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Abstract: The internet of medical things (IoMT) is used for the acquisition, processing, transmission,
and storage of medical data of patients. The medical information of each patient can be monitored
by hospitals, family members, or medical centers, providing real-time data on the health condition
of patients. However, the IoMT requires monitoring healthcare devices with features such as being
lightweight, having a long lifetime, wearability, flexibility, safe behavior, and a stable electrical
performance. For the continuous monitoring of the medical signals of patients, these devices need
energy sources with a long lifetime and stable response. For this challenge, conventional batteries
have disadvantages due to their limited-service time, considerable weight, and toxic materials.
A replacement alternative to conventional batteries can be achieved for piezoelectric and triboelectric
nanogenerators. These nanogenerators can convert green energy from various environmental sources
(e.g., biomechanical energy, wind, and mechanical vibrations) into electrical energy. Generally, these
nanogenerators have simple transduction mechanisms, uncomplicated manufacturing processes,
are lightweight, have a long lifetime, and provide high output electrical performance. Thus, the
piezoelectric and triboelectric nanogenerators could power future medical devices that monitor
and process vital signs of patients. Herein, we review the working principle, materials, fabrication
processes, and signal processing components of piezoelectric and triboelectric nanogenerators with
potential medical applications. In addition, we discuss the main components and output electrical
performance of various nanogenerators applied to the medical sector. Finally, the challenges and
perspectives of the design, materials and fabrication process, signal processing, and reliability of
nanogenerators are included.

Keywords: energy harvesting; green energy; internet of medical things; monitoring healthcare
devices; piezoelectric nanogenerator; triboelectric nanogenerator

1. Introduction

Due to the health problems caused by COVID-19, the World Health Organization
(OMS) has implemented strategies for monitoring, controlling, and treating chronically ill
patients [1,2]. An interesting strategy is digital home hospitalization, which could be used
in future health contingencies [3–5]. This strategy is justified by the lack of hospital beds
and the increase in the world population of older adults [6,7]. The world population could
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reach 8.5 billion and 9.7 billion in 2030 and 2050, respectively [8]. In addition, digital home
hospitalization is suitable for people with chronic diseases who live in isolated areas [9,10].
Thus, patients could be cared for from their homes, preserving their integrity with the help
of the implementation of a wireless patient monitoring tool.

In recent years, the internet of medical things (IoMT) and the internet of things (IoT)
have registered great interest from the scientific and medical communities. The IoMT
is a subarea developed and applied within the IoT to focus on different current medical
applications. This process uses the acquisition, processing, transmission, and storage
of medical information through specific devices and the security of patient data [11–15].
The IoMT processes and contains patients’ confidential data. Thus, a critical challenge of
the IoMT is achieving data security [16,17]. The IoMT requires devices with soft, elastic,
and biocompatible materials, safe performance, and stable electrical response [18–20]. In
addition, these devices require a great capacity for monitoring different patient signals
using electrical energy sources of small size and long lifetime. These devices must provide
real-time data on the health status of patients, informing the patients, family members,
medical centers, or doctors. In addition, the IoMT devices must alert possible health risks
of patients.

Wireless and portable electronics have increased with the gradual technological de-
velopment of 5th generation mobile networks around the world [21–25]. Using portable
electronic devices and wireless connections, the IoMT technology may allow the possibility
to control and assist patients. Thus, this technology can help patients’ health by providing
and controlling medical treatments [26–29]. However, the future IoMT portable devices
will require energy sources that replace conventional batteries, which have limitations such
as limited lifetimes, large volume and weight, and toxic materials that can contaminate
the environment. To improve the performance and lifetime of energy storage devices,
recent investigations [30–35] have developed rechargeable metal-air batteries and metal-
ion batteries, as well as supercapacitors. Another alternative to substitute conventional
batteries is the fabrication of nanogenerators, which can harvest green energy from the
environment or the human body. The nanogenerators offer advantages such as a long
lifetime, small volume, light weight, a non-expensive fabrication process, and high output
power density [36–40]. The nanogenerators can use the triboelectric and piezoelectric
effects for harvesting biomechanical energy into electricity [41–49]. The piezoelectric nano-
generators can convert the mechanical deformations of the piezoelectric materials used in
their structures into electrical voltages. On the other hand, triboelectric nanogenerators use
both contact electrification and electrostatic induction between two moving triboelectric
layers to generate an electrical potential difference. Table 1 depicts several advantages
and disadvantages of piezoelectric and triboelectric nanogenerators, metal-air batteries,
and supercapacitors.

Nanogenerators can harvest biomechanical energy due to the movement of the hands
and fingers [50–57], wrists [58–66], knee joints [67–74], and feet [75–84]. In addition, this
energy is generated by external agents, including the movement or friction of clothing,
backpacks, and the airflow interacting with the human body when running, riding a motor-
cycle or bicycle, skating, and so on. Nanogenerators could also power future implantable
medical devices. Implantable medical devices can maintain and monitor vital signs of pa-
tients, such as heart rate monitors, pacemakers, defibrillators, and brain stimulation [85–87].
However, these devices are still powered using conventional batteries, which have limited-
service life. Thus, nanogenerators could harvest the biomechanical energy of patients for
powering implantable medical devices [88–102]. Figure 1 illustrates the application of
nanogenerators to convert biomechanical motion into electrical energy to power potential
IoMT electronic devices.
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Table 1. Comparison of advantages and disadvantages of different devices used in the energy
harvesting and storage process.

Device Type Advantages Disadvantages Ref.

Metal-air
batteries

High energy density, low cost, flat
discharge voltage, and high safety

Performance is affected by environmental
conditions, dendrite formation on the

anode, carbonation of alkaline electrolyte,
and limited range of operating temperature

[30,32]

Supercapacitor
High energy density, high specific surface
area, long cycle life, and good conductivity

and stability

Capacitance and charge storage depend on
the employed electrode materials and

non-simple fabrication process
[33–35]

Piezoelectric
nanogenerator

Simple structure and easy fabrication
process, good electromechanical stability,

and non-complex signal processing system

Performance depends on the properties
and structural configuration of the

piezoelectric material
[36]

Triboelectric
nanogenerator

High electrical performance, compact
structure, simple working principle,

low-cost materials, and good
electrical stability

Wear of triboelectric material by friction,
and performance depends on the

properties and working mode of the
triboelectric film

[36]
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Figure 1. Potential application of piezoelectric and triboelectric nanogenerators to convert biome-
chanical energy into electrical energy, which could be used to power IoMT electronic devices.

We reviewed piezoelectric and triboelectric nanogenerators that can harvest green
energy from environmental sources such as human body motion, mechanical vibrations,
and wind. The harvested energy can be converted into electrical energy to power potential
medical devices that monitor and process signals of different health parameters of patients.
These signals could be transmitted to hospitals or medical centers using the IoMT. The op-
erating principle, materials, and manufacturing processes of nanogenerators are discussed.
Future medical applications of piezoelectric and triboelectric nanogenerators are reported,
including materials, signal processing components, and packaging. Finally, we proposed
the challenges and perspectives on the output performance of nanogenerators, taking
into account the topics of design, materials and fabrication processes, signal processing,
and reliability.

