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Abstract: In-memory computing is an attractive solution for reducing power consumption and
memory access latency cost by performing certain computations directly in memory without reading
operands and sending them to arithmetic logic units. Content-addressable memory (CAM) is an
ideal way to smooth out the distinction between storage and processing, since each memory cell is a
processing unit. CAM compares the search input with a table of stored data and returns the matched
data address. The issues of constructing binary and ternary content-addressable memory (CAM and
TCAM) based on ferroelectric devices are considered. A review of ferroelectric materials and devices
is carried out, including on ferroelectric transistors (FeFET), ferroelectric tunnel diodes (FTJ), and
ferroelectric memristors.
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1. Introduction

Conventional von Neumann architectures suffer from long latency and high power
consumption due to data movement between external memory and arithmetic logic units
(ALUs) [1–3]. In-memory computing [4–13] is an attractive solution for reducing power con-
sumption and memory access latency cost by performing certain computations directly in
memory. Content-addressable memory (CAM) is an ideal way to smooth out the distinction
between storage and processing, since each memory cell is a processing unit. CAM [14–18]
compares the search input with a table of stored data and returns the matched data address.
CAM modules have a higher throughput than other hardware and software search engines.
CAM can be used in a wide variety of applications requiring high search speed.

The main commercial application of CAM today is the classification and forwarding
of Internet Protocol (IP) packets in network routers [19–24]. CAM is a good choice for
implementing fast searches. However, the CAM speed comes at the cost of increased silicon
area and power consumption, two design parameters that developers seek to reduce. As
the number of applications that require a larger CAM grows, the power issue becomes
even more acute. Reducing power consumption without sacrificing speed or area is a major
focus of recent research in high capacity CAM.

Figure 1 shows a simplified CAM block diagram. The system input is a search word
which is translated through the search strings into a table of stored data. Each stored word
has a match string that indicates whether the search word and the stored word are identical
(match case) or different (mismatch case or miss). The match lines are passed to the encoder,
which generates a binary match location corresponding to the match line in the match state.
The encoder is used in systems where only one match is expected.

The CAM general function is to take the search word and return the corresponding
memory location. This operation can be thought of as a fully programmable arbitrary
mapping of a large input search word space to a smaller output match location space.
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TCAM is usually organized as a two-dimensional array. The input vector bitstream is 
sent to the array via the vertical search lines SL. The corresponding input bit and the 
stored bit in each CAM cell perform an XNOR-style operation that resets ML if two bits 
do not match (or leaves ML floating, otherwise). Therefore, if one or more cells do not 
match, ML will be sparse; otherwise, ML will remain at a high level and give a “con-
sistent” result. 

Figure 1. CAM block diagram [18].

Ternary content-addressed memory (TCAM) [24–26] uses the “don’t care” state in
addition to the “0” and “1” states for wildcard operations that match both “0” and “1”.
This is implemented by making it possible to always disable the discharge path in the
TCAM cell (Figure 2) (typically by turning off the corresponding switches controlled by
the “don’t care” bits). As a result, the TCAM cell requires 3-state memory: ‘0/1’, ‘1/0’, and
‘0/0’, and is typically implemented with two bits (‘1/1’ is redundant and not used). With a
TCAM-based approach, given a query feature vector, it is possible to search quickly and
efficiently across all stored vectors (i.e., network storage devices).
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TCAM performs lookup operations directly on the memory itself. TCAM is a critical
component for achieving fast lookup. TCAM performs a bitwise XOR/XNOR between the
lookup key and all the stored data to obtain the result of a match in one cycle. CAM or
TCAM is usually organized as a two-dimensional array. The input vector bitstream is sent
to the array via the vertical search lines SL. The corresponding input bit and the stored bit
in each CAM cell perform an XNOR-style operation that resets ML if two bits do not match
(or leaves ML floating, otherwise). Therefore, if one or more cells do not match, ML will be
sparse; otherwise, ML will remain at a high level and give a “consistent” result.

2. Ferroelectric Materials and Devices

Today, the main type of manufactured electronic devices are integrated circuits of
computing systems based on complementary metal-oxide-semiconductor (CMOS) silicon
transistors [27–30]. Processor static cache and DRAM circuits use the most advanced
5–10 nm design rules, while SoC and flash non-volatile memory use the less sophisticated
10–14 nm and 22–28 nm, respectively.
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The highest demands on memory capacity and speed are made today by neuromorphic
computing systems. Despite significant progress in the systems software implementation
based on mathematical models of synapses and neurons, the hardware approach is of
considerable interest, since it will allow the implementing of the fastest and most energy-
efficient approaches to solving a number of artificial intelligence (AI) problems. Therefore,
the study of the physical foundations and technologies for the formation of integrated
universal memory devices, with the possibility of carrying out data operations and func-
tionally combining the best characteristics in terms of capacity, speed and energy efficiency
of all memory devices types, remains an urgent problem in semiconductor micro- and
nanoelectronics. Ferroelectrics belong to the multifunctional materials class integrated into
CMOS technology.

