
pollutant remediation.

Dimension Photocatalysts Pollutants Photocatalytic
Efficiency (%)

Irradiation
Time (min) Ref.

0D SnS2 Quantum Dots Chromium (VI) 92 120 [118]
SnS2 Nanoparticles Methyl Orange 90 60 [199]

SnS2 QDs/rGO Chromium (VI) 95.3 120 [206]
SnS2 QDs/N-doped Graphene Methyl Orange 95.6 60 [134]

1D SnS2 Nanotubes Chromium (VI) 53.0 60 [194]
CNT@MoS2/SnS2 Chromium (VI) ~100 90 [202]

2D SnS2 Nanoflakes Rhodamine B 61 120 [44]
SnS2 Nanoflakes RR 120 Dye - 180 [78]
SnS2 Nanoplates Methyl Blue 85 120 [195]

SnS2/rGO Chromium (VI) 94.0 90 [60]
Bio-carbon/SnS2 Nanosheets Arsenic (III) 95.1 - [204]
SnS2/N-Doped Carbon QDs Chromium (VI) 100 25 [208]

SnS2-SnO2/Graphene Rhodamine Blue 97.1 60 [209]

3D SnS2 Nanoflowers Chromium (VI) 83.8 - [27]
SnS2 Nanoflowers Methyl Orange 79.8 120 [198]
Carbon Dot-SnS2 Chromium (VI) 77.3 - [207]

SnS2/rGO Chromium (VI) 90.0 150 [210]
Carbon/SnS2 Chromium (VI) 99.7 120 [211]

4.2. Electrochemical Conversion and Energy Storage Applications of SnS2 and SnS2/Carbon
Nanomaterials

The ever-growing demands for energy resources and environmental concerns have
paved the way for the exploration and development of clean and sustainable energy alter-
natives. Electrochemical energy conversions and storage devices including supercapacitors,
fuel cells, solar cells, and metal ions or air batteries have gained attention due to their envi-
ronmentally benign nature and hold great potential as a fossil fuel replacement. Since its
discovery in 2004, graphene has become one of the most promising materials in energy stor-
age due to its remarkable electrochemical properties [212,213]. Furthermore, graphene has
the tendency to form composite nanomaterials of different dimensions which helps to boost
the overall catalytic and electrochemical performance. SnS2 possesses a theoretical capacity
of ~1136 mAhg−1 [214] which is higher than that of graphene (744 mAh g−1), [215,216]
making it valuable for battery application, solely or in a composite material. SnS2/Carbon
(including various carbon allotropes) composite nanomaterials have also proven to be more
efficient for energy storage systems because of their high conductivity, mechanical and ther-
mal stability, and long cycle ability [217]. The relationship between SnS2 and SnS2/Carbon
nanoarchitectures and their electrochemical performances are discussed below.
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4.2.1. SnS2 Nanomaterials in Electrochemical Conversion and Energy Storage

SnS2 nanomaterials exhibit enhanced electrochemical performance due to their com-
pact and consistent crystal structure with a reasonable thickness and crystallinity [218],
which is also favorable for structural stability and quick ion transport during lithia-
tion/delithiation processes. Various synthesis approaches are geared at improving the
performance of SnS2 nanomaterials as alternative electrode materials. However, the capac-
ity fading of SnS2 electrode materials persists due to significant volume changes during
charging/discharging processes [219,220]. SnS2 nanostructures with different morpholo-
gies have been fabricated to resolve these challenges.

Studies on the use of low-dimensional SnS2 nanomaterials in electrochemical energy
conversion and storage applications are scant, to the best of our knowledge. This is
because SnS2 materials can be hindered by sluggish diffusion kinetics and an unavoidable
volume change during discharging and charging processes. Nonetheless, a SnS2 nanowall
electrode realized a high reversible capacity of 576 mAh g−1 at 500 mA g−1 and an excellent
rate capability of ~370 mAh g−1 at 5 A g−1 in sodium ion batteries [221]. The sulfide
matrix acts as a buffer to decrease the large strain caused by the volume expansion of tin
nanostructures [222]. Unfortunately, in some cases, the large volume expansion induces
aggregation of the Sn particles. As such, it can bring about the cracking, pulverization, and
degradation of the electrode material which leads to capacity loss [223–225]. Nevertheless,
flowerlike-SnS2 nanostructures with large specific surface areas and better average pore
sizes have exhibited remarkable battery performance with excellent long-term cycling
stability [49,226,227]. In addition, binders with superior dispersion and cohesiveness in
electrodes have shown to improve the electrochemical performance of SnS2 as the anode for
LIBs [228]. SnS2 monolayers boost Lithium mobility, although their adsorption strength is
moderate compared to other nanostructures. Rolling the monolayer into a one-dimensional
nanotube increases Lithium ions’ adsorption strength and diffusion rates [229].

