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Abstract: Bright and stable emitters of single indistinguishable photons are crucial for quantum
technologies. The origin of the promising bright emitters recently observed in hexagonal boron
nitride (hBN) still remains unclear. This study reports pure single-photon sources in multi-layered
hBN at room temperature that demonstrate high emission rates. The quantum emitters are introduced
with argon beam treatment and air annealing of mechanically exfoliated hBN flakes with thicknesses
of 5–100 nm. Spectral and time-resolved measurements reveal the emitters have more than 1 GHz of
excited-to-ground state transition rate. The observed photoswitching between dark and bright states
indicates the strong sensitivity of the emitter to the electrostatic environment and the importance of
the indirect excitation for the photodynamics.

Keywords: single-photon sources; hexagonal boron nitride; Hanbury Brown and Twiss interferometry;
photobleaching; photodynamics

1. Introduction

The development of on-demand single-photon emitters (SPEs) is crucial for applica-
tions such as quantum key distribution, optical quantum computing, radiometry, metrology,
and others [1–6]. The most important features for the SPE practical applicability are purity,
brightness (>1 MHz), photon emission rate (>1 GHz), and room temperature operation [7,8].
Recently, fluorescent defects in layered hexagonal boron nitride (hBN) have been explored
as SPEs with stable ultrahigh brightness at room temperature, as well as high internal and
external quantum yields [9–13]. Significant progress has been made in fabricating defects
in hBN flakes. This includes plasma treatment [14], ion implantation [15], or deterministic
fabrication using a probe [16], femtosecond pulses [17] or focused ions [18,19], and electron
beams [20]. However, there is still no consensus about their photophysical properties,
energy levels, and atomic structures [21–24], especially for the SPEs emitting within the
most useful range of 1.9–2.2 eV.

Despite the high-brightness emission of SPEs in hBN, their emission rates, as a rule,
do not exceed 1 GHz when special resonators are not involved and thus cannot be high
enough for real applications [25–30]. Moreover, the properties of the investigated color
centers may differ and have various photodynamic properties. That is, difficulties arise
associated with the reproducibility of the centers made by different methods. Nowadays, it
remains an important task to search for optimal methods for creating stable color centers
that satisfy the previously specified criteria, including the possibility of optical or electrical
control [31,32].

We report the fabrication and optical studies of the emitters in hBN flakes with a
subnanosecond emission decay time. It has been shown that bright emitters satisfy most of
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the important criteria for quantum applications, such as high purity and a decay rate of
more than 1 GHz in the zero-phonon line (ZPL) even at zero pumping power. The emitters
demonstrate unusual photodynamics of switching between dark and bright states, which
may include complete deactivation. The dynamics show the presence of an intermediate
excited level close to the conduction band and indicate that the possible electron escape to
neighboring defects can be the main deactivation mechanism.

2. Materials and Methods

In our experiments, hBN flakes with thicknesses of about 5–100 nm were exfoliated
from a commercially available hBN crystal using an adhesive tape and transferred to a
pre-cleaned Si wafer with a 285-nm SiO2 layer [33] and lithographically patterned gold
markers on the surface [34]. After the transfer, the wafer with the flakes was cleaned with
acetone, isopropanol, and deionized water, and subsequently, hBN flakes were treated with
argon atoms in the Plassys 550s setup to introduce structural defects in the hBN lattice.
Argon beam milling was applied for 30 s at a 500 V beam voltage and a 100 V acceleration
voltage (31.2 mAmps emission current). Thus, the concentration of structural defects on
the surface of the hBN flakes studied in this work can be increased. Finally, to treat the
residues of dirt and activate the emitters in the hBN flakes, we annealed the sample for an
hour in air at 750 ◦C [35]. The main fabrication steps are shown in Figure 1.

The atomic force microscopy (AFM) (Solver Pro M, NT-MDT) was employed to study
the sample with the hBN flakes. Measurements were carried out in a semicontact scanning
mode. Raman spectroscopy was used to identify the hBN crystalline structure after treat-
ment procedures, revealing the characteristic hBN E2g Raman mode at 1365 cm−1 as shown
in Figure A1c (see Appendix A).

SiO2 / Si

Mechanical exfoliation Chemical treatment

Argon beam millingAir annealing

Ar750 oC

hBN flakes

mark

Scotch tape

Figure 1. Sample fabrication scheme: mechanical exfoliation and transferring of hBN flakes to the
substrate using scotch tape; chemical treatment to clean off the dirt and glue; introduction of structural
defects in the flakes with an argon beam; high-temperature annealing in air to activate the emitters.

