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Abstract: Transformation of carbon oxides into valuable feedstocks is an important challenge nowa-
days. Carbon oxide hydrogenation to hydrocarbons over iron-based catalysts is one of the possible
ways for this transformation to occur. Carbon supports effectively increase the dispersion of such
catalysts but possess a very low bulk density, and their powders can be toxic. In this study, spark
plasma sintering was used to synthesize new bulk and dense potassium promoted iron-based cat-
alysts, supported on N-doped carbon nanomaterials, for hydrocarbon synthesis from syngas. The
sintered catalysts showed high activity of up to 223 µmolCO/gFe/s at 300–340 ◦C and a selectivity to
C5+ fraction of ~70% with a high portion of olefins. The promising catalyst performance was ascribed
to the high dispersity of iron carbide particles, potassium promotion of iron carbide formation and
stabilization of the active sites with nitrogen-based functionalities. As a result, a bulk N-doped
carbon-supported iron catalyst with 3D structure was prepared, for the first time, by a fast method,
and demonstrated high activity and selectivity in hydrocarbon synthesis. The proposed technique
can be used to produce well-shaped carbon-supported catalysts for syngas conversion.

Keywords: syngas conversion; Fischer–Tropsch synthesis; graphene nanoflakes; carbon nanotubes;
N-doping; potassium promotion; carbon-encapsulated nanoparticles; iron carbide

1. Introduction

Rational utilization of CO2 is one of the most important challenges nowadays, due to
global warming and irreversible climate changes. One of the possible routes for reducing
the amount of CO2 is its transformation into valuable chemicals, such as hydrocarbons. This
can be realized using Fischer–Tropsch synthesis (FTS), in which CO2 is initially transformed
to CO via the reversible water gas shift process, and, then, CO is hydrogenated towards
different hydrocarbons [1]. FTS is an industrial route to produce synthetic fuels, wax,
light olefins, and lubricants from a diversity of feedstocks, such as natural gas, coal, and
biomass [2–4]. Two main types of catalysts are used in this process: iron- and cobalt-based
ones. The CO:H2 ratio determines the choice of the catalyst type. The cobalt catalysts are
commonly used for gaseous raw materials with a CO:H2 ratio of 1:2. The iron catalysts are
more suitable for biomass and coal transformation, due to their high flexibility to syngas
composition [5]. At the same time, the iron catalysts are usually promoted with alkali and
alkaline–earth metals, which increases their selectivity and stability [6,7]. Potassium is the
most popular promoter as it enhances the formation of iron carbides and increases the
selectivity to C2+ hydrocarbons [8].
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Carbon nanomaterials have been intensively studied in the past decade as supports for
both iron and cobalt FTS catalysts, and their strong effects on catalyst performance demon-
strated [9–12]. These supports are chemically inert and provide better metal dispersion
than oxide materials, which increases the total number of active surface sites and enhances
the catalyst performance. At the same time, several drawbacks prevent the large-scale
application of carbon supports. Among them, the low bulk density and “powderiness”
are the most crucial ones. In this regard, compaction and activation of FTS catalysts by
spark plasma sintering (SPS) was found to be an effective approach to overcome these
drawbacks [13]. This technique implies the simultaneous action of high pressure and
pulsed direct current that induces a fast heating of the sample at a speed of ~100 degrees
per minute to temperatures as high as 2000 ◦C. As a result of the high sintering speed,
SPS preserves the pore structure of the catalyst and allows formation of active meta-stable
species in the energy saving process [14–16]. When applied to a metal oxide–carbon sys-
tem, it also leads to the formation of an unique 3D nanostructured carbon framework, in
which reduced carbon-encapsulated metal nanoparticles are embedded [17]. Carbon shells
stabilize metal crystallites preventing their oxidation in air and sintering during FTS.

Carbon-encapsulated iron and cobalt nanoparticles are known to be effective in FTS
since carbon shells do not block the active sites, but strongly enhance the stability of the
catalysts towards sintering [18,19]. Pyrolytic approaches are mainly used for the synthesis
of such types of encapsulated particles. They include pyrolysis of an iron salt with organic
compounds or carbon materials, pyrolysis of iron-containing organic compounds, CVD
and hydrothermal preparation [20–23]. The iron carbide formation during pyrolysis of
Prussian blue was studied in [21], and the authors showed that the type of carbide and,
hence, the catalyst performance in FTS depended on the preparation temperature. Carbon-
encapsulation of the catalyst particles facilitates magnetic excitation of the catalyst and
promotes its performance in different catalytic processes [24].