2. Operating Principle, Materials, and Fabrication

Triboelectric and piezoelectric nanogenerators have potential applications in the medi-
cal sector due to their high electrical output performance, simple structure and operation
principle, and cost-effective fabrication process.

In 2017, Chen et al. [103] reported a flexible hybrid nanogenerator that can be at-
tached on soft surfaces, such as human skin, for body motion harvesting and monitoring
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physiological signals. A single-electrode TENG and a PENG are integrated into the nano-
generator to improve its electromechanical performance (Figure 2). The PENG module
used poly(vinylidenefluoride-co-trifluoroethylene) P(VDF-TrFE) nanofiber mats as the
piezoelectric structure, and polydimethylsiloxane (PDMS) as the protective layer. Ther-
moplastic polyurethane (PU) nanofibers coated with carbon nanotubes (CNT) and silver
nanowires (AgNWs) were employed in the electrodes. Thus, the PU electrodes sandwiched
the piezoelectric layer. The PENG part was separated from the TENG part by a PDMS
isolation film to produce piezoelectric and triboelectric outputs. Another PDMS layer
operated as triboelectric material, and the PU film as an electrode for the single-electrode
TENG. Based on the triboelectric and piezoelectric mechanisms, this hybrid nanogenerator
registered a maximum peak power up to 84 mW/m2 and 0.11 mW/m2 for the TENG and
PENG modules under compressive stress (Figure 3). This nanogenerator can be attached
to any soft hybrid to convert tapping and pressing energy into electricity. The hybrid
nanogenerator can be placed on the skin for real-time monitoring of human physiological
signals, such as respiratory information and radial artery pulse. Figure 4 shows the hybrid
nanogenerator attached to the back of the hand to collect the body motion energy of closing
the fist and punching. This nanogenerator can be mounted on the abdomen for monitoring
the human respiratory rate and depth. Thus, the nanogenerator could be employed for
monitoring the respiratory condition of patients. Also, this nanogenerator has potential
applications for self-powered healthcare monitoring systems and e-skins.
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Figure 2. Flexible hybrid nanogenerator reported by Chen et al. [103]. (a) Nanogenerator placed on
the surface of a balloon. (b) Schematic view of the different materials of the nanogenerator. (c) SEM
image of the electrospun P(VDF-TrFE) nanofiber mat. (d) SEM image of the micro-patterned PDMS
layer. (e) Process of contact-separation and compress-recover on a soft surface. (f) Measurements
of resistance of the conductive fiber mat as a function of its bending angle. (g) Stability results on
the resistance variation of the fiber-based electrode under fold/unfold deformation for 1000 cycles.
SEM image of the fiber-based electrode. Reprinted with permission from [103]. Copyright ©2017,
Elsevier Ltd.
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Figure 3. Electrical output performance of the flexible hybrid nanogenerator reported by
Chen et al. [103]. (a) The output voltage, (b) current, and (c) maximum peak power as a func-
tion of resistance load of the TENG module. (d) The output voltage, (e) current, and (f) maximum
peak power versus resistance load of the PENG module under compression. (g) The output voltage
and (h) current of the PENG module under bending mode. (i) The charge voltage of a capacitor
of 1 µF using the hybrid nanogenerator. Reprinted with permission from [103]. Copyright ©2017,
Elsevier Ltd.

In 2018, Sun et al. [104] designed a biocompatible triboelectric–piezoelectric–pyroelectric
hybrid nanogenerator with high flexibility. This nanogenerator has a transparent structure
formed by polyvinylidene fluoride (PVDF), PDMS, and Ag nanowires. The PVDF material
acts as piezoelectric and pyroelectric film and the PDMS acts as a triboelectric film. The
Ag nanowires are used as high-performance transparent electrodes (TEs) and can be dis-
tributed into a network like a leaf venation (LV), inspired by optimized LV (Figure 5). Thus,
the working mechanism of the hybrid nanogenerator is integrated by a triboelectric nano-
generator, a piezoelectric nanogenerator (TENG-PiENG), and a pyroelectric nanogenerator
(pyENG). This nanogenerator can be mounted on different body parts to collect mechanical
and thermal energy from the human body. This nanogenerator has an environmentally
friendly design, which the structure of LV can reuse many times. The nanogenerator
structure registered a minimum sheet resistance of 1.4 Ωsq−1 with 82% transmission and
sheet resistance of 68.2 Ωsq−1 with an ultra-high transmission of up to 99%. The hybrid
nanogenerator can harvest a maximum open-circuit output voltage of 55 V and 86 V from
mechanical and thermal energy with the three coupled transduction mechanisms (Figure 6).
The nanogenerator has a potential application for assessing the patient’s health status with



Nanomaterials 2022, 12, 4403 6 of 35

a cold, using frequency, coughing, and breathing through the amplitude of the voltage
(Figure 7). The hybrid nanogenerator can monitor various human physiological signals,
such as heartbeat, swallowing, and neck tilting. This nanogenerator could be used for cost-
effective medical diagnostics and prognosis of cardiovascular, Parkinson, and esophagus
diseases. Also, the nanogenerator integrated with a thermochromic liquid crystal display
(LCD) could operate as a thermometer for medical diagnostics.
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Figure 4. Results of real-time physiological monitoring using the flexible hybrid nanogenerator
developed by Chen et al. [103]. (a) Respiration signal during 50 s with four different breathing modes
such as deep, shallow, fast, and slow. (b) The enlarged signal in one breath cycle of a patient, which
was measured using the hybrid nanogenerator attached to the belly. (c) The real-time artery pulse
signal and (d) its enlarged signal of output voltage in one cycle that was measured with the hybrid
nanogenerator. Reprinted with permission from [103]. Copyright ©2017, Elsevier Ltd.

