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Abstract: Nitrogen dioxide is one origin of air pollution from fossil fuels with the potential to cause
great harm to human health in low concentrations. Therefore, low-cost, low-power-consumption
sensors for low-concentration NO2 detection are essential. Herein, heterojunction by SnO2 quantum
wires, a traditional metal oxide NO2 sensing material, and Ti3C2Tx MXene, a novel type of 2D
layered material, was synthesized using a simple solvothermal method for enhancing gas-sensing
performance and reducing operating temperature. The operating temperature was reduced to 80 ◦C,
with a best performance of 27.8 and a fast response and recovery time (11 s and 23 s, respectively).
The SnO2 and Ti3C2Tx MXene composite exhibits high speed and low detection limit due to the
construction of the heterojunction with high conductive Ti3C2Tx MXene. The selectivity and stability
of gas sensors are carried out. This could enable the realization of fast response, high-sensitivity, and
selective NO2 sensing under low operating temperatures.

Keywords: Ti3C2Tx MXene; SnO2; gas sensor; NO2; nanocomposite

1. Introduction

The development of urbanization, industrialization, and modern agriculture greatly
facilitates human daily life, while greatly disturbing the ecological environment. Nitrogen
dioxide (NO2) is a highly reactive and toxic gas generated from fossil fuels (heating, power,
engines, chemical industry, etc.) [1,2]. It can lead to acid rain, and its salts are the main
component of PM (particulate matter in the atmosphere) [3]. Even at low concentrations
under 1 ppm, it can cause an increase in symptoms of bronchitis in asthmatic children
and cause lung function damage due to its strong oxidizing properties [4–6]. In total, 92%
of the global population lives in cities with air pollution exceeding limits from a WHO
report [7], indicating the need for further monitoring and control of low-concentration air
pollutant gases.

Gas sensors based on metal oxide semiconductors (MOS)—such as ZnO [8], SnO2 [9],
WO3 [10], TiO2 [11], etc.—have played an important role in NO2 sensing due to their
high sensitivity, fast response, and low cost. SnO2, as a typical n-type MOS, is one of the
most sensitive materials due to its high absorption [12,13]. Most SnO2 sensors operate
at a high temperature (300–400 ◦C) for better gas sensitivity, which not only reduces the
sensor lifetime but also poses a risk of fire during long operation times [14–17]. At room
temperature, the ultra-high resistance of SnO2 sensors results in low response to NO2 due to
increased resistance as a result of surface reaction. Currently, improving gas adsorption and
electronic transduction of MOS materials is a major problem in fabricating low-operating-
temperature gas sensors. Recently, some researchers decreased the operating temperature of
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SnO2-based gas sensing materials by reducing dimensions and controlling the morphology
of SnO2 [18–21]. For example, Zhong et al. [22] synthesized SnO2−x nanosheets, showing
a high response of 16 to 5 ppm NO2 at room temperature and taking more than 1000 s
for recovery in 2019. In 2021, Hung et al. used SnO2 nanowires as sensing material. They
had 50 and 100 s response and recovery times, respectively, under UV light [23]. In the
same year, Zhou et al. made hollow SnO2 microspheres using colloidal nano SnO2 for NO2
sensing at room temperature, reaching a response of 10 to 10 ppm NO2 and a fast recovery
time of 65 s [24].

Reducing dimensions and controlling the morphology is an active pathway for reduc-
ing the operating temperature of SnO2 gas sensors. The carrier transportation limited the
electron injection for NO2 desorption and resistance reduction. Low-dimensional layered
materials with high mobility were used for improving response speed at low operating
temperatures. In 2015, Li et al. [25] used rGO mixed with SnO2 nanoparticles as a sensing
material with fast response but slow recovery. Inaba et al. used SnO2-decorated SWCNT
as a sensing material, reaching a response of 19 at 1 ppm NO2 under UV [26]. Ti3C2Tx,
the first-layered MXene which is synthesized via HF etching of Ti3AlC2 using MAX by
Gogosti in 2011, with rich active surface groups and ultra-high conductivity, has shown
great attraction for ammonia and VOC sensing in recent research [27–30]. It was also
used as a composite, with SnO2 improving its gas sensing performance. Liu et al. made a
SnO2/Ti3C2Tx composite with response close to 50 ppb NO2 at room temperature but full
recovery at 100 ◦C [31]. Composites with 2D materials show potential for low-concentration
and low-operating-temperature NO2 sensors for environmental monitoring.