In terms of air batteries, Khan et al. used 3D SnS2 nanopetals as an air electrode
material for hybrid Na-air batteries. It displayed a low overpotential gap of 0.52 V, high
round trip efficiency of 83%, high power density of 300 mW g−1, and good rechargeability
of up to 40 cycles [230]. Moreover, their electrocatalytic performance was linked to oxygen
reduction reaction (ORR) and oxygen evolution reaction (OER). The hybrid cell charge
potential (OER) is 3.57 V at the high current density of 20 mA g−1, which is comparable to
the charge potential (3.47 V) of a hybrid cell with Platinum on Carbon (Pt/C), known to be
the best catalyst for ORR at low current density (5 mA g−1) [226]. Chia et al. explored the
prospects of SnS2 materials as alternative electrocatalysts in ORR, OER, and HER [227]. It
was proven that SnS2 has high inherent electrocatalytic activity and a fast heterogeneous
electron transfer (HET) rate. Moreover, Xia et al. recently used first-principle methods based
on the density functional theory to study the electrocatalytic performance of transition
metal atoms supported on a SnS2 monolayer [231]. The catalytic performance of SnS2 for
OER and ORR was shown to be significantly enhanced by the surface of the SnS2 monolayer.
There is limited literature on the use of SnS2 solely or as a composite electrocatalyst, but
gaps created in this field could be harnessed to create high-performance bifunctional ORR,
OER, and HER electrocatalysts in the future.

4.2.2. SnS2/Carbon Nanomaterials in Electrochemical Conversion and Energy Storage

Carbon nanostructures have been demonstrated to have the ability to confine active
materials in composite nanostructures. The addition of heteroatoms to carbon could
increase its affinity for active materials, form a strong architecture, and speed up the
electron and ion transfer process [173,232,233]. When associated with SnS2 nanostructures,
SnS2/Carbon composite nanomaterials can tolerate the volume change and enhance the
ion diffusion rate through porous structure construction; thus, it is valuable in resolving the
rapid battery capacity fading [234–236]. Furthermore, it can enhance the weak interaction
between non-polar carbon and polar polysulfides which reduces polysulfide leakage from
carbon materials in lithium-sulfur batteries (LSBs) [156,157].
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SnS2/Carbon nanomaterials as electrode materials in LSBs are fairly recent in research
but have shown to have the ability to reduce the “shuttle effect”. Zhou et al. tried to resolve
the limitations in LIBs by embedding SnS2 nanoparticles into 2D porous carbon nanosheet
(PCN) interlayers to form a multi-functional (PCN-SnS2) nanocomposite as illustrated
in Figure 17 [237]. The synergy between PCN and SnS2 nanoparticles resulted in a fast
conversion of long-chain polysulfides to Li2S. The constant conversion of polysulfides on
PCN- SnS2 to the final Li2S product assisted in reducing polysulfide shuttle during the
cycling process. The best performance was demonstrated by PCN-SnS2 with dual physical-
chemical confinement. It also improved the chemical reaction kinetics thereby diminishing
the transfer of polysulfides to the lithium anode. This, in turn, reduced the “shuttle effect”
during the entire charging/discharging process. Figure 17d shows a schematic illustration
of the conversion process of sulfur on SnS2 embedded in PCNs. Wei et al. in Figure 18 also
created a flexible electrocatalytic membrane that could reduce polysulfide shuttling and
capacity fading in LSBs with different SnS2/HCNF (hollow carbon nanofiber) interlayers
that are 2D nanostructured. The SnS2/HCNF in the LSBs displayed a high-rate discharge
capacity (694 mAh g−1 at 3C) and low-capacity fading rate (0.056% per cycle during 500
cycles at 1C). Additionally, it showed that the nanocomposite efficiently alleviated the
“shuttle effect” as a result of the composite nanostructure synergy [159,238].
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electrochemical performance of Li-S batteries with different interlayers. Reproduced with permission
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Three-dimensional nanomaterials are the most popular dimensional SnS2/Carbon
composite nanostructures, and these nanostructures have also made an impact in energy
storage applications. They have been beneficial for resolving the structure pulverization and
poor electrical conductivity of metal dichalcogenides that could lead to adverse capacity
decay both in LIBs and SIBs. Figure 19a,b shows the SEM image of 3D honeycomb-like
rGO anchored with SnS2 quantum dots (3D SnS2 QDs/rGO) through spray-drying and
sulfidation processes. The 3D features allowed for the volume change of SnS2 QDs during
the lithiation/delithiation and sodiation/desodiation processes. It also made provision for
electrolyte reservoirs to promote the conductivity of the SnS2 QDs. In addition, the 3D SnS2
QDs/rGO nanocomposite electrode delivered a high capacity and long cycling stability of
862 mAh g−1 for LIB at 0.1 A/g after 200 cycles (Figure 19c) and 233 mAh g−1 for SIB at
0.5 A g−1 after 200 cycles (Figure 19d). The improved battery performance, according to
Chang et al., can be due to the composite structure’s robustness and the synergistic effects
among a few layers of SnS2 and graphene [240]. Moreover, in situ-grown SnS2 nanoparticles
have been homogeneously confined in rGO and CNT porous carbon nanostructures, which
resulted in 3D architectures that demonstrated outstanding performance [55].