In 2019, Zhu et al. [105] investigated a self-powered and self-functional cotton sock
(S2-sock) based on a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-
coated fabric TENG and lead zirconate titanate (PZT) piezoelectric device (Figure 8). The
PEDOT:PSS is a polymer with high conductivity and mechanical stability. A Cu substrate
was bonded to the piezoelectric device to improve the ductility and optimize the mechanical
behavior. This sock can produce the featured waveforms for walking pattern recognition
and motion tracking of patients under home care. The experimental tests show that in-shoe
situation, the TENG part of the sock can generate the output power of 66 µW and 137 µW
at 1 Hz walking and 2 Hz jumping with a load resistance of 10 MΩ, respectively (Figure 9).
For indoor use, the TENG part of the sock stepping on a polytetrafluoroethylene (PTFE)
film, which is mounted on the ground, registers maximum powers of 1.17 and 1.71 mW
under a load resistance of 59.7 MΩ. This allows a power density of 11 µW/cm2 considering
a contact area close to 150 cm2. For the piezoelectric device (size of 5 cm × 5 cm), the
maximum output power was 32 µW under load resistance of 0.4 MΩ and 12 N at 1 Hz.
The maximum power density of the PZT device is 128 µW/cm2, which offers a good
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performance for smart textiles. For the indoor case using bare shocks at home, the pattern
recognition and motion tracking can be measured for home care applications of the IoMT.
The S2-shock was used to measure the mimetic motions of a Parkinson’s disease patient
regarding normal motion, loss of stride, and freezing of gait (FOG). Moreover, this sock can
collect energy from body motion and sense diversified physiological signals for healthcare
and home sports. In addition, this cotton sock can be enhanced by incorporating wireless
transmission modules and integrated circuits.
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Figure 5. Network of LV-like Ag nanowires of the hybrid nanogenerator fabricated by Sun et al. [104].
Images of (a) the structure of a ramified leaf used as a mold to fabricate the patterns of TEs. (b) The
skeleton of the leaf venation and (c) LV network were prepared in a square shape to be used as a mold.
(d) SEM image of Ag nanowires. These nanowires were synthesized in a small bottle. (e) Schematic
of vacuum filtration of the Ag nanowires. (f) Image of Ag nanowires film filtered using a cellulose
acetate membrane. (g) Schematic of a modified dry transfer printing technique to fabricate the
LV-like Ag nanowires network. (h) Image of the LV-like Ag network on a PDMS substrate (size of
3.5 cm × 3 cm). Reprinted with permission from [105]. Copyright ©2018, Elsevier Ltd.

In 2019, Li et al. [106] reported a hybrid nanogenerator based on cellulose nanofibril
(CNF) as a triboelectric layer and bacterial cellulose (BC) with nanoparticles of BaTiO3 and
a multi-walled carbon nanotube (MWCNT) as piezoelectric layer. The CNF fibers were
treated by employing a mixed solution of HNO3 and H2SO4. In addition, a -NO3 group is
applied to enhance the electronegativity of the CNF fibers. This hybrid nanogenerator is
formed by two composite layers. The top arched layer acts as PENG, using a functionalized
BC paper with two Ni electrode films. The PENG has an arched shape to improve the
strength of the effective strain applied to the bacterial cellulose film. The bottom layer
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operates as TENG integrated by a Nitro-CNF paper and a bottom Cu electrode film.
The working mechanism of the PENG consists of the strain of the piezoelectric layer
caused by external forces on its top surface, which generates a voltage variation between
the two Ni electrodes. On the other hand, TENG operates with contact electrification
and electrostatic induction. The triboelectric and piezoelectric parts have high output
electrical performance, achieving short-circuit current density and open-circuit voltage of
1.23 µA/cm2, 37 V, 220 nA/cm2, and 22 V, respectively. With a rectifier circuit to integrate
the outputs of both triboelectric and piezoelectric parts, the hybrid nanogenerator has a
short-circuit current density and open-circuit voltage of 1.6 µA/cm2 and 18 V, respectively.
This cellulose-composed nanogenerator has an environmentally friendly simple structure,
light weight, and cost-effective fabrication. Thus, this nanogenerator could apply to
wearable or implantable devices and self-powered electronic sensors.
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Figure 6. Working mechanism of the flexible hybrid nanogenerator designed by Sun et al. [104].
(a) Schematic view of the components of the hybrid nanogenerator. (b) Image of the hybrid nano-
generator placed on the wrist. Working mechanism of the (c) TENG-PiENG and (d) PyENG of the
hybrid nanogenerator. Open-circuit voltage of the (e) TENG-PiENG and (f) PyENG. Reprinted with
permission from [104]. Copyright ©2018, Elsevier Ltd.
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Figure 7. Potential applications of the flexible hybrid nanogenerator reported by Sun et al. [104].
Voltage output of the hybrid nanogenerator for assessing (a) heartbeat pulse, (b) swallowing, and
(c) neck tilting. (d) Schematic view of a smart device composed of transparent hybrid nanogenerator
and LCD film. (e) Smart device for temperature monitoring. (f) Voltage output of the smart device
for sensing different degrees of coughing. (g) Voltage output of the smart device for monitoring three
types of breathing conditions. Reprinted with permission from [104]. Copyright ©2018, Elsevier Ltd.

In 2020, Syu et al. [107] reported a biomimetic and flexible hybrid self-powered sensor
(BHSS) that was formed by triboelectric and piezoelectric elements. The triboelectric struc-
ture is based on the shell of Mytilidae and is fabricated with PDMS film. The piezoelectric
component contains porous PVDF fibers deposited on a printed circuit board (PCB) sub-
strate. To develop the biomimetic Mytilidae surface, Mytilidae nano-structured patterns
on a PDMS layer were applied using a soft transfer molding process. This hybrid sensor
registered an open-circuit voltage and short-circuit current of 15 V and 115 nA, respectively.
For a load resistance of 10 MΩ, the hybrid sensor achieved a maximum average power
density of 675 µW/m2. The hybrid sensor was tested. This self-powered sensor was
attached on the thumb, index, and middle fingers of a latex glove for monitoring bottle-
holding actions. For this experiment, its electrical signals under three plastic bottles with
different water volumes (loading weight of 0.65 kg, 1.3 kg, and 2.06) were examined. The
electrical signals of the sensors were studied for various contact positions along the bottles.
This self-powered sensor could be used for wearable electronic devices and monitoring
biomechanical motion, and human gesture recognition, using a machine learning algorithm
of long short-term memory.
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Figure 8. TENG and piezoelectric device integrated in a S2-sock manufactured by Zhu et al. [105].
(a) Schematic of the materials used in the triboelectric S2-sock coupled with piezoelectric devices for
various applications, including energy harvesting, healthcare, smart home, and sports. (b) (Top) SEM
image (top view) of PEDOT:PSS-coated textile. SEM image of a cross-section view of piezoelectric
device. (c) Working mechanism of TENG sock using contact-separation condition. (d) Working
mechanism of piezoelectric device and integration design for S2-sock. Reprinted with permission
from [105]. Copyright ©2019, American Chemical Society.