2.1. Ferroelectric Materials

Two stable polarization states of ferroelectric materials (FM) can be switched by an
electric field application [30,31]. FM has a stable polarization at zero applied field, called
remanent polarization Pr. All FM are piezoelectrics [32]. As a result, FMs have many useful
properties [33,34]. When it comes to the use of ferroelectrics in integrated circuits, the
defining ferroelectric property, namely the switchable polarization P, is the most important
property, since it can be applied to information storage, for example, in a ferroelectric
capacitor [34] (Figure 3a). Here, the field-driven switching mechanism, together with the
fact that the polarization state will persist for a long time, makes the material an ideal
choice for implementing low-power non-volatile memory.
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It is believed that, for ferroelectricity realization in a crystal, it is necessary to have a
non-centrosymmetric structure. This makes ferroelectricity a rare material property that
has historically been observed only in fairly complex crystal structures involving three or
more elements, such as perovskites. However, they are difficult to use in integrated circuit
(IC) technology, which places high demands on the heat budget, exposure to forming gas
during annealing, and tight control of the elements used in the production line. As a result,
ferroelectrics integrated into semiconductor ICs so far hold a small market share.

The first ferroelectrics, discovered in the 1920s and 1930s, respectively, were crystals of
water-soluble Rochelle salt and potassium dihydrogen phosphate [35–37]. The discovery
of ferroelectricity in barium titanate BaTiO3 (BTO) in the early 1940s paved the way for
applications in sensors and capacitors [38–40]. As far back as the 1950s, Buck [41] proposed
the use of ferroelectrics in memory applications, and this proposal inspired additional
research [42,43]. However, this work did not bring products to market, and IC technology
was not yet available in those days. However, early devices that contained hundreds of
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capacitive crossbar array memory cells on a single BTO substrate can be considered as the
first integrated memory circuits demonstration.

Today, similar matrices are formed on the basis of memristors that provide hardware
implementation of neuromorphic computing systems. One of the key elements of this
approach is the perovskite memristor, a bipolar device with a continuous spectrum of
possible resistance values, capable of modeling synaptic plasticity [44,45]. In the early
2010s, a resistive switching was shown due to the conductive filament formation in resistive
random access memory (ReRAM) cells with a metal–insulator–metal Hf/HfO2/TiN stack
which was actively introduced into CMOS technology [46–49]. As for other materials
(Figure 4, Table 1), the lead–zirconium titanate Pb[ZrxTi1−x]O3 (PZT) system took another
big step in the 1950s [50,51].
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Table 1. Comparison of ferroelectric materials: PZT, SBT, BFO, doped HfO2, AlxSc1−xN [34].

Ferroelectrics Pb(Zr,Ti)O3 SrBi2Ta2O9 BiFeO3
Doped HfO2
HfxZr1−xO2

AlxSc1−xN8

Pr (µC/cm2) 10–40 5–10 90–95
(along [111]) 10–40 80–110

Ec (kV/cm) 50–70 30–50 100–1500 800–2000 2000–5000

ε0 ∼400 ∼200 ∼50 ∼30 ∼25

Endurance (cycles) >1 × 1015

on oxide electrode
Good on Pt
electrode

Good on oxide
electrode >1 × 1011 on TiN >1 × 105 a

Min. physical thickness (nm) 50 <5 <50 a

Crystallization temperature (◦C) Low High Low 400–800 300–400

Curie temperature (◦C) ∼400 ∼400 ∼700 0–500 >600
a Early results, improvements expected.

As with BTO, PZT has a perovskite structure. However, a mixture of oxides, based on
Zr and Ti, provides additional flexibility, and has excellent ferroelectric properties. In the
second half of the 1950s, the concept of a ferroelectric field-effect transistor (FeFET) was
first proposed [52]. However, it took a very long time before such a device gave useful
characteristics, including non-volatile storage of information [53]. FM integrated circuit
realization could meet all the requirements and be commercialized in the early 1990s [54].

Aside from using PZT instead of BTO, the main difference from the earlier 1950s
attempts was that a selecting transistor was added to the memory cell, resulting in a cell
structure similar to dynamic random access memory ICs (DRAM). The sampling transistor
eliminated the problems associated with accessing other columns of bits (bitline) and lines
of words (wordline). However, PZT capasitors were subject to material fatigue degradation,
which manifested itself in a decrease in switchable polarization with an increase in the
number of read and write cycles.
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In the 90s, layered perovskites were proposed to solve fatigue problems, with oxide
dielectric interlayers between the perovskite layers, such as strontium–bismuth tantalate
Sr2Bi2TaO9 (SBT), as a solution to the fatigue problem (Figure 4) [55].

