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Abstract: This study is one of the first attempts to assess CeO2 nanoparticles as a nanoplatform
for radiopharmaceuticals with radionuclides. The process of functionalization using a bifunctional
azacrown ligand is described, and the resulting conjugates are characterized by IR and Raman
spectroscopy. Their complexes with 207Bi show a high stability in medically relevant media, thus en-
couraging the further study of these conjugates in vivo as potential combined radiopharmaceuticals.
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1. Introduction

Diagnostics incorporating labeled nanoparticles (NPs) can be used for the early de-
tection, characterization, and staging of diseases, as well as for effective radionuclide
therapy [1]. The small size of nanoparticles allows them to pass through cell membranes
and deliver the radiopharmaceutical closer to the nucleus of the tumor cell, thus reducing
the effect of ionizing radiation on healthy organs and tissues [2]. In addition, nanoparticles
are often effective vectors for drug delivery [3], whereby the pharmacokinetic and pharma-
codynamic properties of the nanoparticles can be optimized by modifying their surface.

Cerium dioxide (or ceria) nanoparticles can be used for various biomedical purposes
due to their unique properties. The toxicity of cerium dioxide nanoparticles has been stud-
ied previously both in vitro and in vivo [4]. It was shown that cerium dioxide nanoparticles
stabilized by biocompatible surfactants (citric acid, dextran, PVP, polyacrylate, PEG) are not
toxic to cells even in high concentrations [5,6]. Their biological activity results in antioxidant
properties that can be applied as neuro- [7], cardio- [8,9] and radioprotectors [10], as well
as anti-inflammatory drugs [11]. Moreover, ceria nanoparticles are capable of exhibiting
either anti- or prooxidant properties, depending on the difference in pH levels in various
subcellular regions [12]. CeO2 can also act as an enzyme mimetic and enhance the action of
natural enzymes [13,14]. The exact mechanism of the biological action of ceria is a subject
of discussion [10,15], however, it has been shown that the antioxidant activity of CeO2
nanoparticles is directly dependent on their size [16].

Cancer cells produce reactive oxygen species more actively than healthy cells due to
the lack of redox control [17]. Prooxidant agents cause additional oxidative stress in cancer
cells and lead to their apoptotic death [18]. Accordingly, CeO2 nanoparticles are more
cytotoxic for cancer cells, while the opposite is observed for healthy cells [19]. In addition,
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due to its pH sensitivity, ceria exhibits vector properties and can target the delivery of
radiopharmaceuticals to the affected tissue [20].

Previously, there have been several attempts of using CeO2 nanoparticles for nuclear
medicine for simultaneous diagnosis and radioprotection [21–23]. However, in terms of
nuclear-physical characteristics, there are no isotopes of cerium that are optimal for diagno-
sis or therapy [24]. Ceria nanoparticles have also been used as a part of composite material
for 68Ge/68Ga generator for clinical uses [25]. Another approach for obtaining radionuclide-
labeled nanoparticles is indirect conjugation using bifunctional chelators, which bind to the
nanoparticle and then form a complex compound with the radionuclide [26]. Modifying
the surface of these particles [27] with bifunctional chelators could open new perspectives
and expand the number of radionuclides that can potentially be used.

Thus, the study of cerium dioxide conjugates and their complexes with radionuclides
of other elements applicable in nuclear medicine is a promising direction for developing
combined radiopharmaceuticals with novel properties. These nanoplatforms can then
form complex compounds with radionuclides for both diagnostic and radionuclide therapy.
The best approach for the latter is the use of alpha-emitters. Due to their relatively low
range in the tissue and high linear energy transfer, they minimize damage to healthy
organs and tissues [28]. Bismuth radionuclides 212Bi (α, T1/2 = 60.5 min) and 213Bi (α,
T1/2 = 46 min) have attracted great interest due to their compatible nuclear properties, and
some of their compounds have already shown promising results in clinical trials [29,30].
Thus, the conjugation of CeO2 conjugates with alpha-emitting 212Bi or 213Bi could lead
to a radiopharmaceutical for radionuclide therapy, which has a radioprotective effect for
non-cancer cells.