3. Results and Discussions
3.1. SPE Identification

We studied micrometer-sized multilayer hBN flakes in a laser-scanning confocal
microscope under continuous wave (CW) or pulsed excitation at 532 nm as described
elsewhere [36,37]. It was found that individual flakes contained from several to dozens of
quantum emitters located at a distance from the flake boundaries (more than 1–2 microns).
Figure 2a demonstrates the flake region with a lot of bright emitters. We focus on S1 and S2
emitters circled in Figure 2a. The average thickness of the considered flake is of about 50 nm
as shown in Figure A1a,b. Apparently, these defects are created by Ar beam treatment near
the upper surface of the hBN flake according to previous studies [24].
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We performed photon correlation measurements to obtain information about the
photon statistics (Figure 2b,e) using a Hanbury Brown–Twiss (HBT) interferometer. To
reduce the undesired emission in the photon statistics measurements, the spectral window
was restricted to the ZPL region using narrow bandpass filters with a 20 nm transmission
range. Note that there was no background correction. We extracted the essential parameters
of quantum emission using the equation [38,39]:

g(2)(τ) = 1− C0e−|τ|/τ0 + C1e−|τ|/τ1 , (1)

where τ0 and τ1 are the decay times corresponding to excited and non-radiative metastable
states, and C0 and C1 are antibunching and bunching amplitudes. For more accurate
estimation of the g(2)(0) values, we took into account the instrument response function
(IRF) for our setup in autocorrelation measurements as a Lorentzian function with ∼150 ps
full width at half maximum (FWHM). As seen in Figure 2d, the designated emitters show
pure single-photon emission even at high excitation power with g(2)(0) values close to zero.
The g(2)(τ) curves obtained at pulsed laser excitation demonstrate significant depletion
of the g(2)(τ = 0) value (Figure 2c,f). Therefore, the presented sources can be used as
on-demand quantum emitters.
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Figure 2. (a) Photoluminescence scanning image obtained under 532-nm CW laser illumination.
Circles indicate quantum emitters. Autocorrelation functions g(2)(τ) for the emitters S1 (b,c) and S2
(e,f) circled in (a) at ZPL emission under 532-nm CW and pulsed (80 MHz) 545-nm laser excitation.
The absolute g(2)(0) values are given with IRF correction. Solid curves are a model fit as discussed in
the text; (d) dependencies of extracted corrected g(2)(0) values for S1 (top) and S2 (bottom) on pump
power at 532-nm excitation.

The obtained characteristic decay times (e.g., 650 ps for S2, or 500 ps for S3, Figure A2)
are not typical of hBN color centers studied previously (0.9–5 ns) [40–43]. To the best
of our knowledge, so far, decay times shorter than 0.9 ns have been observed only by
Ping Koy Lam’s group [24,44] for emitters in hBN flakes treated with oxygen plasma.
However, in contrast to our study, the majority of these emitters were located on the
flake boundaries, and their individual photophysical properties were not studied in detail.
Moreover, a PL decay curve by itself does not provide sufficient information. This is due
to the fact that the measurement of a decay time may depend on the excitation power
due to the different absorption cross sections of individual emitters and different electron
relaxation mechanisms [45]. Therefore, we provide appropriate optical measurements that



Nanomaterials 2022, 12, 4495 4 of 12

can help describe the photodynamics in the hBN emitters. The corresponding results are
discussed below.

Figure 3a,d show the microphotoluminescence (µ-PL) spectra of S1 and S2 with the
typical zero-phonon line and red-shifted phonon sideband (PSB). The origin of emission at
570 nm for S1 (satellite line, labeled as P*) is not clear. Such spectra have been previously
observed for emitters in hBN, but their origins have not been considered in detail [10,42].
For better understanding, we try to identify a correlation between PSBs, the P* line, and
the ZPL emission of the same emitter. For this, two-color HBT measurements were per-
formed [46] as demonstrated in Figure 3b,e. The two-color correlation function g(2)l→m(τ)
quantifies the correlation between a photon of color l and a photon of color m detected at
time τ later. Using the Cauchy–Schwarz inequality [g(2)l→m(0)]