Herein, we processed SnO2 quantum wires and Ti3C2Tx MXene composite for re-
ducing operating temperature. Series mass of MXene was added for turning gas-sensing
performance and operating temperature. Gas-sensing performance and characterizations
were tested for explaining potential ppb-level NO2-sensing mechanism. It has been found
that Ti3C2Tx MXene provided a highly conductive pathway for improved charge trans-
portation, resulting in high- and fast-response SnO2/MXene composite NO2 sensors at low
operating temperatures.

2. Materials and Methods
2.1. Materials and Synthesis

All the reagents were utilized as supplied without additional purification treatment.
The Ti3AlC2 powder was purchased from Jilin 11th Technology Co. Ltd. (Jilin, China).
Oleic acid (OA) and oleyl amine (OLA) were brought from Alfa Aesar. LiF and SnCl4·5H2O
were from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). HCl,
toluene, and ethanol were from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China)
The resistivity of the DI water employed throughout the whole experiment was around
18 MΩ·cm.

All methods of synthesis and testing are shown in Figure 1. The pristine Ti3C2Tx
MXene was prepared through the in situ HF generation etching method according to
reports in the literature [27]. An amount of 1.65 g LiF was added to 15 mL HCl and 5 mL DI
water mixture (forming 9M HCl at last) in a Teflon lining. 1 g of Ti3AlC2 powder was slowly
added into the above solution in an ice bath, preventing the solution from overheating,
and then magnetically stirred continuously for 24 h in a 40 ◦C oil bath. After etching,
the product was washed and centrifuged repeatedly with DI water until the pH of the
supernatant returned to 7. The Ti3C2Tx MXene was pumped, filtered, and dried at 60 ◦C
under vacuum overnight, and powder was collected for composite.

The colloidal SnO2 was synthesized using a simple solvothermal method, shown in
Figure 1 [32]. Firstly, 0.7 g SnCl4·5H2O (2 mmol) was mixed in 20 mL of oleic (OA) and
1.5 mL of oleyl amine (OLA). Then, the mixture was ultrasonically dispersed for 30 min
until transparent. Next, the mixture was transferred into a Teflon-lined steel autoclave
with 10 mL ethanol to react at 180 ◦C for 3 h. After rapid cooling to room temperature,
the mixture was precipitated with ethanol and redispersed in toluene three times. Ti3C2Tx
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MXene was dissolved in ethanol (forming 3, 6, 9, 12 mg/mL for Moore ratios of 10%, 20%,
30%, and 40%, respectively, to SnO2) for composite synthesis. Finally, all the precipitate was
dispersed in toluene for sensor fabrication. These materials and sensors with differently
treated materials were marked as SnO2, ST3, ST6, ST9, and ST12, respectively.
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Figure 1. SnO2 and SnO2/Ti3C2Tx composite synthesis scheme.

2.2. Material Characterization

The crystal phase was analyzed with X-ray diffraction analysis (XRD; Rigaku D/Max
2550, Akishima, Japan) using Cu Kα radiation (λ = 1.5418 Å) in the 2θ range of 5−80◦. The
microstructure was observed via scanning electron microscopy (SEM; Sigma 300 Zeiss,
Oberkochen, Germany) with an acceleration voltage of 15 kV. The element ratio and spot
pattern scanning analysis were tested using energy dispersive X-ray spectroscopy (EDS)
with SEM. Transmission electron microscopy (TEM; FEI Tecnai G2 F20 S-Twin, Hillsboro,
OR, USA) was conducted with an acceleration voltage of 200 kV. X-ray photoelectron
spectroscopy (XPS) data were obtained on a Thermo Fisher Scientific K-Alpha (Waltham,
MA, USA) with an Al source, and the sample was prepared via drop casting Ti3C2Tx MXene
on Si substrate.

2.3. Gas Sesnor Fabrication and Testing

Alumina ceramic plate with inter-digital Ag electrodes was used as the substrate of the
gas sensor. Before film fabrication, devices were cleaned with acetone and absolute ethanol
and then dried under nitrogen flow. The gas sensor was prepared via the spin-coating
method. SnO2 and SnO2-MXene composite were dispersed in toluene, forming 20 mg/mL
solution, were dropped onto the substrate, and then were spun at 2000 rpm for 30 s before
being washed with methanol. These steps were repeated 3 times to form gas sensors. Then,
the sensors were annealed at 300 ◦C for 3 h for surface OA removal.