Potassium is known to improve the selectivity of FTS catalysts [25,26], while N-doping
of nanocarbon materials is a powerful approach for tuning their electronic properties
and defectiveness, increasing metal dispersion and enhancing reduction of supported
metal oxides [27–31]. Since the surface of pristine carbon nanomaterials is nonpolar it is
usually functionalized with oxygen-containing groups, that anchor metal particles, thereby
increasing the dispersion of the active component. Nitrogen species may be an alternative
to oxygen functionalities, and their incorporation into carbon support allows the oxidation
step during catalyst preparation to be avoided [27].

This work studied the formation of the 3D structure of carbon-supported iron catalysts
under SPS. In this structure, the support framework is formed from N-doped graphene
nanoflakes (N-GNFs) or N-doped carbon nanotubes (N-CNTs). We demonstrate that
SPS is an effective approach for the synthesis of compact, active and selective N-doped
carbon-supported catalysts for FTS. The N-GNF-supported catalyst is more active than the
N-CNT-supported one, which is attributed to the higher content of N atoms in the carbon
support and higher dispersion of iron in the former catalyst.

2. Experimental

The N-GNFs and N-CNTs were synthesized at 800 and 750 ◦C, respectively, by py-
rolysis of acetonitrile over a MgO template (for N-GNFs), or Co-Mo/MgO catalyst (for
N-CNTs), in a quartz horizontal tubular reactor, described in detail in [32–34]. In brief,
the MgO template was prepared by precipitation of magnesium oxalate from magnesium
nitrate by ammonia oxalate and further calcination of the dried powder at 500 ◦C. The
Co-Mo/MgO catalyst was prepared by the combustion approach, in which water solutions
of Co and Mg nitrates, ammonia molybdate and citric acid were mixed and heated initially
to 250 ◦C and, then, to 500 ◦C. The synthesized template (catalyst) was placed inside the
reactor. The reactor was heated up to the desired temperature in a nitrogen flow and then
the flow was switched to bubble through the acetonitrile and passed over the template for
30 min for N-GNFs, and for 5 h for N-CNTs. Then, the reactor was cooled down to room
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temperature and the produced material was refluxed with ~19% HCl water solution for
4 h to remove the template (catalyst). After that, the materials were filtered, washed with
distilled water, and dried overnight at 110 ◦C.

The catalyst precursor for SPS was prepared by impregnation of the obtained N-
doped materials with iron nitrate and potassium carbonate water solution, followed by
evaporation of the solvent in a rotary evaporator, with constant stirring, similar to that used
for the Co catalyst synthesized in [27]. The calculated concentrations of iron and potassium
were 10 and 0.5 wt.%, respectively. To decompose the nitrate the produced materials were
calcined in a vertical tubular quartz reactor in N2 flow at 300 ◦C for 2 h. The synthesized
catalysts were designated as “FeKNGNF” and “FeKNCNT”.

The SPS was carried out in a Labox-625 system (Sinterland, Japan). The FeKNGNF or
FeKNCNT powder was placed in a graphitic die, heated in a vacuum of 10−2 Torr by pulsed
direct current up to 700 ◦C (heating rate of 100 ◦C/min), while simultaneously applying a
pressure of 30 MPa, then sintered for 5 min and cooled down to room temperature. The
sintered catalysts were named as “FeKNGNF700” and “FeKNCNT800”. The sintering tem-
perature of 700 ◦C was chosen based on previously published results for GNF-supported
iron catalysts. Mainly, the iron oxide phase was detected in the Fe/GNFs catalyst, sintered
at 600 ◦C, while sintering at 800 ◦C produced predominantly huge carbide agglomer-
ates [35]. The sintering temperature of 800 ◦C was chosen for the N-CNTs-supported
catalyst according to the data for undoped CNTs [13].