Huang et al. [108] fabricated a flexible biocompatible triboelectric-piezoelectric nano-
generator by employing recombinant spider silk and poly(ethylene terephthalate) (PET)/
PVDF films. Graphene was incorporated into PVDF to improve the piezo-PVDF per-
formance. Thus, the PET/PVDF-graphene composite film was added with genetically
engineered spider silk. The electron-cloud-potential-well model was used to describe the
charge transfer between spider silk and PET, with or without the PVDF film. The electrons
in molecular orbits of spider silk protein can be transferred to the empty orbits of PET film.
This transference of electrons depends on the difference in potential-well depths (difference
of the surface electron potential) between both materials. PVDF, under mechanical strain,
can alter the surface electron potential of the coupling material. Due to this, PVDF was
added to PET film to enhance its surface potential. Thus, the improved surface-potential
difference between PET/PVDF and spider silk can increase their electrons transfer and
amount of harvested energy. Figure 10 depicts the output electrical signals and stability re-
sults of the hybrid nanogenerator. This hybrid nanogenerator (area of 6.25 cm2) registered a
maximum output power density of 4016 mW/m2 under a load resistance of 8 MΩ. For this
resistance, the nanogenerator reached the output voltage, output short-circuit current, and
output power close to 200 V, 12 µA, and 2.51 mW, respectively. This nanogenerator could
be used as wearable hand-gesture sensors, body motion sensors, bioenergy harvesters, and
implantable organ monitors (Figure 11). For instance, this nanogenerator could be included
in implantable sensors for monitoring signals of the heart, stomach, chest, and bladder.
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Figure 9. Output electrical performance of the TENG and piezoelectric device integrated in a S2-sock
designed by Zhu et al. [105]. (a) Results of open-circuit voltage and short circuit current of the
sock with and without PEDOT:PSS under contact-separation operation with respect to PFTE film
placed on the ground (Figure 9c). (b) Results of open-circuit voltage and short-circuit current of
piezoelectric device integrated to the sock (Figure 9d). (c,d) Output power as a function of the external
load resistance with and without shoes. (e) Output power of the piezoelectric device as a function
of external load resistance. Reprinted with permission from [105]. Copyright ©2019, American
Chemical Society.

In 2022, Du et al. [109] designed a shoe insole hybrid nanogenerator (IHN) composed
of a multilayered TENG and arched PENG. This nanogenerator can convert the mechanical
energy of footsteps into electrical energy. Moreover, this nanogenerator can identify three
types of motion states: walking, stepping, and jumping. This nanogenerator has high
performance of electrical stability and durability, which is suitable to collect biomechanical
energy of feet to power wearable electronic sensors. In addition, this nanogenerator has
potential application for self-powered biosensor systems in the fields of sports and medicine.
Figure 12 illustrates an application of the IHN integrated with a dorsalis pedis artery sensor
and a processor module. The sensor is placed inside the tongue of the shoe and the
processor module is mounted on the outside of the shoe. The sensor contains a PVDF
film that is packaged with PTFE and Kapton films. The PVDF film harvests the vibration
signal of the pulse and converts it into an electrical signal. The hindfoot and forefoot of
the IHN are formed by the arched PENG and TENG, respectively. The TENG part has
three triboelectric films (PTFE-Al-PTFE), in which two sponge layers with through-holes
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are added to separate the Al sheet from both PTFE films. Both PTFE films and the Al layer
are contacted and separated due to the motion (e.g., walking, stepping, and jumping) of
the foot. On the back of PTFE is attached the Cu electrode that operates as a source for the
charge transference caused by electrostatic induction. In addition, the Al sheet can act as
both an electrode and a triboelectric layer. On the other hand, a surface area (2 cm × 7 cm)
of the sponge is extracted to incorporate the arched PENG. This PENG is composed of
a PVDF film that is packaged by an arched PE and Kapton film. Furthermore, the IHN
was encapsulated using a cotton cloth and PE film, which avoids the effect of sweat on the
electrical performance of the hybrid nanogenerator.
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Figure 10. Performance of the hybrid nanogenerator developed by Huang et al. [108]. (a) Output
open-circuit voltage and short-circuit current of the hybrid nanogenerator as a function of load resis-
tance. (b) The output power of the hybrid nanogenerator as a function of load resistance. (c) Results
of stability and durability tests of the hybrid nanogenerator. Short-circuit current measured over
18,000 cycles. (d) Schematic of the prototype for the large-scale fabrication of the hybrid nanogen-
erator. (e) Photographs of the spider silk and PVDF/graphene films (both films with area equal to
A5 paper), and white LED light (3 W). This LED was lightened using a hybrid nanogenerator with
an area of 48 cm2. (f) The output current density of the hybrid nanogenerator during one cycle of
hand tapping. The inset illustrates the input pressure generated by hand-tapping under a distance
range. Reprinted with permission from [108]. Copyright ©2020, WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim.

Figure 13 shows the working mechanism of the IHM reported by Du et al. [109] during
a walking cycle. Due to the pressure of the heel of the shoe in a walking cycle, the PENG
shape is altered from arch to plane. This deformation generates a potential difference
between both electrodes of the PENG. When the forefoot falls on the ground, the PTFE and
Al layers are contacted in the through-hole of the sponge. The increment of the pressure of
the forefoot increases the contact area between both PTFE and A layers. After the contact
of both layers, a surface charge transfer induces between them a potential difference in
the back Cu electrode (Figure 13b). This potential difference generates the electrons flow
from the Cu electrode to the Al electrode using the external circuit. The PENG returns to
arch shape after the heel lifts, generating a current opposite to that when the hindfoot falls
(Figure 13c). When the forefoot is lifted, the PTFE and Al layers of the TENG are separated.



Nanomaterials 2022, 12, 4403 13 of 35

This causes the electrons flow from the Al electrode to the Cu electrode in the external
circuit, which has an opposite direction to that when the forefoot falls (Figure 13d). This
sequence of four states occurs during one cycle of walking. Due to the parallel design of
TENG and PENG, both nanogenerators have the same electron flow direction. It allows the
composite signal output of the IHN to be higher than those of the TENG and PENG. From
human body motions, the IHN generated a maximum open circuit voltage of 150 V and a
short-circuit current of 4.5 µA, respectively. Figure 14g shows the pulse signal of a dorsal
pedis monitoring system that is supplied by the IHN.
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Figure 11. Potential applications of the hybrid nanogenerator proposed by Huang et al. [108].
(a) Schematic of a hybrid nanogenerator with potential applications in implantable devices and
wearable sensors. (b) (i) Photograph of a hybrid nanogenerator placed in the subdermal chest of a
Sprague-Dawley rat; (ii) Schematic of the working mechanism of the nanogenerator for energy har-
vesting from a beating rat heart. For this, a rectifier circuit and a capacitor (4.7 µF) were implemented.
(c) Current signals of an implanted hybrid nanogenerator related to the beating heart. Inset shows
the storage voltage of a capacitor (4.7 µF). (d) Photograph of a hybrid nanogenerator adhered on the
glove for hand-gesture monitoring. (e) Output voltage signals of nanogenerators placed on the five
fingers for “Victory” and “OK” hand gestures. Reprinted with permission from [108]. Copyright
©2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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Figure 12. Schematic of the main components of the isolate hybrid nanogenerator presented by
Du et al. [109]. (a) IHN applied to a sports shoe for monitoring the footstep types. (b) Schematic of
the self-powered system for dorsalis pedis artery monitoring. (c) Schematic of the signal acquisition of
the dorsalis pedis artery sensor. (d) Schematic of the materials and elements for the TENG and PENG
modules of the IHN. Reprinted with permission from [109]. Copyright ©2022, John Wiley and Sons.