Commercial success was limited, since around the same time it was found that fatigue
in PZT was significantly reduced when using oxide electrodes such as IrO2, RuO2 and
related materials [56]. Even after solving the fatigue problem in PZT, the required crystal-
lization and crystallite size, unfriendly inclusion of lead and weakly bound oxygen, low
coercive field, and high leakage currents made perovskites and layered perovskites quite
problematic for integration into CMOS processes [57]. As a result, the most advanced tech-
nology based on perovskites has stopped at the 130 nm design rule [58], and the problem of
three-dimensional integration has not yet been solved [59]. It was not until the mid-2000s
that the first demonstration of the energy-independent operation of SBT-based FeFETs was
achieved [60]. In the same time period, a concept based on switched tunneling current
through a very thin ferroelectric, which was first proposed by Leo Esaki et al. back in
1971 [61], was finally implemented [62] by adding ferroelectric tunnel junctions (FTJs) as a
fourth option in the portfolio of ferroelectric storage devices. However, FTJ devices require
high-quality epitaxial ferroelectrics [63].

It is unlikely that this approach will be integrated into the CMOS process. Epitaxial
growth directly on a CMOS-compatible substrate cannot be achieved with currently known
processes for the epitaxial growth according to the lattice parameters. An alternative
approach for integrating such complex oxide films and metal electrodes is to grow epitaxial
films on another substrate and then transfer them to CMOS, but this method is still at the
stage of fundamental studies of wafers [64,65]. It will take many more years of research
to understand if an FTJ device can be viable for CMOS integration. Thus, by the end of
the first decade of this century, the field of ferroelectric devices was demonstrated for
four fundamentally different types of devices, but their integration into modern CMOS
processes was hampered by the problems of rather difficult to manufacture materials that
are incompatible with the integrated circuit CMOS technology.

In 2011, it was first reported that a ferroelectric effect can be achieved in doped hafnium
oxide (HfO2) [66,67]. This discovery changed the prospects for integrating ferroelectrics
into complementary metal–oxide–semiconductor (CMOS) processes, even those that had
been at the front end of CMOS processes since 2007 [68]. Quite recently, piezoelectricity
used in AlN-based devices has been successfully converted into switchable ferroelectricity
in AlScN [69,70]. This material would be ideal for CMOS integration with high power
AlxGa1-xN nitride technology. Finally, efforts to create 2D materials suitable for use in
electronic devices have also led to very interesting ferroelectrics [70,71]. In the next section,
ferroelectrics based on hafnium oxide will be considered, since these materials are the
closest to real applications and, therefore, show promise for implementation in commercial
ferroelectric memristors, tunnel junctions, and transistors in the next five years.

2.2. Ferroelectric Materials Based on Hafnium Oxide

A possible way to solve the problem of integrating ferroelectrics into CMOS IC tech-
nology was to detect the ferroelectric properties of 10–15 nm films based on hafnium
dioxide (HfO2) doped with Si (HO:Si) in a coercive field Ec = (1 − 2) × 106 V/cm group
from the Technical University of Dresden (Germany) in 2011 [66,67]. Since undoped HfO2
(HO) films have been actively used since 2007 as gate high-k insulators in all modern
CMOS ICs with supply voltages up to 1.5 V [68], there are no technical barriers to the
introduction of ferroelectric HfO2 layers doped with CMOS IC technology. A little later,
the same group demonstrated a decrease in Ec and an increase in the residual polarization
Pr to 10–20 µC/cm2 in a solid solution of hafnium–zirconium dioxide (Hf0.5Zr0.5O2 or
HZO) [72].

The authors of the first works with electron and X-ray diffraction methods showed
that the ferroelectric hysteresis in HO:Si and HZO layers is due to the metastable non-
centrosymmetric orthorhombic phase Pca21 (Table 2). This phase in HO:Si and HZO
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films was transformed into a stable monoclinic phase P21/c during long-term stationary
heat treatments (FA) above 600 ◦C and 500 ◦C, respectively [73]. At the same time, the
temperature budget for manufacturing modern CMOS ICs reaches 900–950 ◦C.