The most widely used method of radioactive labelling is the modification of the particle
surface with a multidentate bifunctional chelator (BFC) followed by the complexation with a
radionuclide [26]. The selection of the BFC depends on the radionuclide, the synthesis strat-
egy, physical properties, the desirable polarity and biodistribution properties. Previously,
the NPs-azacrown ligand-radionuclide systems for application in radiopharmaceutical pur-
poses have already been studied. For example, the authors of the article [31] tested AuNP
modified by peptide-DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) conju-
gates for drug delivery in pancreatic and colon cancer cell lines. In vivo application of these
functionalized nanoparticles with proper coating can improve the quality of PET images.
Another study [32] reported the use of 177Lu labelled conjugates of silica nanoparticles and
DOTA for targeted radiation therapy in melanoma models. In addition, it was previously
shown that azacrown ethers and their derivatives with the number of heteroatoms in the
cycle 5 and 6 form stable complex compounds with many metal cations, including Bi3+ [33].
Therefore, these macrocyclic ligands can be used as bifunctional chelators for bonding the
radionuclide to nanoparticles.

To the best of our knowledge, this study presents the first ever report of the possibility
of modifying ceria nanoparticles with a macrocyclic azacrown ligand for applications in
radiopharmaceuticals. The macrocycle with a relatively large cavity (Figure 1) is chosen as
the model object since its complexes with bismuth radionuclides have already demonstrated
high in vitro and in vivo stability [33].
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2. Experimental
2.1. Reagents

Solutions of cerium ammonium nitrate (NH4)2Ce(NO3)6 (Sigma-Aldrich) were used
as precursors for the synthesis of cerium dioxide nanoparticles. The chemicals used
in this research were chemically pure 2-(chloromethyl)oxirane (ECH) as the linker, 2-
(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), aqueous
solutions of NaOH and NH3, triethylamine, dimethyl sulfoxide (DMSO), 85% formic
acid solution, and deionized water (Milli-Q, 18 MΩm). A solution of [207Bi]Bi3+ in HCl
(0.9 MBq) as a labeling agent was purchased from JSC Ritverc. Bi(ClO4)3 or BiCl3 solutions
were used as a carrier for 207Bi. Azacrown ligand L (Figure 1) was prepared by a previously
reported method [34].

2.2. Nanoceria Synthesis and Surface Functionalization

The functionalization of cerium oxide nanoparticles was carried out as follows. The
method consisted of the consecutive synthesis of particles (Figure 2A) modified by the
linker and ligand L (Figure 2E). Ceria nanoparticles were obtained by chemical deposition
from 0.1 M of (NH4)2Ce(NO3)6 by 3 M of NH3·H2O at room temperature and constant
stirring for 24 h. As a result, a yellow precipitate of cerium dioxide was formed, which
was subsequently decanted by centrifugation, washed with water twice, and dried. In the
following stage, 50 mg of the as-prepared CeO2 yellow power was suspended in 2 mL of a
0.1 M NaOH solution for 5 min. Then, 1 mL of ECH was added, followed by the addition
of 100 µL of 2 M NaOH. The suspension was stirred at ambient conditions for 12 h. The
reaction mixture was centrifuged, and the supernatant was decanted. The nanoparticles
were washed with water then centrifuged until the pH value of the suspension reached
7. The resulting nanoparticles (1.1 equiv.) were added to a solution of ligand L (1 equiv.),
HBTU (3.5 equiv.), and triethylamine (3.5 equiv.) in DMSO and stirred at room temperature
for 12 h. Upon completion of the reaction, the precipitate was separated by centrifugation
and washed with water. At the final stage, 85% formic acid solution was added and stirred
for 3 h at room temperature to remove the tert-butyl protection of the carboxyl groups of
the ligand L. The resulting materials were separated, washed with water, and dried.

2.3. Characterization of Modified Nanoparticles

Electron microscopy: The microstructures of the samples were studied by transmission
electron microscopy (TEM) on a Zeiss Libra 200FE electron microscope. The analysis of
interplanar spacings was carried out using electron diffraction data obtained during the
TEM experiment. The size of particles was calculated by determining the average diameter
of approximately 300 particles according to the TEM data.

Spectroscopy method: Infrared (IR) spectra were recorded at 25 ◦C on a Thermo Scientific
Nicolet iS5 FT-IR spectrometer either in KBr or on the working surface of the internal
reflectance attachment using a diamond optical element by attenuated total reflection
(ATR). The spectral resolution was 4 cm−1. Raman spectra were obtained using a Renishaw
inVia Raman spectrometer with a 50-mW laser diode at a wavelength of 633 nm. The
spectral range was set between 100 and 3500 cm−1.