Catalysts were tested in a down flow fixed-bed stainless steel reactor with an ID of
16 mm. The catalyst (270 mg) was diluted with 2 cc of quartz sand and placed in the
isothermal zone of the reactor. The synthesis gas (CO:H2 molar ratio of 1:1 plus 5% Ar as
an internal standard) was passed through the reactor with a flow rate of 5 NLgcat

−1 h−1

at a pressure of 20 bar. The temperature was slowly increased up to 300 ◦C. For the N-
GNF-supported catalyst the temperature was further raised to 340 ◦C and, then, reduced
back to 300 ◦C. The composition of gaseous products (C1–C4 hydrocarbons and CO2)
was determined on a Kristallyuks-4000M gas chromatograph (Meta-Khrom, Yoshkar-Ola,
Russia) equipped with two packed steel columns (1.5 m × 2.1 mm) filled with HayeSep
phase (60% divinylbenzene and 40% ethylene glycol dimethacrylate) and NaX molecular
sieves. Helium, as a carrier gas, and a TCD detector were used. Liquid hydrocarbons
were collected in a container at ambient temperature and analyzed by an Avtokhrom-3700
instrument (AlltechTM quartz capillary column of 30 m × 0.25 mm, SE 30 stationary phase,
nitrogen as a carrier gas, PID).

The CO conversion was calculated as follows:

XCO =
moles CO converted
moles o f CO passed

× 100%

Selectivity to each gaseous product was calculated by the formula:

S =
moles CO converted to the product

moles o f converted CO
× 100%

The selectivity to C5+ hydrocarbons was calculated based on a total mass balance of
carbon in the feed and gaseous products:

S = 100% − SCO2 − SCH4 − SC2−C4

The activity of the catalyst was calculated as the iron time yield (FTY) in micromoles
of converted CO per gram of iron per second.

The catalysts were analyzed by XPS, XRD, and TEM. XPS spectra were acquired on an
Axis Ultra DLD spectrometer (Kratos Analytical, Manchester, UK) with a monochromatic
Al Kα source. Pass energies of 160 and 40 eV were used, respectively, for survey spectra and
high-resolution scans. A JEM 2100 F/Cs microscope (JEOL Ltd., Tokyo, Japan), operated
at 200 kV, was used for the TEM study. The sample was dispersed in methanol, dropped
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on a polymer-covered copper grid and dried. A Stoe Stadi P diffractometer (Darmstadt,
Germany) with a Ni-filtered CuKα X-ray tube was used for XRD measurements.

3. Results and Discussion
3.1. Catalyst Structure

According to the XPS data, the synthesized N-GNFs contained ~9 at.% of nitrogen,
mainly as pyridine, pyrrole, and quaternary/graphitic species [27,34]. The same nitrogen
functionalities were detected in N-CNTs, but at much lower concentrations of only 1–3 at.%
in total [33].

The support of unsintered FeKNGNF consisted of uniformly distributed stacked
graphene sheets of 5–30 nm in size with bent edges (Figure 1a,b). Iron oxide nanoparticles
of ~2–5 nm in diameter were well-distributed over the support. Such a low particle size
was explained by the large number of anchoring sites, such as edge carbon atoms and
nitrogen functionalities, within the graphene layers of N-GNFs. In contrast to the unsintered
sample, FeKNGNF700, along with many tiny particles of 2–5 nm in size, contained a certain
number of huge crystallites (Figure 1d,e). The phase analysis of these crystallites via
Fourier transformation of HRTEM images revealed the Fe3C iron carbide (cementite) phase,
while smaller particles seemed to contain iron oxide. Thus, the sintered FeKNGNF700
sample contained both nanosized iron oxide particles and large iron carbide crystallites.
Nanotubes in the unsintered FeKNCNT showed a lot of defects and partitions inside the
channels, which was typical for N-doped nanotubes [33]. Iron oxide nanoparticles were
uniformly distributed over the sample surface (Figure 1f,g). The SPS of this material led to
the formation of 10–50 nm bcc-Fe crystallites covered with graphitic shells (Figure 1i,j). The
SEM images showed the grain morphology of the sintered samples (Figure 1c,h), which
is typical for SPS-treated materials [36]. The EDX elemental mappings demonstrated the
uniform macro-level distribution of iron after sintering.
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Figure 1. TEM images of FeKNGNF (a,b), sintered FeKNGNF700 (d,e), FeKNCNT (f,g) and
FeKNCNT800 (i,j); SEM images of FeKNGNF700 (c) and FeKNCNT800 (h) (insets show corre-
sponding EDX iron mappings).