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 31 
 

 

 

Figure 13. Working mechanisms of the PENG and TENG parts of the IHN during one walking cycle 

[109]. Schematic of the charge transfer process of the PENG and TENG parts when (a) the hindfoot 

falls, (b) the forefoot falls, (c) the hindfoot lifts, and (d) the forefoot lifts, respectively. Reprinted with 

permission from [109]. Copyright 2022, John Wiley and Sons. 

 

Figure 14. Electrical output performance and applications of IHN proposed by Du et al. [109]. (a) 

Output voltage and current as a function of external load resistance. (b) Output power as a function 

of external load resistance. (c) Charge response of four capacitors powered by IHN. (d) Schematic 

view of the electrical circuit for the IHN direct power supply and energy storage system. (e) LEDs 

lighted using the IHN. (f) Output voltage and calculator powered by IHN. (g) Pulse signal of the 

dorsalis pedis monitoring system, which was sent to a mobile phone. Reprinted with permission 

from [109]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

Figure 13. Working mechanisms of the PENG and TENG parts of the IHN during one walking
cycle [109]. Schematic of the charge transfer process of the PENG and TENG parts when (a) the
hindfoot falls, (b) the forefoot falls, (c) the hindfoot lifts, and (d) the forefoot lifts, respectively.
Reprinted with permission from [109]. Copyright ©2022, John Wiley and Sons.
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Figure 14. Electrical output performance and applications of IHN proposed by Du et al. [109].
(a) Output voltage and current as a function of external load resistance. (b) Output power as
a function of external load resistance. (c) Charge response of four capacitors powered by IHN.
(d) Schematic view of the electrical circuit for the IHN direct power supply and energy storage system.
(e) LEDs lighted using the IHN. (f) Output voltage and calculator powered by IHN. (g) Pulse signal of
the dorsalis pedis monitoring system, which was sent to a mobile phone. Reprinted with permission
from [109]. Copyright ©2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

3. Potential Applications

This section describes the performance of potential biomedical applications of tribo-
electric or piezoelectric nanogenerators.

The PENGs and TENGs can be used in the modulation of neuronal activity, diagnostics
for cardiovascular treatment, heart implants, drug delivery, and abdominal implants,
among others. Ouyang et al. [110] reported an implanted symbiotic pacemaker integrated
by a triboelectric nanogenerator, a power management unit (PMU), and pacemaker unit.
The implantable triboelectric nanogenerator (iTENG) can harvest and store energy from
cardiac motion. The energy collected by the iTENG is stored in the capacitor of the PMU.
Next, this stored energy can be used to drive the pacemaker unit, generating pacing
electrical pulses, and controlling the rate of cardiac motion (Figure 15). Figure 16 shows the
operating principle of the PTFE-based iTENG. Figure 17 depicts the electrical performance
of the iTENG implanted in the chest of a Yorkshire porcine. For this case, the iTENG was
located between the heart and pericardium of the pig. In addition, the PTFE component
was placed on the left ventricular surface. Figure 18 illustrates the symbiotic cardiac
pacemaker system in vivo using a wireless passive trigger. The pacemaker unit produces
electrical pulses that can induce myocardial contraction and adjust the heart rate using
pacing electrodes. The electrical pulses registered the output voltage and duration of 3 V
and 0.5 ms, respectively. The symbiotic pacemaker could correct sinus arrhythmia and
prevent damage. The iTENG achieved an open circuit voltage of 65.2 V and harvested
energy from each cardiac motion cycle up to 0.495 mJ. This energy harvested is higher
than that required for endocardial pacing (0.377 mJ). This iTENG could be employed for
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implantable medical electronic devices due to its high output power density and suitable
stability. Thus, conventional batteries could be substituted.
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Figure 15. Schematic view of main components of symbiotic pacemaker system developed by
Ouyang et al. [110]. (a) Schematic representation of different elements used in the symbiotic cardiac
pacemaker system. (b) Illustration of the materials used in the iTENG. (c) Image of the iTENG
structure under bending stress. (d) SEM image of different layers of an iTENG section (scale bar:
500 mm). (e) SEM image of the nanostructure on the PTFE layer (scale bar: 1 mm) of the iTENG.
(f) SEM image of a 3D elastic sponge structure (scale bar: 500 mm). (g,h) Schematic view of the
mechanism of charge transfer. (i) Model of the charge separation caused by the charge transfer.
Reprinted with permission from [110]. Copyright ©2019, Springer Nature.

Ouyang et al. [111] fabricated a flexible, self-powered, ultrasensitive pulse sensor
(SUPS) formed by a triboelectric active sensor, which has an output voltage of 1.52 V,
a peak signal–noise ratio of 45 dB, and good stability close to 107 cycles, as well as no
expensive components. The SUPS structure (Figure 19) is composed of a nanostructured
Kapton (n-Kapton) triboelectric film (100 mm thick) with an electrode Cu film (50 nm thick)
deposited on its back side, a second Cu film (50 nm thick) deposited on other Kapton film
to form a nanostructured Cu (n-Cu) film, and a spacer. These components are encapsulated
using an elastomer. The working mechanism of the SUPS depends on the coupling of
contact electrification and electrostatic induction (Figure 19d). The concave structures of the
device allow the contact electrification and electrostatic induction to occur simultaneously.
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This characteristic of the SUPS structure achieves a good relationship between applied
external force and the electrical response of the device. Thus, the electrical signal of the
SUPS can be modulated by the applied external force. Based on four different structures of
triboelectric films, the electrical characterization of the SUPS was measured by applying a
vertically compressive force (close to 50 N) with a linear motor on the triboelectric films
(Figure 20a). The triboelectric layers integrated by n-Kapton and n-Cu films registered the
best electrical output performance of the SUPS. For this case, the maximum output voltage,
current, and transferred charge of the device were approximately 109 V, 2.73 mA, and
7.6 nC, respectively. Furthermore, the electrical performance of the device was measured
on the radial arteria of a man (24 years old), as shown in Figure 20b. For this second case,
the maximum output voltage, current, and transferred charge of the structures of n-Kapton
and n-Cu were 1.52 V, 5.4 nA, and 1.08 nC, respectively. Also, the SUPS performance was
tested to detect the mechanical oscillations of honeybee wings, which were converted to
electrical signals (Figure 20c).
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Figure 16. Working mechanism of the PTFE-based iTENG designed by Ouyang et al. [110].
(a) Schematic view of a corona discharge system. (b) Working mechanism of the iTENG. (c–e) Results
of electrical performance (output voltage, transferred charge, and current) of the polarized and non-
polarized PTFE film considering a linear motor. Reprinted with permission from [110]. Copyright
©2019, Springer Nature.

