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Abstract: Generation of hydrogen fuel at cathode during the electrolysis of seawater can be economi-
cally beneficial considering the vast availability of the electrolyte although it faces sluggishness caused
by the anode reactions. In this regard a carbon nanosphere-protected CuO/Co3O4 (CCuU) composite
was synthesized through heat treatment and was used as the cathode material for electrocatalytic sea-
water splitting. CCuU showed a significantly low overpotential of 73 mV@10 mA cm−2, Tafel slope
of 58 mV dec−1 and relatively constant activity and morphology over a long time electrocatalytic
study. A synergy within metal oxide centers was observed that boosted the proton-electron transfer
at the active site. Moreover, the presence of carbon support increased the electroactive surface area
and stability of the composite. The activity of the CCuU was studied for HER in KOH and alkaline
NaCl solution to understand the activity. This work will pave the way for designing mesoporous
non-precious electrocatalysts towards seawater electrocatalysis.

Keywords: amorphous carbon; oxide composite; electroactive surface area; seawater; electrocatalysis

1. Introduction

Hydrogen, with high energy density [1], is an economical alternative fuel source
for conventional and fossil fuel. Hence, the demand for facile and sustainable hydrogen
generation is increasing rapidly. Currently, the steam methane reforming process and the
coal gasification process for hydrogen generation are widely used for industrial applications.
On the other hand, the associated hazards, including the release of toxic gases and waste
materials, have advocated the need for a green chemical process [2]. In this respect, water
electrolysis has become an important procedure for the sustainable evolution of hydrogen
gas [3,4]. Electrocatalytic water splitting involves two half-cell reactions, the hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER). The large portions of
HER research rely on fresh water at different pH. However, practically, the supply of
this large amount of fresh water is troublesome in the era of water crises. In this regard,
seawater, being an almost unlimited water source (~90%), could find its importance in HER
research. However, the implementation of seawater as a source brings a few challenges in
terms of the anodic reaction because of different ions (almost 50 % chloride, 48% sodium,
and 2% other ions) [1,3,5]. During seawater electrocatalysis, in the anode, the OER faces
challenges from the simultaneous generation of chlorine gas [6]. It has been suggested
that the chlorine evolution reaction (CER) can be suppressed by the OER in a higher
pH medium [7]. Despite the higher probability of the OER at a higher pH range, ClO−

formation remains a side reaction (Cl− + 2OH− = ClO− + H20 + 2e−) at the higher
overpotential region (~480 mV) [8]. In addition to side reactions, the electrocatalysis of
seawater suffers from electrode corrosion and poisoning of catalysts due to the precipitation
of insoluble metal salts on the electrode surface [6]. These hazards limited the use of
seawater for fuel cell applications. In this regard, scientists have taken some measures, such
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as ion-exchange membranes and reverse osmosis membranes, to control the movement of
chloride ions towards the electrodes, thereby preventing the generation of toxic chlorine
gas [9]. Nevertheless, these measures have their limitations. At the laboratory level,
seawater is treated with a strong alkali to suppress Cl-related reactions at the electrode [10].
Initially, Pt was appointed as an efficient electrocatalyst for the HER, but its applications
are limited by its low availability, low stability in alkaline media, and high cost [11].

Considering factors such as environmental effects and production cost, the design of
non-precious metal (e.g., chalcogenides [1], nitride [4], phosphate [12], and hydroxide [3])-
based electrocatalysts have been widely explored for seawater splitting by exploiting their
active sites, near zero Gibbs free energy, effective electrolyte stability and thickness de-
pendent behaviors. For example, Liu et al. reported that a CoP/Co2P heterostructured
material acted as an efficient HER catalyst with an overpotential of 454 mV at 10 mA cm−2