The XRD pattern of FeKNGNF700 (Figure 2) showed only the reflections of the ce-
mentite (Fe3C) phase. Iron oxide phases were not detected in this sample by XRD, because
of the low size of oxide particles, as was demonstrated by TEM. According to the XRD
data, FeKNCNT800 contained a mixture of the bcc-Fe and austenite (fcc-Fe,C) phases and
the residual Mo2C phase from the growth catalyst. The different reducibility of iron ox-
ide particles in the N-GNF- and N-CNT-supported samples under SPS resulted from the
different electrical conductivities of GNFs and CNTs. The high aspect ratio of CNTs en-
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hanced the electrical and thermal conductivities of the CNT-supported material, which
more uniformly distributed Joule heat during SPS. In contrast to CNTs, a large number of
inter-particle contacts reduced the overall conductivity of the GNF-based material. This led
to nonuniform heat distribution during SPS, which, in its turn, resulted in the presence of
both iron carbide and oxide particles.
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Figure 2. XRD pattern of fresh FeKNGNF700 and FeKNCNT800 catalysts.

The calculated crystallite size of the cementite phase in FeKNGNF700 was ~40 nm,
while those of the bcc-Fe and fcc-(Fe, C) phases in FeKNCNT800 were ~30 and 15 nm,
respectively, which correlated with the large crystallite size determined by TEM.

3.2. Catalytic Performance

The sintered catalysts were tested in FTS, initially at 300 ◦C. The catalytic performances
of the samples are summarized in Table 1. The FeKNCNT800 showed almost two times
higher CO conversion than the N-GNF supported sample. At the same time, higher activity
in the water–gas shift (WGS) reaction and higher methane selectivity over FeKNCNT800
led to the almost similar C2+ yields of the two catalysts. Higher activity of FeKNCNT800
could be assigned to the higher concentration of carbon-protected Fe-containing particles
in the catalyst and their smaller average size. It should also be noted that this catalyst
contained a noticeable amount of the Mo2C phase that itself could be active both in WGS
and FTS [25]. At the same time, pristine nanotubes with a Mo admixture were inactive in
FTS because Mo is a residue of the growth catalyst and, hence, it is strongly encapsulated
inside nanotube channels.

Table 1. Conversion and selectivity data for FeKNGNF700 and FeKNCNT800 catalysts in FTS (20 bar,
300 ◦C, 5 NL/gcat/h, CO:H2 = 1:1).
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FeKNGNF700 16.1 7.8 10.4 11.7 7.3 70.6 62 n/d n/d n/d 13.3
FeKNCNT800 28.1 29.7 14.9 10.8 9.8 64.4 52 0.865 0.783 30.2 16.8

Iron carbide is known to be the active phase in iron-containing FTS catalysts. As
the FeKNGNF700 contained a large number of ultra-small oxide particles, we decided to
additionally test this catalyst at a higher temperature to check the in-situ carbidization of
the oxide nanocrystals and to enhance catalyst performance. For this purpose, when the
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test at 300 ◦C (first stage) was completed, the temperature was increased to 340 ◦C (second
stage) and, after reaching a quasi-steady state the reactor was cooled down again to 300 ◦C
(third stage) (Figure 3).
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Figure 3. CO conversion over FeKNGNF700 versus TOS at different temperatures (20 bar,
5 NL/gcat/h, CO:H2 = 1:1).

The CO conversion in the first stage was rather low and slowly increased with TOS
from ~12 to ~16%. After increasing the temperature up to 340 ◦C, the CO conversion sharply
grew, up to ~80% in 32 h. This fact could be explained by the in-situ carbidization of ultra-
small iron oxide nanoparticles in syngas. The subsequent cooling to 300◦C did not reduce
conversion below ~70% because the catalyst was totally carbidized. Along with conversion,
the activity of the catalyst in the WGS reaction also increased, inducing selectivity to
CO2 (about 30%) (Table 2). This behavior was typical when partial water pressure in a
system grows with increase in conversion [37,38]. The selectivity to hydrocarbon fractions
remained similar at three stages of the test: the C5+ fraction dominated (65–70%), while the
portions of C2–C4 and C5+ olefins were 55–60 and 30–40%, respectively. Moderate chain
growth coefficients (α) of ~0.75–0.78 and ~0.67–0.70 were observed, respectively, for liquid
paraffins and olefins. These values were typical for Fe-based catalysts and higher than
those observed for Co-based catalysts (about 0.9).