Two SUPS devices placed at distinct locations on the radial artery of the wrist of a
man (24 years old) were used to measure the pulse wave velocity (PWV), as shown in
Figure 21a,b. The PWV variations of this male patient before and after exercise consisting
of 500 m jogs were recorded as shown in Figure 21c. Figure 21d depicts a schematic view
of the main elements of the wireless pulse sensor system. This system includes the SUPS,
analog-digital conversion, storage unit (8M-bit data), and Bluetooth interface. The SUPS
output signals can be digitized using the ADC and wirelessly transmitted to a smart phone
or laptop with the Bluetooth interface (Figure 21h). Moreover, the SUPS can be adjusted
to different human body parts for monitoring the pulse signals of the ankle artery, the
finger, the radial artery, the brachial artery, and carotid artery zones, as shown in Figure 21e.
Also, the SUPS could detect variations of the heart rates of patients due to different diary
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movement activities. In the future, this SUPS could be used in self-powered and wearable
mobile diagnosis devices for cardiovascular diseases.
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Figure 17. Electrical performance of the iTENG implanted in an animal specimen [110]. (a,b) Pho-
tographs of the iTENG implanted between the heart and pericardium of a Yorkshire porcine. (c,d) Pho-
tographs of the iTENG driven by the cardiac motion of a Yorkshire porcine. (e) Schematic view of the
electrical performance test of the iTENG. (f) Charging response of a capacitor (100 µF) that is charged
by iTENG. (g) In vivo electrical tests of the short-circuit current, transferred charge, and open-circuit
voltage of the iTENG, as well as simultaneously recorded ECG signals. (h) Output open-circuit
voltage of the iTENG and simultaneously recorded ECG results. (i) Charging signal of a capacitor
(1 µF) charged by iTENG and ECG curve. (j) Statistical results of voltage shift, maximum voltage,
and minimum voltage of the iTENG. (k) Statistical results of the transferred charge shift, maximum
transferred charge, and minimum transferred charge of the iTENG. Reprinted with permission
from [110]. Copyright ©2019, Springer Nature.
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Figure 18. Performance of the symbiotic cardiac pacemaker designed by Ouyang et al. [110]. (a) Rep-
resentation of the pacemaker powered by iTENG that harvests energy from the cardiac motion of
a Yorkshire porcine. (b) Illustration of the main components of the symbiotic cardiac pacemaker
system. (c) Stimulation voltage pulse under different frequencies produced by a pacemaker unit.
(d,e) Photograph of the symbiotic cardiac pacemaker system switched on by wireless passive trigger
in a pig. (f) Results of the stimulus-R wave intervals (S-R), systolic blood pressure (sBP), heart rate
(HR), femoral artery pressure (FAP), and ECG during the stimulation stage of the symbiotic pace-
maker unit. (g) ECG signal of the heart rate considering a normal systolic blood pressure. (h) ECG
signal under a pacing stimulus in the refractory period, considering a normal systolic blood pressure.
(i) ECG signal of the heart successfully placed by the symbiotic pacemaker unit, with decreased
systolic blood pressure. (j) ECG signal under failed pacing stimuli, regarding a restored systolic blood
pressure. Reprinted with permission from [110]. Copyright ©2019, Springer Nature.
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Figure 19. Components and operating mechanism of the SUPS developed by Ouyang et al. [111].
(a) Schematic view of the structure of the triboelectric nanogenerator of the SUPS. (b,c) SEM and
atomic force microscopy (AFM) images of the nanostructured Cu and Kapton film, respectively.
(d) Schematic view of the operating principle of the triboelectric nanogenerator. (e) Illustration
of the good flexibility of the SUPS. (f) Image of the size of the SUPS structure (2 cm × 1 cm).
(g,h) Experimental results of the signal outputs of SUPS pressed on the finger and radial artery region,
respectively. Reprinted with permission from [111]. Copyright ©2017, WILEY-VCH Verlag GMbH &
Co. KGaA, Weinheim.
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Figure 20. Electrical output performance of the SUPS with four different surface structures of the
triboelectric films [111]. (a) Results of the output voltage, current, and transferred charge of SUPS
when a lineal motor applied a compressive force of 50 N over four distinct structural configurations of
triboelectric films. (b) Results of the output voltage, current, and transferred charge of SUPS placed on
the radial artery and considering four different structural configurations of triboelectric films. (c) Real-
time output voltage of SUPS caused by the oscillations (frequency close to 200 Hz) of the wings of a
honeybee. (d) Output voltage of SUPS due to mechanical vibrations signals (10 kHz) generated by
a loudspeaker. (e) Stability tests of the open-circuit voltage of SUPS during one million operating
cycles. For this test, external forces of 30 N were applied on SUPS using a linear motor. Reprinted
with permission from [111]. Copyright ©2017, WILEY-VCH Verlag GMbH & Co. KGaA, Weinheim.

Chu et al. [112] proposed an active pulse sensing system for monitoring the vibration
signals of the human radial artery. This system includes a sandwich-structure piezoelectret
with high equivalent piezoelectricity. This structure is composed of fluorinated ethylene
propylene (FEP)/Ecoflex/FEP layers. For the initial stage of this structure, the two elec-
trodes (Al and Cu layers) have the same electrical potential. When the structure is deformed
and compressed by external pressure, its dipole moment suffers a variation that generates
a positive current in the external circuit. The reported system with wireless transmission
and big data analyses could operate as a wearable m-Health system (Figure 22a). Figure 23
depicts the results of pulse wave intervals and corresponding Poincare plots measured from
ten volunteers. In addition, Chu et al. [112] developed a three-channel pulse sensor array
to measure the pulse waves at the Cun, Guan, and Chi pulse regions on the radial artery of
the wrist considering the traditional Chinese medicine (TCM) technique (Figure 24). Thus,
a pulse-sensing system could detect and collect a large amount of the pulse signals in these
three regions for potential applications of big data analyses and diagnoses. The high preci-
sion and stability of the proposed system are suitable for potential application as medical
assessments, considering the identification of common heart diseases and measurement of
blood pressure.
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Figure 21. Electrical output variations on different artery regions from the human body and exercise
activities, and the elements with big data and cloud of wireless pulse sensor system [111]. (a) Output
voltage of two SUPS placed on different radial artery regions of a wrist. (b,c) Output voltage of two
SUPS due to radial artery signals before and after an exercise activity. (d) Schematic representation
of the components in the wireless pulse sensor system. (e) Output voltage of SUPS due to signals
of different artery regions from a human body. (f) Variations of the heart rate during the activity
of sitting and standing up. (g) Photograph of SUPS, ADC components, and Bluetooth interface
of the wireless health monitoring system. (h) Schematic representation for online monitoring of
cardiovascular signals of patients using the intelligent mobile diagnosis system. Reprinted with
permission from [111]. Copyright ©2017, WILEY-VCH Verlag GMbH & Co. KGaA, Weinheim.

Liu et al. [113] designed a self-powered photodynamic therapy (s-PDT) system for
potential application in cancer treatment. This s-PDT system is composed of a wearable
twinning structure piezoelectric nanogenerator (ts-PENG), a power management unit
(PMU), a miniaturized LED (m-LED), and a photosensitizer (PS) (Figure 25). This nanogen-
erator converts biomechanical energy into electrical energy to power a m-LED. This m-LED
is used to stimulate light over tumor tissues, which inhibits tumor growth. The performance
of this LED is controlled by the PMU with dimensions of 1.7 cm × 4.8 cm × 1.3 cm. This
PMU can drive two irradiation modes: intermittent continuous light stimulation (ICLS)
and pulsed light stimulation (PLS). For the ICLS mode, the tumor tissue can suffer strong
radiation intermittently, which renders it dead. For the PLS case, small residual tumors can
be destroyed by applying continuous low-dose irradiation.