It was proposed to solve the problem of thermal stability of ferroelectric layers with
metastable ferroelectric phases in three ways: firstly, by using rare-earth impurities (La, Gd,
Y, and others) or Al for doping with HO instead of silicon [74–76], which form refractory
oxides due to the greater bonding energies; secondly, by a decrease in the duration of the
thermal load on the ferroelectric during fast (sub-minute) heat treatments (RTA) [77]; thirdly,
instead of introducing disordered inclusions of refractory oxides, it was proposed to split
films with a thickness of more than a few nanometers into nanometer layers due to regular
insertions of Al2O3 monolayers separating thick films into nanometer HO or HZO lamellae.
Such films, nanolaminates, hereinafter referred to as HAO or HZAO, respectively, ensured
the expansion of the thermal stability region of ferroelectric phases up to temperatures
RTA T ~ 900 ◦C while maintaining the maximum value of the remanent polarization Pr
together with the use of the first two methods simultaneously [78–83]. Such inserts slow
down the accelerated growth of a stable monoclinic phase in nanolaminates during RTA
heat treatments due to the size effects of the contribution of surfaces to the free energies
of nanosized nuclei of all phases formed during plasma-assisted atomic layer deposition
(PEALD), taking into account higher crystallization temperatures of amorphous Al2O3
inserts compared with HO and HZO [84].

Table 2. Key characteristics according to representative polymorphs of fluorite-structured HfO2 and
ZrO2 [73].

Monoclinic Orthorhombic Tetragonal

Crystal structure
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2.3. Ferroelectric Transistors

Four promising types of non-volatile memory devices based on ferroelectric materials
have already been proposed, where the ferroelectric tunnel junction and the memristor
are combined (Figure 1c). So far, the only commercially successful concept is ferroelectric
random access memory (FeRAM). FeRAM devices demonstrate a high read and write
speed (~10 ns), a giant resource (~1014 switchings), and have already found their niche in
the market of modern non-volatile memory [54,57,58,60].

In FeRAM 1T1C cell, during a destructive read, the polarization-switchable charge
is transferred through the sampling transistor to the discharge line (BL) (Figure 3a). Just
as with DRAM, the sensitivity amplifier determines the stored logic state. The read cy-
cle must be completed by restoring the information. Therefore, each read cycle also
increases the write time. Using PZT as a ferroelectric, it is possible to achieve a cycle life
of ~106 switchings. For better scalable films based on hafnium oxide, a resource reaching
1012 switching cycles has been observed, on which successful implementations of 1T1C
memory arrays have recently been demonstrated [85,86]. In addition, the low charge signal
can be sufficiently amplified by a second transistor, which is added to the memory cell,
forming a 2T1C cell. This reduces the complexity of manufacturing a planar capacitor to a
minimum, however, by increasing the size of the memory cell [87].
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Further development of FeRAM will focus on scaling and 3D integration [88,89],
as well as optimizing the reliability of ferroelectric capacitors, which is a mandatory
requirement in the manufacture of memory arrays with a density of several Gbits. However,
FeRAM arrays are not without a number of significant drawbacks. Since the state of the
FeRAM memory cell is directly encoded by the direction of the remanent polarization
vector, reading this state is destructive and requires restoring information that slows down
reading and increases power consumption.

The actively developed 1T memory cell in the FeRAM architecture, which does not
have such disadvantages, uses a ferroelectric field effect transistor (FeFET) with a ferro-
electric instead of a gate dielectric. The FeFET idea is not new. It was proposed back
in 1957 [52], but was commercially implemented only on the basis of SBT ferroelectric
in 2004 [60]. FeFET research has made significant breakthroughs over the past decade.
FeFET is a field effect transistor in which the direction of the remanent polarization vector
modulates the conductance of the transistor channel. The key parameter of a ferroelectric
field effect transistor is the memory window (Memory Window, MW). The value of the
MW is determined by the region of gate voltages at which the two states of the channel
resistance differ by more than an order of magnitude. This region is determined not only
by the magnitude of the remanent polarization, but also depends on the magnitude of
the coercive fields in the ferroelectric. For example, if the coercive field is small, as in the
case of perovskites, then it is necessary to use large thicknesses of the ferroelectric layer.
Otherwise, even small gate voltages will switch the polarization of the ferroelectric. This
effect limited further scaling of FeFET devices based on classical ferroelectrics [52]. Today,
this limitation has been circumvented by using ferroelectric hafnium oxide which, on the
contrary, has large (0.8–2.0 MV/cm) coercive fields. As a result, a record channel length
of 22 nm was achieved in HfO2-based ferroelectric field-effect transistors [89], but FeFET
simulations with HZO ferroelectric parameters demonstrate its applicability in the most
advanced 7 and 3 nm process standards [90].