2 ≤ g(2)l (0) · g(2)m (0) [46], we
conclude that the PSB line and the P* emission peak at 570 nm correspond to the same S1
emitter (Figures 3b and A3, see Appendix C). A possible explanation is that the lines at
570 nm and 605 nm are two different ZPLs of the same emitter [47]. For convenience, by
‘ZPL’ we mean the most intense peak of S1. In the case of S2, PL near the PSB contains the
emission from the extra emitter. As seen in Figure 3e (top figure), g(2)(τ) does not satisfy
the standard threshold g(2)(0) < 0.5 [38].
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Figure 3. The µ-PL spectra of the emitters S1 (a) and S2 (d) under 532-nm excitation; the inset: PL
intensity as a function of linear 532-nm excitation polarization angle (green hollow squares) or filtered
by linear polarization angle in emission (blue and red hollow circles) for S1 and S2 emitters. Solid
curves are fits to the data using the model discussed in the text. The photon autocorrelation of PSB
(top) and cross-correlations between ZPL and PSB (bottom) for the emitters S1 (b) and S2 (e). The
centers of the spectral regions of interest are indicated in (a,d) by dashed lines and have a bandwidth
of 20 nm for the ZPL and PSB. Saturation curves for the S1 (c) and S2 (f) emitters; solid curves are fits
to the data using an empirical model discussed in the text.

The inset to each PL spectra (Figure 3a,d) presents measurements of the polarized
excitation and emission properties for the emitters. These data are acquired by either
varying the linear polarization of the excitation laser (green hollow squares) or by passing
the PL through a linear polarizer placed in the collection path (blue or red hollow circles).
Solid curves are fitted to the data using the model function I(θ) = A cos2(θ − θ0) + B,
where θ corresponds to either the excitation or emission polarization angle; θ0 is the angle
shift. A is the amplitude, and B is the offset. For S2, the excitation polarization dependence
differs from the emission polarization pattern. This fact indicates indirect excitation of the
defect [48].
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The PL measurements with background corrections in Figure 3c,f show saturation
count rates and saturation powers for the S1 and S2 emitters. The solid lines are fitted as
I = I∞ × P/(P + Psat), where I∞ is the maximum count rate for P → ∞, and Psat is the
saturation power when I = I∞/2. The saturation measurements were taken by integrating
the emission intensity over the ZPL through the corresponding bandpass filters. For S1,
we also measured saturation curves (the total PL) with the P* and PSB emission taken into
account. The considered emitters demonstrate the saturation count rates ≥ 0.5–2 MHz at
the ZPL.

To accurately estimate the excited-state decay time in quantum emitters S1 and S2, we
perform (i) time-correlated single photon counting (TCSPC) measurements with pulsed
excitation, and (ii) measurement of the photon correlation function to extract the decay
time τ0 with different CW excitation power. The PL decay curves and their fits (Figure 4a,b)
reveal single-exponential decays at the ZPL. It is noteworthy that the decay time at the PSB
for S1 differs by 30% from the ZPL decay times. This partially explains why the pattern of
two-color correlations for ZPL→PSB shows significant variation between the ZPL and PSB
autocorrelation measurements. For S2, the PL decay for the PSB reveals a bi-exponential
behavior with the contribution of the second exponential decay possibly corresponding to
the second emitter as discussed above.
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Figure 4. Spectrally filtered PL decay curves and fits to the data for S1 (a) and S2 (b) emitters at
pulsed (80 MHz) 530-nm laser excitation. The light grey curve represents the IRF; (c) dependencies
of transition rates for S1 and S2 on excitation power extracted from the g(2)(τ) fit. The error bars
represent one standard deviation. The cross mark indicates the saturation power for each emitter;
(d) proposed energy level structure of an hBN defect with a metastable state indicated as 4; (e) PL
trace for the S1 (top) and S2 (bottom) emitters at 532-nm laser excitation in the dark and bright
states; (f) full-scale g(2)(τ) functions for S1 (top) and S2 (bottom) in the dark and bright states. Solid
curves are the g(2)(τ) functions simulated to fit the experimental data; the procedure is described in
Appendix B; (g) photoluminescence intensity map with deactivated (top) and activated (bottom) S1
emitter; (h) switching from the dark to the bright state for S1 emitter (top) via experimental protocol
with 532-nm excitation (bottom).

We observed the linear dependence of transition rates (R0 = 1/τ0) on the excitation
power for S1 and S2 at the ZPL as demonstrated in Figure 4c. The values for Figure 4c
were obtained by extracting τ0 from g(2)(τ) according to Equation (1). The data were fitted
using the equation R0(P) = Γ0 + σP, where Γ0 is the ZPL transition rate at zero excitation
power, P is the excitation power, and σ is the fitting coefficient. The σ value reflects the
emitter absorption cross section for a given wavelength and excitation polarization. Here,
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we ignored the presence of non-radiative relaxation from the excited to the ground states
through a metastable state (Figure 4d). Decay times corresponding to the metastable
states are 2–3 orders of magnitude longer than the excited-state decay times. According
to Figure 4c, at P → 0, the S2 emitter has Γ0 that exceeds 1 GHz. In other words, the
excited-state lifetime is less than 1 ns (∼840 ps).