At present, the hybridization synthesis of SnS2/Carbon nanomaterials focuses on
improving the capability and cycling stability of the electrodes [89,241]. To achieve a sta-
ble SIB/LIB electrode, Cui et al. developed self-standing electrodes with rational SnS2
nanosheets restricted into bubble-like carbon nanoreactors anchored on N, S doped car-
bon nanofibers [242]. The electrodes demonstrated a very steady capacity of 964.8 and
767.6 mAh g−1 at 0.2 A g−1, as well as strong capacity holding of 87.4% and 82.4% after
1000 cycles at high current density, respectively. It was stated further that the addition of N,
S components improved the wettability of the carbon nanofiber matrix to the electrolyte and
Li ions and the electrode’s overall electrical conductivity. The performances of SnS2 and
SnS2/Carbon composite nanomaterials in battery applications are summarized in Table 4
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and compared with graphene as a reference material. Numerous synthesis approaches are
being harnessed to tackle these issues and formulate hybrid nanostructures with effective
outcomes. This can perhaps shorten the pathway and improve the transportation speed of
electrolyte ions at electrode surfaces [29].
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Electrochemical reactions, such as ORR, OER, and hydrogen evolution reaction (HER)
in fuel-cell and metal-air battery applications, have also shown promising successes in elec-
trochemical energy conversion technologies [244–247]. However, research on SnS2/Carbon
composite nanostructures as electrocatalysts is rarely reported. For instance, Cheng et al.
fabricated stable SnS2 nanosheets incorporated with carbon dots, which exhibited an OER
rate of up to 1.1 mmol g−1 h−1 under simulated sunlight irradiation [248]. Moreover,
through a simple solid-state synthesis, a 2D SnS2/Graphene nanocomposite was achieved,
and it showed an electrocatalytic (HER) overpotential of 0.36 V and a specific capacitance
of 565 F g−1 [141]. In addition, a 3D hollow C@SnS2/SnS nanosphere was discovered
to have outstanding OER performance through structural phase transitions [145]. The
Sn4+ in the composite readily received electrons in water which is vital for improving the
OER activity. More so, it measured a low overpotential of 380 mV at 10 mA cm−2 current
density. Additionally, Chen et al. recently engineered SnS2 nanosheet arrays on carbon
paper with surface oxygen adjustment under the directions of density function theory (DFT)
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calculations to efficiently electroreduce CO2 into formate and syngas (CO and H2) [249].
The SnS2 nanosheets that were modified with surface oxygen exhibited a notable Faradaic
efficiency of 91.6% for carbonaceous products at −0.9 V vs. reversible hydrogen electrode
(RHE), including 83.2% for formate creation and 16.5% for syngas. These dimensional
SnS2 and SnS2/Carbon composite nanostructures can shorten electron transfer channels in
electrochemical application because of their high surface-to-volume ratio, which probably
have promoted their electrochemical performance.

Table 4. Comparison of battery performances of SnS2 and SnS2/Carbon composite nanomaterials.

Dimension Materials High Reversible
Capacity (mAh g−1) Cycle Capacity

Retention Applications Ref.