Thermogravimetry: The efficiency of ligand binding to the surface of CeO2 NPs was
analyzed by thermogravimetric analysis (TGA). The measurements were carried out in
an atmosphere of air using a Jupiter NETZSCH STA 449 F1 thermal analyzer combined
with a quadrupole mass spectrometer NETZSCH QMS 403 C Aëolos, from 30 to 900 ◦C at a
heating rate of 10 ◦C/min.

ζ-potential determination: The modification of the surface of nanoparticles at each
stage was confirmed by determining the isoelectric point from a series of ζ-potential
measurements at different pH values in the range 2–11. The pH values of a series of
samples in 0.01 M NaClO4 were established by adding various concentrations of NaOH or
HClO4 solutions. The ζ-potential was assessed by dynamic light scattering on a Malvern
ZETASIZER nano-ZS instrument.
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the ECH linker.

X-ray absorption spectroscopy: HERFD-XANES experiments were performed at BM20
beamline of the European Synchrotron Radiation Facility, Grenoble (France) [35]. The
incident energy was selected using the 〈111〉 reflection from a double crystal Si monochro-
mator. Rejection of higher harmonics was achieved by two Rh mirrors working at an
angle of 2.5 mrad relative to the incident beam. HERFD-XAS spectra were measured using
an X-ray emission spectrometer [36] at 90◦ horizontal scattering angle. Sample, analyzer
crystal and Si detector (Ketek) were arranged in a vertical Rowland geometry. The Ce
HERFD-XAS spectra at the L3 edge were obtained by recording the maximum intensity
of the Ce Lα1 emission line (4839 eV) as a function of the incident energy. The emission
energy was selected using the 〈331〉 reflection of five spherically bent Ge crystal analyzers
(with R = 1 m) aligned at an 80.7◦ Bragg angle. The vertical size of the beam at the sample,
which defines the energy resolution, was 80 µm. A combined (incident convoluted with
emitted) energy resolution of 1.2 eV was obtained, as determined by measuring the FWHM
of the elastic peak. Samples for the HERFD-XANES measurements were prepared as wet
pastes and sealed with single kapton confinement (of 25 mm thickness).
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2.4. Stability in Buffer Solutions

The conjugates of CeO2 with ligand L (CeO2-ECH-L) were complexed with a solution
of [207Bi]BiCl3 as a long-lived analogue of medically applicable 212Bi and 213Bi. The stability
of the resulting complex CeO2-ECH-L-207Bi was studied in the following media: 0.9%
NaCl, phosphate-buffered saline (PBS) with a pH of 7.4, 0.05 M 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES) and in the fetal bovine serum 1:1 (FBS) (HyClone).
Complexes with a solid phase concentration of 10−3 g·l−1 and a [207Bi]Bi3+ concentration
of 10−9 M were prepared in solutions of 0.9% NaCl by the addition of ammonium acetate
buffer solution (0.1 M) to fix the pH in the range 6.5–7.2, and in PBS, HEPES or FBS. All
samples were incubated at 37 ◦C and continuously stirred. The labeled CeO2-207Bi and
CeO2-ECH-L-207Bi were extracted from the mixture by solid–liquid separation behaviors in
centrifugal sedimentation. Aliquots of the supernatant were sampled and analyzed using
gamma spectrometry.

3. Results and Discussion
3.1. Synthesis and Functionalization of CeO2 Nanoparticles

A schematic of the synthesis of cerium dioxide nanoparticles is given in Figure 2A.
According to TEM data (Figure 2B), spherical crystalline nanoparticles were formed using
the synthesis procedure. The insert in Figure 2B demonstrates a high-resolution micro-
graph showing lattice bands of strongly crystallized particles with a distance of 0.31 nm,
which corresponds to the (111) plane of CeO2 nanoparticles. The electron diffraction (ED)
results obtained during the microscopic investigation show that only diffraction reflections
corresponding to the CeO2 fluorite structure are observed (Figure 2C). The diameter of the
particles is 2.9 nm according to the analysis of TEM data (Figure 2D).

The functionalization of CeO2 nanoparticles was conducted according to the scheme
in Figure 2E. Typical TEM images and particle size distribution of the surface-modified
nanoceria are shown in Figure S1 in the Supplementary Information. The average diameter
of CeO2-ECH-L is 2.8 nm with a standard deviation of 0.2 nm. Nanoparticles of the obtained
conjugates had a hydrodynamic size of 10–17 nm according to DLS results (see Figure S2 in
the Supplementary Information). This size did not change in buffer solutions (HEPES and
PBS) as well as in saline.