Table 2. Performance of FeKNGNF700 catalyst in FTS (20 bar, 5 NL/gcat/h, CO:H2 = 1:1) at differ-
ent temperatures.
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340 80.3 29.3 12.2 12.0 9.5 66.3 56 0.781 0.695 31.6

300 (after 340) 70.6 30.1 9.6 12.4 7.9 70.1 61 0.746 0.666 38.9

It is worth noting that high portions of olefins were detected for the FeKNGNF700
and FeKNCNT800 catalysts, both in the gas and liquid fractions. These products are highly
desirable, as they are widely used as intermediates in the synthesis of polymers, surfactants
and lubricants [39].

Table 3 compares the catalytic performances of the FeKNGNF700 and FeKNCNT800
catalysts with the literature data for similar sintered and unsintered unpromoted iron
catalysts. While the C5+ selectivity of the GNF-supported sintered catalysts (FeKNGNF700
and FeGNF800) was almost the same (~70 mol.%), the activity of the K-promoted catalyst
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synthesized in this work was two-times higher than that of the sintered unpromoted
catalyst. There may be several reasons for this fact. Doping of carbon support with
nitrogen noticeably increases the metal–support interaction, due to both the electron density
redistribution and appearance of surface defects. For example, generation of graphitic and
quaternary nitrogen functionalities implies the incorporation of electron reach dopants
into graphene layers, which increases the electron density in the material. These changes
enhance the interaction between metal ions and the surface during the catalyst synthesis
stage. At the same time, pyridine and pyrrole fragments introduce vacancies in graphene
layers forming new sites for the nanoparticle stabilization. Earlier, the effect of nitrogen
doping on the dispersity and stability of catalysts supported on GNFs and other graphene-
based nanostructured materials was demonstrated [27,29,31]. Another important factor of
nitrogen doping that affects the catalyst performance in FTS is that the addition of electrons
may enhance CO activation and dissociation. For example, N-groups, especially pyrroles,
play an essential role in CO adsorption and dissociation, enhancing the activity, selectivity,
and stability of the catalysts supported on N-CNTs [40,41].

Table 3. Performances of FeKNGNF700 and FeKNCNT800 catalysts in FTS compared with the
literature data for unpromoted carbon supported Fe-based catalysts.

Catalyst Test Conditions CO-Free C5+
Selectivity (mol.%)

FTY
(µmolCO/gFe/s) Ref.

FeKNGNF700
300 ◦C, 20 bar, 5 NL/g/h

70.1 196 This work
FeGNF800 73.6 72 [35]

FeGNF reduced 68.3 102 [35]
FeKNCNT800 64.4 78 This work

FeCNT800 77.6 203 [13]
Fe5C2@C 320 ◦C, 15 bar, 8 NL/g/h 52.7 150 [42]

Fe/N-CNTs 275 ◦C, 8 bar, 2400 h−1 60.9 55 [41]
10%Fe/AG(12h)-W 320 ◦C, 20 bar, 4.5 NL/g/h 40 185 [31]

Fe/G-C 340 ◦C, 20 bar, 8 NL/g/h 70.9 293 [43]

Promotion of the catalyst with potassium could also be a reason for enhancement in its
catalytic performance. Similar to nitrogen doping, potassium increases the electron density
in the catalyst, enhancing its ability to dissociate CO and intensifying the iron carbide
formation [8]. Since iron carbide is a well-known active site for FTS, this promotion posi-
tively affects catalyst performance. The CO molecules penetrate to the carbon-encapsulated
particles through defects in the carbon shells and dissociate on the particle surface enriched
with electrons by potassium species. Chain growth proceeds via the carbide mechanism by
interaction of CxHy surface species with hydrogenated surface carbon atoms [44]. Table 3
also shows higher activity of the FeKNGNF700 catalyst than those of similar unsintered
catalysts tested under the same conditions. The SPS can affect the catalyst structure in
the following ways. Firstly, densification of the material leads to more intimate contact
between the iron-based particles and the carbon support, which enhances carbide forma-
tion and electron transfer between nanoparticles. Moreover, a catalyst prepared by SPS
already contains a noticeable amount of carbide phase and shows FTS activity even without
pre-reduction. This activity strongly increases during a high-temperature FTS test.