In the 1T FeFET concept, using the internal amplification of the transistors, a non-
destructive reading can be achieved by measuring the drain-source current, while the data
stored in the gate ferroelectric can be maintained in a non-volatile manner. Successful
integration of hafnium oxide FeFET into commercial 28 nm and 22 nm planar technology
has been demonstrated with modern high quality metal gate technologies [89,91]. Today,
the cyclic resource is still on the verge of what is required for non-volatile memory, mainly
due to the degradation of the interfacial layer that forms between the Si channel and the fer-
roelectric layer [92]. However, the claimed 1010–1012 write cycle life is already competitive,
with conventional floating gate and charge trapping devices, making the FeFET device a
suitable solution for embedded non-volatile memory (eNVM). Further improvement in
cycle life can be achieved by eliminating the interfacial oxide layer, or by designing a device
structure that changes the capacitive voltage divider between the ferroelectric and dielectric
layers [92,93]. In terms of commercialization, basically three reasons are decisive. First,
from the analysis of array distortions, array architectures such as OR and NOR are preferred,
implying a larger cell size compared to NAND [94]. Secondly, the polycrystallinity of the
ferroelectric material causes a certain variability in switching characteristics [68], which is
usually compensated by an increase in the size of the transistor beyond 0.01 µm2 [89,91] or
a change in the FeFET design, which still prevents the FeFET concept from being scalable
to competitive sizes, for energy independent storage devices. An improvement can be
achieved by using textured or epitaxially grown ferroelectric films. Thirdly, the storage of
several bits in a single FeFET was successfully demonstrated [95]. However, in the case of
FeFET, multi-level storage is limited by the maximum achievable threshold voltage (MW)
memory window calculated from a first order estimate over MW = 2 * Ec * tox ≈ 2 V, and
implementation of more than 2 bits per cell seems unrealistic. The way to increase MW is
to increase the thickness of the FE layer, as shown in reference [96]. Another proposed way
to increase the number of bits is to change the FeFET design to improve the field uniformity
in the ferroelectric along the channel (Figure 5), or to use two or more gates [97–99].
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Scalability limitations can be overcome by implementing high-density 3D-NAND
FeFET memory [88,100,101]. In addition to the larger effective gate area of the FeFET,
which would improve layered memory over planar FeFET, improved die efficiency could
be achieved by lower on-chip software voltages for FeFET compared to flash devices.
However, the cyclic resource can also be a decisive factor here [102]. Devices based on
non-volatile memory in fluorite-structured oxides, such as HfO2 and ZrO2, are able to
mimic the behavior of synapses and neurons, which are the main elements of biological
computing systems (the brain). With the discovery of ferroelectric devices compatible
with modern CMOS technologies (Figure 6), neuromorphic computing devices based on
ferroelectrics with a fluorite structure quickly became the main direction of neuromorphic
research and development [73]. Additional opportunities for neuromorphic computing are
opened by the analog operation mode of FeFET in the architecture of analog computing in
memory (analog compute-in-memory, ACiM) [103].



Nanomaterials 2022, 12, 4488 9 of 18

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 19 
 

 

non-volatile memory in fluorite-structured oxides, such as HfO2 and ZrO2, are able to 
mimic the behavior of synapses and neurons, which are the main elements of biological 
computing systems (the brain). With the discovery of ferroelectric devices compatible 
with modern CMOS technologies (Figure 6), neuromorphic computing devices based on 
ferroelectrics with a fluorite structure quickly became the main direction of neuromor-
phic research and development [103]. Additional opportunities for neuromorphic com-
puting are opened by the analog operation mode of FeFET in the architecture of analog 
computing in memory (analog compute-in-memory, ACiM) [104]. 

 
Figure 6. Various ferroelectric devices with a three-terminal structure (upper row) and corre-
sponding characteristics of synaptic plasticity (lower row). (A) MFIS, (B) (left) MFMIS and (right) 
MFMIS with the MFM capacitor integrated into the BEOL and the underlying MOSFET integrated 
into the FEOL, and (C) FeTFT. Schematic of FeFETs with different channel geometries and synaptic 
potentiation (a) or depression (b) [73]. 

2.4. Ferroelectric Tunnel Junction 
A ferroelectric tunnel junction (FTJ) was proposed as a non-volatile memory rela-

tively recently, and the possibility of its fabrication based on ferroelectric hafnium oxide 
was confirmed only a few years ago [55]. The classic ferroelectric tunnel junction is a 
two-electrode device in which the direction of polarization modulates the potential bar-
rier through the tunnel-transparent ferroelectric, and, as a result, the tunnel current 
flowing (Figure 7).  

The current measured at different directions of the polarization vector is a logical 
“0” and “1”. The main advantages of FTJ are not limited to two-electrode control and 
non-destructive reading of the memory state, which can significantly increase the re-
cording density in the crossbar architecture of memory arrays, even compared to classical 
DRAM memory [93]. 

Unshielded surface charges induced by remanent polarization create a depolarizing 
field. The depolarizing field changes the resulting potential barrier across the structure. A 
change in charge signs during polarization reversal also changes the direction of the 
depolarizing field and the profile of the potential barrier. As a consequence, a change in 
the potential profile upon polarization inversion is possible only with nonideal screening 
of surface charges, which, in turn, is ensured by a finite screening length in the electrodes 
and (or) the presence of an IL dielectric. Changing the potential barrier with a change in 
polarization will lead to a change in its transparency and a change in the tunneling cur-
rent (Figure 6A–C) [103]. The change in current can be enhanced in the case of an 
asymmetric potential profile by using electrodes with different screening lengths, for 

Figure 6. Various ferroelectric devices with a three-terminal structure (upper row) and corresponding
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and (C) FeTFT. Schematic of FeFETs with different channel geometries and synaptic potentiation (a)
or depression (b) [73].