The gas-sensing properties of the resistance sensor were evaluated using a Keithley
2400 digital source (Tektronix, Beaverton, OR, USA) meter with an 18 L chamber via the
static sensing method. Temperature was raised with a heating plate and tested with a
thermocouple. When the resistance of the sensors was stable, target gas with desired
concentrations was injected into the chamber using syringes. As the sensor resistance
reached a constant value, the chamber was opened for recovery in the atmosphere. The
response of the gas sensor is defined as S = ∆Rg/Ra, where Ra is the resistance of the sensor
in air (base resistance) and ∆Rg is the resistance change of the sensor in the target gas.
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The response time was defined as the time taken by the sensor to achieve 90% of the total
resistance/frequency change in the case of gas adsorption. Similarly, the recovery time was
defined as the time taken by the sensor response to reduce to 10% of its maximal value in
the case of gas desorption.

3. Results
3.1. Materials Characterization

Figure 2 displays the XRD patterns of MAX phase Ti3AlC2, Ti3C2Tx MXene, SnO2, and
composite. Ti3AlC2 MAX powder shows intense crystalline peaks at 19.12◦, 34◦, 36.72◦, 39◦,
41.74◦, 56.42◦, 60.18◦, 70.38◦, and 74.06◦, which are indexed to the (004), (011), (013), (014),
(015), (109), (110), (01 12), and (118) diffraction planes, respectively, in Figure 2a [33,34].
The Ti3C2Tx peaks at 8.52◦, 18.6◦, and 28.7◦indexed to the (002), (004), and (006) planes,
respectively [27]. The peaks at 34.96◦, 39.64◦, and 45.96◦ were peaks of Ti3C2 and TiC which
were over-etched. The reflection disappearance of highest (014) peak confirmed the Al was
etched with HF. The small peaks between 35◦ and 45◦correspond to the termination groups
(–OH) and (−F), respectively, of MXene [35].
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Figure 2. The X-ray diffraction patterns of (a) MAX and MXene, (b) SnO2, and their composites (ST3,
ST6, ST9, and ST12).

The XRD pattern of SnO2 showed reflection peaks at 26.58◦, 33.86◦, 33.94◦, and 51.75◦,
corresponding to (110), (101), (200), and (211) plates, respectively, confirming its tetragonal
rutile phase (JCPDS Card No #99-0024). The presence of the independent peaks of SnO2
and Ti3C2Tx MXene without any impurity peaks suggests the successful preparation of the
composite (Figure 2b). The peak was almost invisible in the XRD pattern of ST3. Then, the
peak intensity of Ti3C2Tx MXene significantly increases with an increase in its concentration
in ST composite.

Pure colloidal SnO2 was shown in Figure 3a. It shows that colloidal SnO2 was 2–3 nm
diameter quantum dot necking in colloidal SnO2 networks. With the addition of Ti3C2Tx
MXene (Figure 3b–e), colloidal SnO2 networks saw epitaxial growth on the surface of
Ti3C2Tx MXene. The Ti3C2Tx MXene sheets were not visible in ST3 composite. With an
increase in Ti3C2Tx MXene, the Ti3C2Tx MXene sheets were clearer, and colloidal SnO2
networks decreased on the Ti3C2Tx MXene. SAED (selected area electron diffraction) of
SnO2, ST9, and ST12 is shown in the corresponding graph. Furthermore, the lattice spacings
were found to be 0.334 and 0.267 nm, which are consistent with the (110) and (101) planes
of rutile SnO2 [32], respectively (Figure 3f). Figure 3g shows the interface of Ti3C2Tx MXene
and colloidal SnO2 networks of ST9; the MXene surface displayed fully epitaxial growth
with SnO2. The interface of ST12 in Figure 3h shows that the surface was not full filled
with SnO2.
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The morphology of the as-prepared samples has been analyzed through employing
SEM. As plotted in Figure 4a, the Ti3C2Tx MXene shows organ-like stack sheets after the HF
etching. Figure 4b shows the morphology of pure SnO2 film. It shows a smooth colloidal
film with some small stacks. ST3 film in Figure 4c has more stacks on the film surface for
Ti3C2Tx MXene adding. With an increase in Ti3C2Tx MXene, the film turns rough. And the
ST12 film shows sheets more like the Ti3C2Tx MXene film (Figure 4f).