Opposite to N-GNFs, N-CNTs synthesized from acetonitrile contained a small amount
of nitrogen, only up to 3 at.%. This amount may be insufficient to strongly affect the
metal–support interactions and enhance CO adsorption during FTS. Lower activity of
FeKNCNT800, compared to the undoped CNT-supported iron catalyst, may also be ex-
plained by the large particle size in the former catalyst, which also results from lower
metal–support interaction and insufficient metal particle stabilization during SPS.
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3.3. Study of Spent Catalyst

The spent catalysts were analyzed by XPS and XRD. According to the XPS data, the
surface iron content in FeKNGNF700 strongly decreased after the catalytic test, which
pointed to the formation of surface carbides and partial carburization of iron particles
(Table 4). As XPS is a surface-sensitive technique, with an analysis depth of only a few
nanometers, the formation of surface carbide and carbon layers reduced the iron concentra-
tion on the surface (according to the XRF data, the iron concentration in the fresh catalyst
was 12.6 wt.%, while that of potassium was 0.6 wt.%). Only Fe3+ species were detected in
the Fe 2p spectrum of the fresh catalysts (Figure 4a), which confirmed the XRD data on the
predominantly oxidized state of iron in this sample. The spectrum of the spent catalyst,
along with Fe3+ species, showed a small contribution (~3%) from non-oxidized (metallic
or carbide) iron. During FTS, iron carbides were formed in the catalysts, butmagnetite
formation was possible on the surface during CO dissociation. Air exposure of the sample
after the test could also oxidize iron on the surface. A noticeable decrease in the O and
N concentrations during FTS was detected, which might reflect, firstly, the coverage of
the surface with amorphous carbon and, secondly, partial thermal defunctionalization of
GNFs [34,45].

Table 4. The XPS surface compositions (at.%) of fresh and spent FeKNGNF700 catalysts.

Catalyst Fe K C N O

FeKNGNF700
Fresh 4.0 0.3 84.7 3.3 7.7

Spent 0.9 n/d 95.1 1.0 3.0

FeKNCNT800
Fresh 0.1 0.2 97.8 0.8 1.1

Spent <0.1 0.1 97.9 0.6 1.4
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A very small amount of iron was observed, both in the fresh and spent N-CNT-
supported catalyst (Table 4), which pointed to coverage of the iron particles with thick
graphitic shells. The Fe 2p spectra of FeKNCNT800 (Figure 4b) were noisy, because of the
low iron concentration on the surface. Nevertheless, they showed the contribution of both
metallic and oxidized iron species.

Figure 5 demonstrates the changes in the N1s spectra of the catalysts after catalytic
tests. Nitrogen functionalities were mostly stable in N-CNTs, and only a slight decrease
in the contents of pyridines and −NO2 fragments was detected. In contrast, the amount
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of pyrrolic and pyridinic groups in FeKNGNF700 strongly decreased after the test. Since
pyridines and pyrroles are associated with local defects (holes) in graphene sheets, they are
probably the anchoring sites for iron particles. During FTS, especially at a relatively high
temperature of 340 ◦C these groups can decompose under etching of the carbon surface
with hydrogen, while more stable quaternary or graphitic nitrogen species remain on the
support surface [27,34].
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The XRD analysis of both the spent catalysts revealed the formation of Hägg carbide
during FTS (Figure 6). This phase transformation explained the growth of FeKNGNF700
activity during the FTS test at an increased temperature of 340 ◦C. The Hägg carbide sites
were more active in FTS than the cementite ones, and the promotion of the catalyst with
alkaline metals enhanced the carbidization ability [8,50]. A weak XRD peak of iron oxide
phase at 35.6◦ could be attributed to a thin oxide layer around the carbide particles. This
fact correlated with the XPS data on the mostly oxidized state of iron species on the surface
of the spent catalyst. Narrow peaks at ~21.8, 24.3 and 28.6◦ in the XRD patterns of the
spent catalysts corresponded to admixture of silica particles, used as barrier layers inside
the reactor.
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4. Conclusions

Spark plasma sintering was applied to synthesize bulk carbon-based catalysts for
syngas conversion towards hydrocarbons. Potassium-promoted iron catalysts, supported
on N-doped graphene nanoflakes and N-doped carbon nanotubes, were produced by
this technique, which enhanced the activity of the GNF-based catalyst in FTS up to
196 µmolCO/gFe/s, preserving a high C5+ selectivity of about 70 mol.% with a notice-
able portion of olefins (up to ~40%). The sintering effect was not so strong for the N-CNT
supported catalyst, and its performance was lower than that of the N-GNF-supported
catalyst, due to the higher particle size and lower nitrogen content in the N-CNT support.
The positive effect of N-doping on the GNF support was ascribed to increase in both the
metal–support interaction and surface defectiveness, which enhanced iron nanoparticle
anchoring and their stabilization.
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