in seawater media [13]. They formed a Mg/seawater battery with a porous CoP/Co2P
hetero-structure cathode with a maximum power density of 6.28 mW cm−2 at a current
density of 30 mA cm−2. Chen et al. fabricated a three-dimensional MoS2 quantum dot
aerogel for the seawater HER. [11]. They observed that the aerogel remained efficient,
even after 150 cycles of scanning, whereas commercial Pt/C showed lower activity after
50 cycles. Jin et al. synthesized two-dimensional Mo5N6 nanosheets and used the abundant
metal-nitrogen electroactive sites on the material to achieve an effective HER in seawa-
ter [14]. Liu et al. synthesized a multi-phase hetero-structured CoNiP/CoxP for the alkaline
seawater HER [15]. They reported an overpotential of 290 mV for 10 mA cm−2 current
density during the HER using natural seawater. Yuan et al. synthesized bifunctional
NiMo film for alkaline seawater (1M KOH + 0.5M NaCl) with an average cell voltage of
~1.563 V to reach a current density of 10 mA cm−2 with high durability [16]. Sarno et al.
prepared a trimetallic NiRuIr-graphene nanocomposite electrocatalyst [17]. They found
that the catalyst had a Tafel slope of 48 mV dec−1 and stability for almost 200 h without
significant loss of efficiency. Huang et al. [18] designed a Fe-doped MoS2 nanosheet sup-
ported by three-dimensional carbon fibers to explore the HER in buffered seawater. The
catalyst required overpotentials of 119 and 300 mV to reach 10 and 250 mA cm–2 current
densities, respectively.

The method of engineering surface defects via heterojunction or lattice mismatch
and alloying metal structures through the incorporation of heteroatoms has been used by
scientists to improve the catalytic activity [19]. Moreover, in recent years, the use of carbon
nanoparticle-based supports for metal catalysts has become a useful tool for improving
the catalytic activity in terms of improved surface area, active sites, stability, and facile
electronic interactions [20]. Jana et al. synthesized a carbon dot (CD)-associated Ni/Co
hydroxide composite to achieve an efficient HER in both acidic and alkaline media [21].
The CDs provided facile electronic transfer efficiency and stability during long-term scan-
ning. Liu et al. designed a N/S-doped carbon dot-supported Rh material for HER from
seawater [22]. The presence of doped CDs promoted electrons at the Rh-CD surface and
boosted the catalytic activity. The catalytic activity was comparable to the commercial
Pt/C catalyst.

In this work, we have studied the effect of a carbon nanosupport on the metal com-
posite for alkaline HER in seawater. For this purpose, a carbon nanoparticle-supported
bimetallic oxide composite material was synthesized using a hydrothermal synthetic pro-
cess followed by high-temperature calcination. Compared to common carbon dot supports,
the as-synthesized amorphous carbon nanospheres could provide sufficient stability and
synergism towards a bi-metal oxide composite (CuO/Co3O4). The presence of a car-
bon support on the metal oxide composite increased the electroactive surface area and
catalytic activity despite the unaltered physical surface area. The catalytic activity of the
as-synthesized material was checked using it as a cathode material during alkaline seawater
splitting. To the best of our knowledge, this is the first time an amorphous carbon nanopar-
ticle support has been used for the preparation of a non-precious metal cathode material
for seawater electrocatalysis. The activity was tested using an alkaline NaCl electrolyte
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before using actual seawater (collected from the local sea). The activity was evaluated by
measuring the overpotential for the reaction over a current density of 10 mA cm−2. Low
overpotentials (73 mV and 115 mV for alkaline seawater and alkaline NaCl solution, respec-
tively) were observed, which are one of the lowest values reported among overpotentials
for seawater splitting (Table S3). In addition, a chronoamperometric study showed that
the stability of an as-synthesized catalyst was higher than that of the commercial Pt/C
catalyst over 10 h (Figure S10). Thus, we have synthesized a carbon nanoparticle supported
non-precious CuO/Co3O4 composite that can significantly contribute to the development
of alternative fuel research through electrocatalytic seawater HER.