2.4. Ferroelectric Tunnel Junction

A ferroelectric tunnel junction (FTJ) was proposed as a non-volatile memory relatively
recently, and the possibility of its fabrication based on ferroelectric hafnium oxide was
confirmed only a few years ago [55]. The classic ferroelectric tunnel junction is a two-
electrode device in which the direction of polarization modulates the potential barrier
through the tunnel-transparent ferroelectric, and, as a result, the tunnel current flowing
(Figure 7).

The current measured at different directions of the polarization vector is a logical
“0” and “1”. The main advantages of FTJ are not limited to two-electrode control and
non-destructive reading of the memory state, which can significantly increase the recording
density in the crossbar architecture of memory arrays, even compared to classical DRAM
memory [93].

Unshielded surface charges induced by remanent polarization create a depolarizing
field. The depolarizing field changes the resulting potential barrier across the structure.
A change in charge signs during polarization reversal also changes the direction of the
depolarizing field and the profile of the potential barrier. As a consequence, a change in
the potential profile upon polarization inversion is possible only with nonideal screening
of surface charges, which, in turn, is ensured by a finite screening length in the electrodes
and (or) the presence of an IL dielectric. Changing the potential barrier with a change in
polarization will lead to a change in its transparency and a change in the tunneling current
(Figure 6A–C) [73]. The change in current can be enhanced in the case of an asymmetric
potential profile by using electrodes with different screening lengths, for example, in a metal-
ferroelectric-metal or metal-ferroelectric-semiconductor structure [104–106]. The screening
length in metals is small, so the polarization charges are screened almost completely,
creating a small depolarizing field. The presence of a dielectric layer (IL) or a semiconductor
as one of the electrodes weakens the shielding of polarization charges and introduces
additional asymmetry into the structure, which makes it possible to more effectively
modulate the potential distribution by rotating the polarization vector [107–110]. The
presence of a space charge in the ferroelectric layer creates a number of effects common
to all ferroelectric materials. Space charges on traps and mobile charged defects in a
ferroelectric determine the imprint (switching voltage drift) and switching kinetics, and
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also lead to a gradual evolution of the domain structure and a decrease in the residual
polarization during cycling [73,111–113].
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within the structure. (A) Metal/ferroelectric/metal (M/F/M), (B) metal/ferroelectric/interlayer/metal
(M/F/IL/M), and (C) metal/ferroelectric/IL/semiconductor (M/F/IL/S) structures. The band struc-
tures are drawn using band diagram program with schematic Thomas–Fermi screening length of
metals [113,114]. The interlayers of M/F/IL/M and M/F/IL/S are set as Al2O3 and SiO2, respec-
tively. (D) Conductance ratio of FTJs, having a TiN/Hf0.5Zr0.5O2 (HZO)/ZrO2/TiN (M/F/IL/M) and
TiN/HZO/ZrO2/poly-Si (M/F/IL/S) structure as a function of the pulse amplitude. (E) Retention
characteristics of M/F/IL/M and M/F/IL/S FTJs; both devices were measured after wake-up field
cycling of 106 cycles with ±6 V/500 ns and 10 V/500 ns for M/F/IL/M and M/F/IL/S, respectively.
(F) Relative permittivity of a M/F/M capacitor as a function of the field cycles. The inset shows the
device schematic (right) and a hysteresis loop of the relative permittivity (left). The relative permittiv-
ity was extracted from the small-signal capacitance measured at 0 V with a bias amplitude of 30 mV.
The program/erase pulse amplitude used were 3 V/−3 V. (D,E) Reproduced with permission [104].
Copyright 2021, IEEE. (F) Reproduced with permission [115]. Copyright © 2021, IEEE [73].

2.5. Ferroelectric Memristors

Currently, a large number of memristive devices based on various switching mecha-
nisms have been demonstrated. In memristive devices, a change in resistance is associated
with a change in the activity of a biological synapse (synaptic weight). Based on the princi-
ple of operation, they can be divided into two classes: memristors of the first and second
kind [114–120]. In memristors of the first kind, conductivity modulation is carried out only
by changing the external applied voltage, as a result of which the demonstration of synaptic
properties is possible only when using overlapping impulses (post- and pre-synaptic spikes)
of a complex shape.