The prepared nanoparticles were pre-modified with epichlorohydrin (ECH) to further
obtain a hydrophilic surface coated with amino groups. At the next stage, ligand func-
tionalization was carried out through an unprotected carboxyl group by the method of
peptide synthesis, followed by the removal of tert-butyl protective groups to obtain the
CeO2-ECH-L conjugate. Infrared (Figure 3A) and Raman (Figure 3B,C) spectroscopy was
used to determine the structure and composition of the materials and functionalization
effectiveness. The deformation Ce-O bands (845, 940, 1060, 1330 cm−1) are observed in the
IR spectra for all samples. Vibrations of R-NH2 groups in the region of 1100 cm−1 confirm
the formation of the CeO2-ECH-NH2 structure. After ligand L functionalization, peaks
characteristic of the amino group (3500–3300, 1110 cm−1), the formed secondary amide
(1694 cm−1), vibrations in the pyridine ring (1567–1557, 778 cm−1), and carboxyl groups
(1425, 1403 cm−1) of the organic molecules are traced (Figure 3A).

A clear difference between the analyzed samples can be observed by Raman spec-
troscopy. Figure 3B shows the Raman spectra of the synthesized functionalized CeO2
nanoparticles. The spectra were recorded at minimum laser intensities (50 mW) to avoid a
possible degradation effect of the samples. The first order of the CeO2 Raman spectrum
is characterized by the presence of a F2g vibrational mode at approximately 465 cm−1,
associated with the elongation of the Ce–O bond, where Ce and O are coordinated at eight
and four times, respectively. The weak band observed at 1050 cm−1 may be related to
the asymmetry of the primary A1g mode, combined with small additional contributions
of Eg and F2g symmetries. The presence of a band in the modified CeO2 samples at ap-
proximately 600 cm−1 can be observed, which may be related to the presence of Ce3+ on
the surface of the solid, promoting a non-stoichiometric condition and the appearance of
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this band at 600 cm−1. Moreover, the presence of bond vibrations in the Raman spectra
of organic molecules confirms the change in the structure of the surface of cerium dioxide
nanoparticles [37,38].
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The bands in the Raman spectra can shift with changes on the surface of the crystal [39].
The change in the half-width at half-maximum and the shift of the maximum peak at
465 cm−1 (F2g) of the modified series of particles relative to the initial CeO2 are shown in
Figure 3C. Based on the above observation, the surface of the nanoparticles has changed,
which confirms the change in the structure of the substances.

The modification of the surface of nanoparticles at each stage was confirmed by a
series of ζ-potential measurements at different pH values, as shown in Figure 3D. The
functionalization of particles by amino groups on the CeO2 surface show a shift of the
isoelectric point in the region with a high pH value (pI = 7.4). The shift of the isoelectric point
to the left for CeO2-ECH-L-tBu (pI = 6.8) is explained by the presence of carboxyl groups in
the ligand structure, which are deprotonated with increasing pH value, forming a negative
charge on the surface. At the same time, nitrogen atoms in the macrocyclic and pyridine
fragments of the ligands also affect the pI position. They shift the isoelectric point to the
region with low pH values due to their basic properties. Thus, from a combination of IR
and Raman spectroscopy and ζ-potential results, we can conclude that CeO2 nanoparticles
were functionalized with azacrown ether L.

The effectiveness of ligand binding to the surface of ceria nanoparticles was evaluated
using the method of thermogravimetric analysis combined with mass spectrometry (TGA-
MS) in an atmosphere of air (Figure 3D). Weight loss occurs smoothly in the range from
30 ◦C to 400 ◦C. The weight loss for CeO2-ECH-L is greater compared to CeO2, which
is a consequence of ligand presence on the surface. In addition, there is a change in the
tilt angle of the lines of the modified sample at the beginning of heating caused by the
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oxidation of the organic part of the material. The TGA spectra of the free ligand are shown
in Figure S3 in the Supplementary Information. According to the TGA-MS results, the
release of water for CeO2 and CeO2-ECH-NH2 NPs begins from the moment of heating
and ends at temperatures up to 200 ◦C due to the presence of a substantial amount of
water on the surface of the sample (see Figure S4 in the Supplementary Information). For
conjugation of the nanoparticles and ligand L, water is released when heated to 400 ◦C due
to the oxidation of the organic molecules on the particles. The insignificant amount of CO2
registered for CeO2 is related to experimental conditions during particle synthesis. In other
cases, the CO2 peak in the mass spectra confirms the presence of organic molecules on the
CeO2 surface.