The ts-PENG structure developed by Liu et al. [113] is formed by a Parylene-C/PET
packaging layer, a PET substrate, and a double piezoelectric layer of PVDF and Ag elec-
trodes. The ts-PENG achieves the open-circuit voltage (Voc) and short-circuit transferred
charge (Qsc) close to 200 V and 0.46 µC (Figure 26b). Furthermore, the ts-PENG reaches
340 mW/m2 under load resistances between 10 kΩ and 10 GΩ (Figure 26d). Moreover, the
wearable ts-PENG was tested on human and rat models (Figure 27). First, the ts-PENG
was attached on the knee joint and the elbow joint of a human body. The maximum values
of the Voc and Qsc of the ts-PENG placed on knee joint and the elbow joint achieve 200 V,
220 V, 0.5 µC, and 0.65 µC, respectively. Also, an LED can be lighted using the biomechan-
ical energy harvested by the wearable ts-PENG. In future applications, the PMU of the
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ts-PENG could drive the LED to apply both PLS and ICLS irradiation modes to tumors
of the human body. On the other hand, the ts-PENG was positioned on the leg of a rat
to convert its motion into electrical energy. A linear motor was used to pull the leg and
simulate its mechanical motion. For this rat model, the maximum results of the Voc and
Qsc of the ts-PENG are close to 8 V and 10.5 nC (Figure 27d). On the other hand, the
s-PDT system was used for inhibiting tumors in vivo with intermittent continuous light
stimulation (Figure 28). Finally, the ts-PENG offers advantages such as simple structural
configuration, high flexibility, good stability, light weight, and long service life. These
ts-PENG characteristics are suitable for self-powered wearable medical devices.
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Figure 22. Representation of the sandwich-structure piezoelectret to supply a pulse-sensing system
fabricated by Chu et al. [112]. (a) Schematic representation of the pulse-sensing system for monitoring
pulse signals at the Cun, Guan, and Chi regions of the wrist. These signals could be transmitted to a
smart phone. (b) Structural configuration of the pulse sensor integrated by the FEP/Ecoflex/FEP
piezoelectret layer. (c) Experimental results of the equivalent piezoelectric coefficient (d33) of the
piezoelectret structure of the pulse sensor. (d) Working mechanism of the pulse sensor into its stages
of pressing (I-II) and releasing (III-I), which induces the flow of electrical currents. (e) Experimental
results of the sensitivity of peak short-circuit currents generated by a pulse sensor when an external
pressure range is applied to it with a frequency of 1.5 Hz. Reprinted with permission from [112].
Copyright ©2018, WILEY-VCH Verlag GMbH & Co. KGaA, Weinheim.
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Figure 23. Results of the pulse-sensing system measured from ten volunteers [112]. (a) Statistical
data of the peak-to-peak pulse wave intervals for the ten volunteers. The ninth and tenth volunteers
(V9 and V10) have pulse intervals with larger dispersion compared to the other eight volunteers. It
is due to the ninth and tenth volunteers having arrhythmia that was previously diagnosed using
ECG tests in hospitals. (b) Amplitude of pulse waves and (c) corresponding Poincare plots for the
first volunteer (V1), who was not diagnosed with arrhythmia. (d) Amplitude of pulse waves and
(e) corresponding Poincare plots for the tenth volunteer, who has arrhythmia. Poincare plots for the
(f) first and tenth (g) volunteers. The volunteer V10 has larger dispersion of pulse wave intervals.
Large dispersion of the pulse wave intervals could be related to arrythmia disease. Reprinted with
permission from [112]. Copyright ©2018, WILEY-VCH Verlag GMbH & Co. KGaA, Weinheim.
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Figure 24. Results of the pulse waves at the Cun, Guan, and Chi regions of the radial artery of the
wrist from a human body that were measured employing a three-channel pulse sensing array [112].
(a) Representation of the pulse-sensing array placed at the Cun, Guan, and Chi regions. (b) Signal
processing of the pulse-sensing array. Results of normalized Cun, Guan, and Chi pulse signals for
(c) a 26-year-old female volunteer, and (d) a 28-year-old male volunteer. Reprinted with permission
from [112]. Copyright ©2018, WILEY-VCH Verlag GMbH & Co. KGaA, Weinheim.
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Figure 25. Representation of a self-powered photodynamic therapy system proposed by
Liu et al. [113]. (a) This system includes a ts-PENG, a PMU, an m-LED, and a photosensitizer.
(b) Materials of the different layers of the ts-PENG considering the packaging and substrate. (c) Rep-
resentation of the s-PDT used in the apoptotic process of subcutaneous tumor tissue. (d) SEM image of
the cross section of the st-PENG. (e) Image of the initial state of the ts-PENG. (f) Image of the bending
state of the ts-PENG. (g). Weight of the ts-PENG. (h) Schematic view of the d31 operating mode
of the PVDF film. (i) Operating principle of the PVDF film. Reprinted with permission from [113].
Copyright ©2020, American Chemical Society.
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Figure 26. Performance of the ts-PENG designed by Liu et al. [113]. The open-circuit voltage and
short-circuit transferred charge of the PENG with (a) single and (b) double PVDF film. (c) Voltage
and current and (d) power density of the ts-PENG under different load resistances between 10 kΩ
and 10 GΩ. (e,f) Schematic representation of the irradiation modes of PLS and ICLS. (g) Charging
and discharging voltage of the button cell by the ts-PENG and LED, respectively. (h). Results of the
light intensity of LED as a function of time. Reprinted with permission from [113]. Copyright ©2020,
American Chemical Society.
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Figure 27. Experimental results of the output performance of the ts-PENG tested in human and rat
models [113]. The open-circuit voltage and short-circuit transferred charge of the ts-PENG placed
on (a) the knee joint and (b) elbow joint. (c) Test of the ts-PENG system to light an LED. (d) The
open-circuit voltage and short-circuit transferred charge of the ts-PENG attached to the leg of a rat
model. (e) Average results of the open-circuit voltage and short-circuit transferred charge of the
ts-PENG tested on the human and rat models. (f). Image of the ts-PENG tested on the leg of the rat
model. Reprinted with permission from [113]. Copyright ©2020, American Chemical Society.
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Figure 28. Experimental results of intermittent continuous light stimulation applied to a tumor
in vivo [113]. (a) Electrical diagram of LED array. (b) Different views and states of the LED array
packaging by PDMS. (c) Schematic diagram of the self-powered PDT system. (d) Application of
the self-powered PDT system to inhibit a tumor model on a rat. (e) Variation of the tumor volume
using a control group without any treatment and experimental groups cultured with porphyrin,
LED, and LED + porphyrin. (f). Results of tumor growth multiplication during 12 days of a
control group without any treatment and experimental groups cultured with porphyrin, LED, and
LED + porphyrin. (g,h) Photographs of the tumors and pathological section (50 µm of scale bar)
obtained from different experimental groups. These results were measured after 12 days. Reprinted
with permission from [113]. Copyright ©2020, American Chemical Society.