Figure 5 shows the XPS survey and high-resolution spectra of colloidal SnO2, Ti3C2Tx
MXene, and ST9 composites. Colloidal SnO2 shows C–C bonds at 281.2 eV from surface
OA ligand (Figure 5b). The Ti3C2Tx MXene shows two similar-intensity peaks at 281.2
and 284.2 eV ascribed to Ti–C and C–C bonds [36,37], respectively. The ST9 composite
shows a weak Ti–C bond, and OA ligand was at the composite surface, introducing more
C–C groups. F 1s high-resolution spectra with a binding energy of 686 eV was shown
in Figure 5c. After mixture, the F 1s peak becomes weaker and redshifts. As shown in
Figure 5d, the presence of two split peaks (Sn 3d5/2 and Sn 3d3/2 at 487.1 and 495.6 eV,
respectively) confirms the formation of SnO2. The Sn peaks of ST9 are also weaker and
slightly less redshifted than those of pure SnO2. The four pairs of peaks of Ti 2p centralized
at 454.9 and 461.1, 455.8 and 461.4, 457.1 and 462.9, and 458.9 and 464.5 eV correspond to
Ti–C, C–Ti–OH, C–Ti–O, and TiO2, respectively [38,39]. TiO2 and Ti–O groups strengthen
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the other active functional surface Ti groups against oxidation while using the solvothermal
method (Figure 5e,f). The O 1s peaks at 530.7 and 532.5 eV can be assigned to the lattice
O (OL, Sn–O–Sn) and chemically absorbed O (Oa), respectively (Figure 5g). Figure 5h
shows the O 1s peaks of Ti3C2Tx MXene at 529.9 and 532.2 eV for Ti–O and Ti–C–O groups,
respectively [40,41]. In composite, the lattice O of SnO2 was the main oxide state and
absorbed and Ti–C–O followed. There were still Ti–O groups on the composite.
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3.2. Gas-Sensing Performance

Figure 6a displays resistance curves of ST9 sensor towards 10 ppm NO2 under series
operating temperature. The resistance increases after exposure to NO2 for SnO2 as a p-type
semiconductor. With the operating temperature increasing, the baseline resistance decreases
from 40.9 MΩ to 8.1 MΩ due to high carrier transportation under high temperature. The
resistance under target gas decreases, but the response shows an increasing trend at first
below 80 ◦C and a decreasing trend as operating temperature increases from 15.6 to 27.8
in the calculated response curves in Figure 6b. Figure 6c compares the response and
recovery time of ST9 sensor towards 10 ppm NO2 under different operating temperature.
As operating temperature increases, the response and recovery changes quickly from over
100 s to around 10 s. The relationship of operating temperature to Ra and Rg and response
towards 10 ppm NO2 was calculated and summarized in Figure 6d–f, respectively. It shows
that as the operating temperature and the MXene ratio increase, gas sensor resistance
decreases. As the Ti3C2Tx MXene increases, the optimal working temperature decreases.
The response of pure SnO2 sensors still increases when the operating temperature increases
up to 120 ◦C. The ST3 and ST6 sensor shows a best performance at 100 ◦C. ST9 and ST12
sensors shows the highest responses at 80 and 60 ◦C, respectively. The 2D Ti3C2Tx MXene
sheets introduce an effective method of decreasing operating temperature.
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Figure 5. (a) XPS survey and high-resolution spectra of SnO2, Ti3c2Tx MXene, and ST9 composite.
High-solution XPS spectra of (b) C 1s, (c) F 1s, and (d) Sn 3d. Ti 2p spectra of (e) Ti3C2Tx MXene and
(f) ST9. O 1s spectra of (g) SnO2, (h) Ti3C2Tx MXene, and (i) ST9.

Figure 7a presents the resistance curves of ST9 sensor under 80 ◦C towards series NO2
(10 ppm to 0.2 ppm). As the concentration decreases, the response becomes smaller and the
response speed slower. The ST9 sensor showed the highest response of 27.8 toward 10 ppm
NO2 at 80 ◦C, with response and recovery times of 11 and 23 s, respectively (Figure 7b).
The NO2-sensing performance compared to that of other research was listed in Table 1.
Figure 7c exhibits the linear fitting curve of the pure SnO2 and ST9 sensor response to
NO2 concentration. The theoretical detection limits of the sensors were estimated to be
20 ppb (ST9) and 100 ppb (SnO2) according to the least-squares method. Repeatability and
long-term stability are also two important aspects in gas-sensing applications. Figure 7d
shows the repeat curves of ST9 sensor to 10 ppm NO2 80 ◦C for 6 cycles, indicating a
highly stable sensing performance. Furthermore, the long-term responses for a month of
pure SnO2 and ST9 sensor to 10 ppm NO2 show a slight reduction under 10% (Figure 7e),
indicating good long-term stability. The responses of pure SnO2 and ST9 sensor to 10 ppm
NO2, CO, NH3, SO2, CH4 and ethanol were shown in Figure 7f. The response towards
NO2 was much higher than the other gases, indicating that the SnO2 and ST9 had high
selectivity to NO2, and selectivity of ST9 also improved to pure SnO2.
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Table 1. NO2-gas-sensing performance of SnO2-based sensors.