Figure 4 shows the HERFD-XANES data for the investigated samples. CeO2 (NIST)
was used as a standard with a cell parameter of 5.4117 Å and a particle size of more than
25 nm.
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The HERFD-XANES spectra reveal the presence of the dipole-allowed 2p-5d tran-
sitions (main edge transitions in the energy range 5723–5730 eV) and of the dipole for-
bidden but quadrupole-allowed 2p-4f transitions (at the pre-edge in the energy range
5715–5720 eV) [40,41]. The spectra of the studied samples relative to the standard in the
main edge region have a smoother shape due to the size effect. This effect was discussed
earlier by Plakhova et al. [15]. The presence of Ce (III) would lead to the appearance
of an additional peak in the pre-edge (~5715.5 eV) due to an increase in the number of
electrons and electron–electron interactions on the 4f orbital. The shape and position of the
pre-edge peaks (~5717.8 eV) of our CeO2 samples before and after the modification process
corresponds to the Ce (IV) standard (Figure 4B). Thus, the modification of the CeO2 surface
with azacrown ether ligand does not change the cerium oxidation state in nanoparticles,
despite the use of reducing agents in the synthesis procedure.

3.2. Stability in Buffer Solutions

The stability of the CeO2-ECH-L-207Bi nanoplatform and the extent of bismuth absorp-
tion on the surface of nanoparticles were studied in 0.9% NaCl with ammonium acetate
buffer solution, PBS with pH = 7.4, and HEPES (pH 7.1). Dissociation of the complex under
these conditions is a highly probable process due to the large number of competing ions
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capable of re-chelating radionuclide cations. This experiment can partially simulate the
behavior of a potential radiopharmaceutical when it is injected into a living organism.

Figure 5A–C shows the labeling efficiency at different time intervals of equilibration
under constant stirring and at a temperature of 37 ◦C. In Figure 5A,B, the conjugate of
the nanoparticles and ligand bonds with the radionuclide 207Bi over 90% after 30 min of
mixing, and after 4 h the radiolabeling yield is quantitative. The formation of nanoparticle-
ligand-radionuclide structures is relatively slow, which could be due to the presence of
competing ions in the solution. Moreover, as a result of re-chelation of [207Bi]Bi3+ in the
solution, the radiolabeling yield does not exceed 80% in this biological media.
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As shown in Figure 5C, [207Bi]Bi3+ binds rapidly to the ligand L on the surface of the
nanoceria in 0.05 M HEPES, and after 30 min, the radiolabeling yield exceeds 90%. During
the day, the complex CeO2-ECH-L-207Bi does not dissociate and the yield is c.a. 99% after
24 h. At the same time, the absorption of bismuth cations on CeO2 reaches 75% after 24 h,
however, this process exhibits slow kinetics compared with the formation of the complex.
This fact can be explained by the absence of re-chelating agents in the buffer. The high
kinetic stability of the conjugate of nanoparticles and the ligand L with radionuclide 207Bi
is obtained in HEPES, which makes it possible to use this system for in vivo experiments.

The stability of the CeO2-ECH-L-207Bi was analyzed in the FBS. This experiment can
partially simulate the behavior of a potential radiopharmaceutical when it is introduced into
a living organism and then circulated in the blood. As shown in Figure 6, the radiolabeling
yield does not exceed 30% after 24 h for CeO2-ECH-L-207Bi. Dissociation of the complex
under these conditions is a highly probable process due to the large number of serum
proteins that are able to re-chelate radionuclide cations.
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We can conclude that the results of kinetic stability in FBS during the day for CeO2-
ECH-L-207Bi are significantly lower than acceptable values for radiopharmaceuticals. On
the other hand, the conjugate CeO2-EPC-L can potentially be used for labelling with other
radionuclides that demonstrate the stability of complexes under in vitro and in vivo conditions.

4. Conclusions

This study proved that CeO2 nanoparticles are promising nanoagents in nuclear
medicine. The functionalization of nanocerium by a macrocyclic azacrown ligand with
six heteroatoms in the cavity and three pendant carboxylic arms is shown. The resulting
conjugate forms a radiolabeled complex with 207Bi3+, which is stable in saline and HEPES
solutions but dissociates into FBS. These results are promising for further studies of the
possible applications of this conjugate as a radiopharmaceutical. Moreover, we believe that
the proposed method of conjugation can be extended to other azacrown ethers and CeO2–
ECH-L conjugate can be used as a multipurpose nanoplatform with various radionuclides
for molecular imaging, therapy and theranostics of oncological diseases.
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