4. Challenges and Perspectives

This section describes various challenges and perspectives of piezoelectric and tri-
boelectric nanogenerators to power future healthcare monitoring devices, including the
topics of design, materials and fabrication processes, signal processing, output performance,
and reliability.

4.1. Design

The nanogenerator design process is key to developing better piezoelectric and tri-
boelectric structural configurations that optimize energy harvesting to power healthcare
monitoring devices. For each potential medical device, the design of a nanogenerator
must examine the main performance requirements and limitations of this device, optimal
materials and manufacturing process, surrounding conditions (e.g., temperature, relative
humidity, pressure, dust, and so on), encapsulated type, signal processing components, and
the characteristics of the original energy sources (e.g., biomechanical, wind, mechanical
vibrations, and so on). For instance, nanogenerators can harvest biomechanical motion to
power medical devices. However, optimal energy harvesting from human body motion has
great challenges. In order to develop efficient and stable nanogenerators attached to the
human body, the design of nanogenerators must consider scalable, wearable, durable, and
stretchable materials. In the coming years, smart textile-based nanogenerators could be
incorporated into clothing using piezoelectric or triboelectric materials with special charac-
teristics such as being wearable, stretchable, durable, and washable. These nanogenerator
types could power smart sensors that monitor real-time signals on the health status of pa-
tients. By using the IoMT, these signals could be transmitted to medical hospitals or doctors.
In addition, future nanogenerators could be attached to different parts of the human body,
which will require designs of electromechanical components composed of materials with
high flexibility, high reproducibility, easy fabrication, and friendly performance. Future
implantable self-powered medical devices will require nanogenerators with biocompatible
packaging materials.
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To achieve optimal designs for the output performance of nanogenerators, multi-
optimization techniques can be implemented, including the various objective functions
and constraints. For instance, the output power density and cost of a nanogenerator can
be the objective functions to be maximized and minimized. The constraints equations of
a nanogenerator can consider its size, service time, reliability parameters, and so on. For
these optimization models, the mechanical and physical properties of the materials of the
nanogenerator must be known.

4.2. Materials and Fabrication Processes

The output performance and reliability of piezoelectric and triboelectric nanogenera-
tors for monitoring healthcare devices depend on the suitable selection of their materials
and manufacturing processes. These materials should have electromechanical properties
that allow for the development of nanogenerators with the benefits of cost-effectiveness,
wearability, flexibility, easy fabrication, stability, and robust performance. Furthermore,
the optimal selection of materials can be useful to fabricate smart nanogenerators with
both functions for energy scavenging and working as active/self-powered sensors, which
reduce their size and weight. Moreover, smart nanogenerators can be eco-friendly to the
environment, eliminating the use of harmful materials from conventional batteries.

Recent investigations of nanogenerators have taken into account organic or waste ma-
terials, including chitin, spider silk, tomato, rice paper, peanut, walnut, pistachio, almond,
fish gelatin, fish bladder, eggshell, sunflower husks, garbage soda cans, silk fibroin, and so
on [114–121]. For these materials, two research challenges are the analytical modeling and
experimental measurement of their piezoelectric and triboelectric transduction mechanisms.
In addition, future investigations must consider standard rules and tests to measure the
performance and reliability of nanogenerators. Another challenge is the development of
scalable manufacturing processes for nanogenerators, which decrease costs and satisfy the
future commercial market.

4.3. Signal Processing

Generally, the output voltage and current of triboelectric nanogenerators are not direct
current (DC) signals. Due to this limitation, triboelectric nanogenerators need rectifier
circuits to convert their AC output signals into DC signals. This DC voltage can be stored
using capacitors or batteries to power the monitoring healthcare devices. A research
challenge in this topic is the development of cost-effective energy storage systems coupled
with nanogenerators.

Recent investigations [122–124] on nanogenerators have included novel electrical inter-
faces of high efficiency and minimum power consumption. The electrical interfaces could be
self-powered and include cold-start circuit architectures [125,126]. In addition, the electrical
interfaces could incorporate a small footprint to decrease the size of the nanogenerators.
For this, the Application-Specific Integrated Circuit (ASIC) could be implemented.

4.4. Reliability

The implementation of reliability standard tests and rules is required to measure the
safe and stable performance of nanogenerators for medical applications. The reliability
analyses of the electromechanical performance of nanogenerators under different environ-
ments and operating conditions are required to study their stability, durability, and working
capability. These reliability tests can provide the main electromechanical failures of the
nanogenerators due to various factors, such as high relative humidity, large temperature
variations, dust, mechanical impact, wear, crack growth, fatigue, and so on. Furthermore,
the different packaging types and signal-processing components of nanogenerators must
be included in the reliability tests. In order to improve the reliability of nanogenerators, the
designers could consider simple operating mechanisms, minimum electrical and structural
components, robust and durable materials, safe packaging, and so on. Figure 29 depicts



Nanomaterials 2022, 12, 4403 30 of 35

various challenges of the piezoelectric and triboelectric nanogenerators for their application
in IoMT electronic devices.
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safe and stable performance of nanogenerators for medical applications. The reliability 

analyses of the electromechanical performance of nanogenerators under different envi-

ronments and operating conditions are required to study their stability, durability, and 

working capability. These reliability tests can provide the main electromechanical failures 

of the nanogenerators due to various factors, such as high relative humidity, large tem-

perature variations, dust, mechanical impact, wear, crack growth, fatigue, and so on. Fur-

thermore, the different packaging types and signal-processing components of nanogener-

ators must be included in the reliability tests. In order to improve the reliability of nano-

generators, the designers could consider simple operating mechanisms, minimum electri-

cal and structural components, robust and durable materials, safe packaging, and so on. 

Figure 29 depicts various challenges of the piezoelectric and triboelectric nanogenerators 

for their application in IoMT electronic devices. 
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5. Conclusions

Recent progress on piezoelectric and triboelectric nanogenerators for self-powered
monitoring healthcare devices was reviewed. The descriptions of the working principle,
materials, and fabrication processes of a variety of these nanogenerators were reported.
Discussions on the output electrical performance of piezoelectric and triboelectric nanogen-
erators are included. Furthermore, we presented the signal processing components and
packaging types of different nanogenerators. The design, materials, and electromechani-
cal behavior of different piezoelectric and triboelectric nanogenerators for biomechanical
energy harvesting to power potential medical applications were considered. Also, we
proposed some challenges and perspectives of these nanogenerator types, including the
design, materials and manufacturing processes, signal processing, and reliability.
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