The biological synapse has an internal dissipative temporal mechanism that deter-
mines its current state and synaptic plasticity. The synaptic response to a series of coding
spikes is determined by many temporal processes in the presynaptic and postsynaptic
neuron, among which are, for example, the diffusion of Ca2+ ions through the postsynaptic
membrane [121], the concentration of which gradually decreases with time and strongly
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depends on the prehistory. All these mechanisms lead to the fact that the synaptic response
depends on the frequency of the stimulating impulse, rather than its shape.

Memristors, in which similar dissipative mechanisms are observed, do not require
accurate tuning of stimulating impulses and their overlap, and therefore can be used for
“natural” modeling of the activity of a biological synapse (Figure 6). Such devices are called
memristors of the second kind. In the practical implementation of memristors of the second
kind, the dissipation of oxygen vacancies in the conducting channel [119], a decrease in
their mobility [120], or the minimization of the surface energy by hydrogen and metal
ions [122] act as an internal time mechanism. The stochastic nature of ion migration results
in these devices having poor repeatability and a low number of possible switches.

Memory devices based on ferroelectric materials, which have reproducibility and a
cyclic resource, are a more promising direction for creating memristors of the first and
second kind. The ferroelectric memristor [121,123] is a natural development of the FTJ
idea. However, instead of two possible states, these devices use one more degree of free-
dom associated with the domain structure of the ferroelectric film, resulting in an almost
continuous spectrum of possible resistance values. Since switching in these devices is
completely determined by the change in polarization direction, a very interesting feature
of ferroelectric memristors is that the dependence of the ROFF/RON ratio on the switching
voltage is similar to the shape of the hysteresis loop curve (Figure 8). It should be em-
phasized again that this correlation is an excellent criterion for verifying the ferroelectric
nature of switching observed in a particular device. Until recently, research in this area
was focused on ferroelectric memristors of the first kind, including memristors based on
ferroelectric hafnium oxide [112,124]. A ferroelectric memristor of the second kind was
first demonstrated in [125].

Nanomaterials 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

carried out only by changing the external applied voltage, as a result of which the 
demonstration of synaptic properties is possible only when using overlapping impulses 
(post- and pre-synaptic spikes) of a complex shape.  

The biological synapse has an internal dissipative temporal mechanism that deter-
mines its current state and synaptic plasticity. The synaptic response to a series of coding 
spikes is determined by many temporal processes in the presynaptic and postsynaptic 
neuron, among which are, for example, the diffusion of Ca2+ ions through the postsyn-
aptic membrane [122], the concentration of which gradually decreases with time and 
strongly depends on the prehistory. All these mechanisms lead to the fact that the syn-
aptic response depends on the frequency of the stimulating impulse, rather than its 
shape.  

Memristors, in which similar dissipative mechanisms are observed, do not require 
accurate tuning of stimulating impulses and their overlap, and therefore can be used for 
“natural” modeling of the activity of a biological synapse (Figure 6). Such devices are 
called memristors of the second kind. In the practical implementation of memristors of 
the second kind, the dissipation of oxygen vacancies in the conducting channel [120], a 
decrease in their mobility [121], or the minimization of the surface energy by hydrogen 
and metal ions [123] act as an internal time mechanism. The stochastic nature of ion mi-
gration results in these devices having poor repeatability and a low number of possible 
switches. 

Memory devices based on ferroelectric materials, which have reproducibility and a 
cyclic resource, are a more promising direction for creating memristors of the first and 
second kind. The ferroelectric memristor [122,124] is a natural development of the FTJ 
idea. However, instead of two possible states, these devices use one more degree of 
freedom associated with the domain structure of the ferroelectric film, resulting in an 
almost continuous spectrum of possible resistance values. Since switching in these de-
vices is completely determined by the change in polarization direction, a very interesting 
feature of ferroelectric memristors is that the dependence of the ROFF/RON ratio on the 
switching voltage is similar to the shape of the hysteresis loop curve (Figure 8). It should 
be emphasized again that this correlation is an excellent criterion for verifying the ferro-
electric nature of switching observed in a particular device. Until recently, research in 
this area was focused on ferroelectric memristors of the first kind, including memristors 
based on ferroelectric hafnium oxide [113,125]. A ferroelectric memristor of the second 
kind was first demonstrated in [126]. 

 

 

 

(a) (b) (c) 

Figure 8. (a–c) An example of logarithmic ROFF/RON and polarization, respectively, as a function of
switching voltage Copyright © 2012, 2019 American Chemical Society [122–124].

3. Content-Addressable Memory Based on Ferroelectric Devices

In recent years, ReRAM [126] has become a potential non-volatile memory (NVM) can-
didate for a next-generation storage system with high read/write speed, low programming
voltage, and good scalability. The ReRAM device is usually a three-layer device formed by
a metal-insulator-metal package. It can switch from a high resistance state (HRS) to a low
resistance state (LRS) with a SET operation, and from LRS to HRS with a RESET operation.
ReRAM-based CAMs [126–129] typically consume higher power during write operations
due to their device state switching mechanisms. In addition, ReRAM’s low on-off ratio
also results in high detection complexity and cost, since multiple NVM-based CAM cells in
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the off state can sum up significant discharge current close to on-state currents. These new
devices suffer from significant on- and off-state current variations, limiting scalability and
reliability. Ferroelectric-based TCAMs are much more compact [130].