3.2. Photoswitching

Some SPEs reveal blinking and photobleaching which indicate the presence of non-
radiative relaxation channels for electrons in the defects. These channels represent the
limitations standing in the way of achieving the high-rate and high-intensity emission
important to real applications. For example, the S1 emitter can be deactivated (with no
emission) by irradiation at high excitation power (>7 mW) for an arbitrarily long time
(∼month) as shown in Figure 4g. If large excitation power is applied again, the emitter
turns to its active state. However, after several such cycles of switching, the S1 emitter
started to blink (Figure 4e). Let us call the state with low PL (incomplete deactivation)
as dark, while the high-intensity state of the S1 emitter will be referred to as bright. The
example of switching from the dark to the bright state for S1 is shown in Figure 4h. We
found a significant increase in the measured g(2)(τ) function (>4) for S1 in the dark state
(Figure 4f) near τ = 0. The S2 emitter also revealed a transition to a dark state with a PL
intensity 1.5 times less than that of the bright state under high-power laser irradiation
(>4 mW). Similarly to S1, the S2 emitter can recover the bright state after high-power laser
irradiation. Figure 4f demonstrates the difference between the measured g(2)(τ) for S2 in
the bright and dark states. Note that the transition from the bright to the dark state for
S1 or S2 under very high irradiation power (>7 mW) occurs randomly. At the same time,
if they are not affected by high-power radiation, the emitters behave stably, i.e., they can
remain in their bright or dark state for a long time (>1 day). All the main measurements
above were carried out for emitters in these stable states.

For the scheme illustrated in Figure 4d and adopted from refs. [36,45,48], we used the
simulation to solve the rate equation (see Appendix D) and to fit the experimental data
in Figure 4f. The increase in the g(2)(τ) values measured for the dark state results from a
significant increase in the rate of electron transition to the metastable state (κ24), whereas
the rate of electron transition from the metastable to the lower state (κ41) is obviously less
(Table 1). The g(2)(τ) function increases; hence, the total emission intensity decreases.
Based on the previous studies [9,49], we believe that this is directly related to the atomic
structure of the defect and its local stress or electrostatic environment.

Table 1. Simulated transition rates for the S1 and S2 emitters in the dark and bright states.

γ12 (GHz) γ21 (GHz) κ24 (MHz) κ41 (MHz) κ25 (MHz) κ51 (MHz)

S1 (bright state) 0.27 0.88 2.7 2.6 - -
S1 (dark state) 0.13 0.7 16.5 3.2 2.3 1.4

S2 (bright state) 0.11 1.5 4.9 2.5 - -
S2 (dark state) 0.93 1.7 10 0.7 - -

Next, we will discuss the mechanisms for the photoswitching of the defects. The
transition to a dark state or complete optical deactivation of the defect is associated with the
photoionization or modification of the defect itself or the defects nearby [36,47,50]. Consider
the example of the energy structure with indirect excitation of a defect. When a photon
is absorbed, the electron is transferred from the lower (1, ground) to the upper excited
state (3). If level (3) is close in energy to the conduction band (CB), there is a probability of
electron capture by the CB. This is possible at high-power excitation due to, for example,
an increase in the local heating of the crystal lattice and mutual displacement of energy
levels. Then, an electron captured by the CB can escape to a neighboring defect (5, electron
trap), while this defect changes its charge and loses the ability to re-emit light again [36,50].
We believe that this is a likely scenario for S1. In the case of S2, when there is no complete
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deactivation of the defect but only partial suppression of the radiation intensity occurs, the
above mechanism is possible for a defect near S2. Then, for example, an electric field can
change near S2, on the one hand, reducing the probability of the electron transition from
the lower excited to the ground state and, on the other hand, increasing the probability of
the transition to the metastable state. In order for the defect to be activated (turn to the
bright state), it is necessary that the electron located at a electron trap (5) can be excited and
get back into the CB and then return to the original defect. The probability of excitation and
return for the electron apparently depends on the pump power, as can be seen from our
measurements. The probability also depends on the distance between the fluorescent defect
and the electron trap and the presence or absence of electron-filled neighboring traps [51].
The presence of other empty traps may lead to a decrease in the activation probability
for the defect. Other mechanisms of defect activation are also possible, which have been
discussed in [31,36,50].