Materials Response Operating
Temperature (◦C)

Response/Recovery
Time LoD Reference

SnO2−x nanosheets 16@5 ppm RT 331 s/1057 s - [22]
SnO2 nanowires 50@5 ppm RT(UV) 420 s/100 s 100 ppb [23]

SnO2 hollow microspheres 10@10 ppm RT 17 s/65 s 26 ppb [24]
Bio-templated SnO2

channels 35.9@100 ppm RT 2.67 s/13 s 10 ppb [42]

leaf-like SnO2 7@0.5 ppm 65 10 min/46 min - [43]
rGO/SnO2 84.5%@0.5 ppm 120 22 s/125 s - [44]
CNT/SnO2 0.59@0.5 ppm RT ~40 s/~200 s 100 ppb [45]

SWCNT/SnO2
nanoparticles 18@1 ppm RT(UV) 200 s/- 1 ppb [26]

MoS2/SnO2 34@100 ppm RT 2.2 s/11 s 10 ppb [46]
Ti3C2/SnO2 1.57@10 ppm RT ~300 s/~100 s (100 ◦C) 50 ppb [29]

Ti3C2Tx/SnO2 27.8@10 ppm 80 11 s/23 s 20 ppb This work

3.3. Gas-Sensing Mechanism

Based on its gas-sensing performance and material characterizations, the gas-sensing
mechanism of SnO2/Ti3C2Tx MXene composite has been hypothesized. The SnO2 sensing
mechanism is traditionally analyzed using the surface control model [47], which is based
on the interaction between chemisorbed oxygen species and target gases on the surface of
SnO2. Generally, oxygen in ambient air adsorbed on metal oxide surfaces converted to O2

–,
O–, and O2– by capturing electrons near the valence band. In our work, O2

– and O– were
the main absorbed oxygen states on the SnO2 surface following the reaction [47]:

O2 + e− → O−2 (1)

O−2 + e− → 2O− (2)

Normally, the O2− was mostly formed above 400 ◦C. The surface-absorbed oxygen
formed a depletion zone on the SnO2 surface (blue area in Figure 8). This caused the
carrier balance to begin forming the resistance of gas sensors. When exposed to NO2, the
surface-absorbed oxygen reacts with NO2 per follow equation [48]:

O−2 + NO2 + e− → NO−3 + O− (3)

This reaction introduces the consumption of electronics forming a deeper depletion
zone on the SnO2 surface, leading the resistance of gas sensor increase.

With the addition of Ti3C2Tx MXene, SnO2/Ti3C2Tx MXene heterostructures are
formed with Schottky barriers. The Fermi level of SnO2 was at 4.5 eV [49], higher than
the Ti3C2Tx MXene work function (~3.9 eV) [50]. The Fermi level balance leading electron
injecting from the MXene to SnO2 and formed the band bending. Another electron depletion
region between the interface of SnO2 and Ti3C2Tx MXene was formed. When exposed to
NO2, two depletion regions were both widened for electron consumption, enhancing NO2
sensing performance. The Ti3C2Tx MXene sheet introduced folded and stacked multilayer
into the film, which offered a large number of active sites and gas molecule transport
channels for the adsorption of oxygen and NO2, thus improving the NO2-sensing response.
In addition, the high conductivity of Ti3C2Tx MXene formed a carrier transportation
channel during the sensing process and decreased the response and recovery time. The
performances of ST3 and ST6 sensors were improved, but the Ti3C2Tx MXene was not
enough for carrier transportation. The ST12 sensor response decrease was due to the
Ti3C2Tx MXene surface not being fully grown, transporting more electrons for band balance
and reflecting Ti3C2Tx MXene p-type response to gases, opposite to the n-type SnO2.
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4. Conclusions

In summary, SnO2 quantum wires and Ti3C2Tx MXene composites with different
ratios were synthesized using the one-step solvothermal method. SnO2 quantum wire
epitaxial growth occurred on the surface of Ti3C2Tx MXene. Ti3C2Tx MXene was oxidized
during the solvothermal method. The molar ratio was 30% (MXene); the marked ST9 sensor
showed the best response of 27.8 to 10 ppm NO2 at 80 ◦C, with 11 s and 23 s of response
and recovery time, respectively. The response of ST9 sensor was 2 time to pure SnO2 at
an operating temperature of 120 ◦C. The ST9 sensor could detect NO2 as low as 20 ppb in
theory with excellent selectivity. The potential gas-sensing mechanism of SnO2/Ti3C2Tx
MXene composite has been hypothesized to be the heterostructure enhancing the carrier
transfer into SnO2, enhancing surface reaction and sufficient carrier supplied by the high
conductivity of Ti3C2Tx MXene.
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