1D

SnS2 - - - - -
SnS2/Carbon

Nanotubes 940 & 605 200 91.2% & 87.6%
@100 mA/g LIB/SIB [55]

SnS2/Carbon
Nanotubes 513.8 10 82% @100 mA/g LIBs [58]

Polypyrrole/SnS2/Carbon 1009 100 97.7% @100 mA/g LIBs [93]
SnS2/Graphene

Nanorods 335 350 92% @100 mA/g LIBs [135]

SnS2/HCNF 1 675 500 92.3% @ 100 mA/g LSBs [239]
SnS2/Carbon
(MWNTs) 2 768 100 78% @ 100 mA/g SIBs [250]

SnS2/Carbon
Nanofibers 457 ~1000@2 A/g 89.5% @ 50 mA/g PIBs 5 [251]

2D

SnS2 Nanosheets 733 50 100 mA/g SIB [125]
SnS2 Nanoplates 521 50 90% @ 100 mA/g LIBs [218]

SnS2/PCN 3 816 100 - LSBs [237]
SnS2/EPC 4 443 450 89.4% @100 mA/g SIBs [252]

SnS2/Graphene 911 200 89% @ 100 mA/g LIBs [253]
SnS2/rGO 738 60 76.5% @ 0.2 C LIBs [254]

3D

SnS2 Nanoflowers 557 50 65% @ 0.1 C LIBs [53]
SnS2 Nanoflowers 549.5 10 73% @ 100 mA/g LIBs [129]
SnS2 Nanoflowers 502 50 84% @ 0.3 C LIBs [255]

SnS2/Carbon 960 300 95% @ 100 mA/g LIBs [256]
SnS2/Carbon-rGO 953 90 100 mA/g LIBs [257]

SnS2/Carbon
Nanoflowers 551 50 97% @ 100 mA/g LIBs [148]

SnS2/Carbon
Nanocubes 1080.1 200 84.1% @ 100 mA/g LIBs [109]

SnS2/Carbon
Nanospheres 690 150 @ 1 A/g 87% @ 100 mA/g SIBS [110]

1 HCNF, Hollow carbon nanofibers, 2 MWNTs, Multi-walled carbon, 3 PCN, Porous carbon nanosheet, 4 EPC,
Enteromorpha Prolifera-derived carbon, 5 PIBs, Potassium-ion batteries.

5. Conclusions and Perspectives

SnS2 nanomaterials of different dimensional morphological orientations have made
ample progress in photocatalysis and energy storage batteries. Meanwhile, they have pre-
sented some limitations which need further modifications to enhance their practical applica-
tion potential. The broad bandgap and volume expansion during the charging/discharging
processes of SnS2 are well-known drawbacks that limit its applicability. Hybridization
of SnS2 with appropriate carbon materials, synthesizing composite nanomaterials, and
developing innovative structures or morphologies dimensionally have been developed
in order to overcome the aforementioned difficulties. Many novel and cost-effective syn-
thetic methodologies have offered ways to achieve better performance in photocatalysis
and energy storage batteries. SnS2/Carbon architectural nanomaterials have become an
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academic hotspot with outstanding reports on rate capability and cycling stability due to
the synergism of active SnS2 particles and a very conductive carbon framework.

Here, we have summed up some recent research on SnS2 and SnS2/Carbon composite
nanomaterials and reviewed the progress made on the wet and solid-phase fabrication meth-
ods to achieve various morphological structures of tin disulfide (SnS2) and SnS2/Carbon
nanomaterials such as nanodots, nanofibers, nanowires, nanotubes, nanorods, nanosheets,
nanoflowers, and nanospheres in (0D–3D) dimensional states and their applications in
photocatalysis, electrochemical conversion, and energy storage. We tried to bridge the
knowledge gap presented in SnS2, SnS2/Carbon nanostructures, and their application
performances in photocatalytic degradation and energy storage batteries.

Although the understanding of dimensional hybrid nanomaterials has made some
achievements, there is still room to harness their dimensional capabilities, as this field of
study has a lot of promise for the development of high-performance nanomaterials. In
the meantime, more research into the compatibility of carbon nanomaterials with SnS2
functional nanomaterials is needed to enhance the utilization of these hybrid nanocompos-
ites in photocatalytic and energy storage applications. Furthermore, a deeper knowledge
of the mechanisms involved in the formation of SnS2/Carbon nanohybrids can be used
to develop novel methods for producing optimal, cost-effective, and environmentally be-
nign composite nanomaterials. Realizing these possibilities may necessitate the efforts of
researchers as well as a fresh look at hierarchical nanocomposites.
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