The transition from level (3) to level (2) can also limit the total PL from the defects.
However, we do not observe an obvious saturation behavior of R0(P) for the given emitters
which can be due to the fact that κ32 is close to Γ0, as obtained in ref. [45]. Apparently, κ32
is significantly greater than Γ0; therefore, saturation is unlikely to arise at the excitation
power we deal with.

3.3. Defects Nature

The local environment of the defect can greatly affect both the rate of emission from
the defect and its radiation stability in various pumping modes. For instance, defects
such as boron dangling bonds (DB) are considered as one of the examples [52,53]. In
such defect, the energy and rate of the main electronic transition may depend on the local
stress and the orientation of the boron atom relative to the hBN plane. According to the
theoretical study [54], the height displacement of boron can lead to a decrease in excited-
state decay times, which is similar to our study. In addition, it has been demonstrated that
applying an electric field perpendicular to the hBN surface can change the excited-state
decay time [55]. However, we also do not exclude that other defects [12,56,57], for example,
carbon impurities or carbon donor-acceptor dimers, may be responsible for the emission of
defects in the visible range [15,58]. Finally, the effect of local environments on the excited-
state decay time can correspond to localization of the given defects near the flake surface,
as observed in ref. [24].

4. Conclusions

Our study reveals emitters with high-intensity emission and subnanosecond excited-
state lifetimes. We demonstrate that with high-power excitation, a transition rate exceeding
10 GHz with pure single-photon generation is achieved without any special resonance
environment. We show that the decay times observed for the SPE in hBN are related to
both the atomic structure of defects and their localization relative to other optically inactive
defects. Photoswitching emission measurements reveal the electronic level configurations,
in particular the presence of dark states and an intermediate excited level. The given results
shed more light on the origin of quantum sources in hBN emitting at 1.9–2.2 eV with high
decay rates and can pave the way for the fabrication of the SPEs with indistinguishable
photons [59].
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Appendix A. hBN Flake Morphology
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Figure A1. (a) AFM image of the hBN flake region and height profile (b) of the marked line in (a);
(c) Raman spectra of the hBN flake on a silicon substrate.
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Appendix B. Extra Emitters
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Figure A2. (a) The µ-PL spectra of the S3 emitter circled in Figure 2a under 532-nm excitation. The
centers of the spectral regions of interest are indicated by dashed lines and have a bandwidth of
20 nm; (b) spectrally filtered PL decay curves and fits to the data for S3 at pulsed (80 MHz) 530-nm
laser excitation. The light grey curve represents the IRF. Extracted decay times (τ) for each curve are
presented on the top of the figure; (c–f) autocorrelation functions g(2)(τ) for S3 (c) and other emitters
S4–S6. The absolute g(2)(0) values are given with IRF correction.

Appendix C. Autocorrelations for P*-Line of S1 Emitter
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Figure A3. Autocorrelation functions g(2)(τ) for S1 in the P*-line spectral range (a) and two-color
cross-correlation between photons from P* and ZPL (b).

Appendix D. Photon Autocorrelation Simulation

We adapted the simulation approach described in our previous study [36] with an
additional optimization step to find the best fits for experimental g2(τ) curves. Here, we
briefly discuss the main ideas.

Consider a four-level structure (Figure 4d) to describe the PL observed from S1 and
S2 emitters in the dark and bright states. According to our observations, κ32 � γ21 ∼ Γ0.
Hence, there is no need to consider an additional level (3) for evaluating g2(τ). We introduce
the following optical rate equation:

ρ̇ = Rρ, (A1)
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where ρ is the state populations vector, and R is the transition rates matrix given by

R =

−γ12 γ21 κ41
γ12 −γ21 − κ24 0
0 κ24 −κ41

,

where γij and κij are the rates of radiative and non-radiative transitions from state i to state
j. We can find the time evolution of the radiative state (ρ2) to calculate g(2)(τ) [38]:

g(2)(τ) =
ρ2(t2|ρ(t1))

ρ2(t→ ∞)
,

where τ = t1 − t2. To solve the differential equation (Equation (A1)), we used the ode15s
function in MATLAB, fitting the solution to the experimental g(2)(τ) by using Function
Handle. Table 1 shows the calculated transition rates for the S1 and S2 emitters in the dark
and bright states. The calculated g(2)(τ) curves are demonstrated in Figure 4f. For S1 in
the dark state, there is an additional metastable state (5), and the transition rates for it are
set in a way similar to the (4) state.
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