A single TCAM cell based on CMOS requires 16 transistors (Figure 9a), occupies a
large area, and is volatile, and thus incurs a footprint and leakage energy penalty. BL
stands for bit line, SL for search line and WL for write line. TCAMs based on resistive
storage elements (Figure 9b) reduce the cell footprint, but suffer from high write energy, low
ON/OFF ratios and variation issues. TCAMs based on four CMOS FET and two FeFETs
are more energy efficient. TCAMs based on only two FeFETs (Figure 9d) are non-volatile,
and achieve the best energy and latency product performance [131]. TCAM cell parameters
are shown in Table 3.
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Figure 9. TCAM cell designs based on: (a) CMOS static random access memory required 16 transistors,
BL, bit line, ML, pre-charged matchline, SL, search line, WL, write line, (b) based on resistive
storage elements, (c) based on four CMOS FET and two FeFETs, (d) based on two FeFETs [https:
//arxiv.org/abs/2101.06375 Access Date: 10 December 2022].

Table 3. TCAM cell parameters [26].

16T CMOS 2T-2R 2FeFET

Cell area (µm2) 1.12 0.28 0.15

Write energy
(fJ per bit) 4.8 720 1.4

FeFETs are in fact MOSFETs with a ferroelectric layer integrated into the gate stack [130–139].
The interaction between the ferroelectric layer and the gate oxides of the MOSFET results in
unique FeFET characteristics. FeFET stores the polarization direction in the ferroelectric layer as
a memory state. The direction of polarization changes the threshold voltage VTH FeFET from
low to high. It should be noted that the low-level VTH can be set to either a negative or positive
value to provide low or high channel resistance with zero gate voltage VG.

Writing in FeFET transistors can be accomplished by applying a voltage to the fer-
roelectric layer that exceeds the coercive voltage for a certain period of time. In general,
a positive (or negative) voltage applied to the gate of an n-type FeFET tends to decrease
(increase) the VTH of the device. Polarization switching can be modulated by adjusting the
amplitude or duration of the write voltage pulse applied to the gate. A FeFET read can be

https://arxiv.org/abs/2101.06375
https://arxiv.org/abs/2101.06375
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carried out by detecting the drain current with an applied gate voltage lower than the write
voltage to avoid disturbing the read. FeFETs based on hafnium are highly scalable. Reports
indicate that FeFETs can exhibit high on/off resistance ratios in excess of 106, implying
large memory arrays can be used. FeFETs also exhibit high switching speed, moderate life
and moderate write voltage. FeFETs have a high on/off ratio, which is good for scalability.
FeFETs do not consume DC power during write and seek operations, which also results
in high energy efficiency. The FeFET TCAM design in Figure 9c additionally uses FeFET
as both memory and comparator, resulting in very high TCAM density. The more bit
mismatches, the faster the ML discharges.

Hafnium-based oxides can be used in FeFETs or tunnel junctions (FTJs) [135,136] using
the HfO2 ferroelectric phase. The threshold voltage of FeFET, and hence its drain current, is
controlled by the polarization state of the gate dielectric, which can be controlled by appro-
priate positive and negative values of the gate voltage pulses. Of particular importance for
neural network training, FeFETs provide faster writes at a lower voltage than the conceptu-
ally similar flash memory. The service life is currently limited to approximately 106–1010

cycles, and improvements require devices, materials, and technological innovations [136].
Based on the SPICE model of double-gate FeFET (2G FeFET) [138], a crossbar model was
built that can be used as CAM [139].

Alternatively, ferroelectric tunnel junctions (FTJ) [140] metal-ferroelectric-metal (MFM)
can be used, since MFM devices have greater cyclic stability than FeFETs. The HfO2
based FTJ has been developed as a promising non-volatile storage device with high CMOS
compatibility, scalability, low power consumption and non-destructive readout. In FTJ, the
change in polarization caused by an electric field applied across two electrodes modulates
the potential barrier, causing the tunneling electrical resistance effect. FTJ-based switch
point arrays with the size of a memory cell have the advantage of high integration density
compared to arrays based on 3-terminal FeFET devices.

4. Conclusions

The issues of constructing binary and ternary content-addressable memory (CAM and
TCAM) based on ferroelectric devices are considered. A review of ferroelectric materials
and devices is undertaken on ferroelectric transistors (FeFET), ferroelectric tunnel diodes
(FTJ), and ferroelectric memristors.
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