2. Experimental Section
2.1. Synthesis of Carbon Nanospheres (UCSs)

The nitrogen doped carbon nanospheres (UCSs) were synthesized using urea and
triammonium citrate (TAC) as precursor compounds. In a typical hydrothermal synthetic
route, 10 mL of 4.16 M aqueous solution of urea and 40 mL of aqueous solution of 1 M TAC
were mixed and made a homogeneous solution through constant stirring. This solution
was then transferred into a 100 mL Teflon-lined stainless-steel autoclave. The autoclave was
then placed in a hot air oven for 8 h at 180 ◦C. After completion of the reaction, a brown
colored solution was obtained. The solution was dialysed for 12 h (cutoff 1000 K MWCO).
The as-obtained solution, termed UCS, was stored at room temperature for characterization
and further applications. The UCS particles showed blue emission under UV-light.

2.2. Synthesis of Carbon Nanosphere Functionalized Bimetallic Composite

The bimetallic composite has been synthesized using copper(II) chloride dihydrate
(CuCl2·2H2O), cobalt(II) chloride hexahydrate (CoCl2·6H2O), urea, and as-synthesized
UCSs. Typically, 5 mL of 0.88 M aqueous solution of CuCl2·2H2O, 5 mL of 0.63 M aqueous
solution of CoCl2·6H2O, 1 mL of 1 M KOH solution, and 1 mL of 4.16 M aqueous solution
of urea were mixed with continuous stirring. The mixture was transferred into a 50 mL
Teflon-lined stainless-steel autoclave and kept in a hot air oven for 180 ◦C for 8 h. After
completion of the reaction, the product was cooled at room temperature. The product was
then centrifuged and washed several times to obtain the solid product. To this product,
5 mL of dialyzed UCS solution was added and stirred for 2 h. This mixture was then dried
and calcined at 600 ◦C for 2 h. The as-obtained product was termed CCuU and stored at
room temperature for characterization and electrochemical application. The C, C, u and U
stands for Co, Cu, urea and UCS precursors.

The effect of individual constituents was checked by the electrocatalytic behavior of
the composite. For this purpose, the particular precursor material was omitted during
above mentioned reaction steps. The compounds were termed CuuU, CouU, CCu, and
CCU which were studied to understand the role of Co(II), Cu(II), UCSs (U) and urea (u).

2.3. Study of Electrocatalytic Behavior

All electrochemical measurements were carried out using a three-electrode system
consisting of a working electrode (WE), reference electrode (RE), and counter electrode (CE).
A Hg/HgO electrode (at 1 M KOH solution) was used as RE, a graphite rod electrode was
used as CE and a nickel foam (NF) with the surface area of 1.0 cm−2 was used as WE. The
NFs were cleaned by sonication in HCl followed by water for 5 min each. The catalysts were
dispersed in a nafion (5 % v/v solution in iso-propyl alcohol) solution at a concentration
of 1 mg mL−1 through sonication for 30 min. The catalyst ink was drop-casted on NF and
dried overnight with the optimized catalyst loading of 4 mg cm−1. The electrocatalytic
activities were measured in terms of linear sweep voltammetry (LSV) scan within a range
from 0 V to−0.6 V with respect to RHE at a rate of 5 mV s−1 in N2 saturated electrolyte (1 M
KOH, alkaline NaCl, and alkaline sea water). The electrochemical impedance spectroscopy
(EIS) studies were carried out at the frequency range of 100 kHz and 1 Hz at −0.62 V. The
reference electrode potentials were converted in the reversible hydrogen electrode (RHE)
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scale by ERHE = EHg/HgO + 0.921. Here, ERHE is the converted potential. EHg/HgO is the
measured potential at RE. The Hg/HgO electrode was calibrated in 1M KOH to obtain the
standard potential value of 0.921 V (Figure S1). The potential conversion depends on the
pH of the medium. The overpotentials (η) were calculated with respect to the RHE. η can be
related to the current density, J and Tafel slope, b, as η = b Log J + a. The electrochemically
active surface area (ECSA) of the catalysts were measured by calculating electrochemical
double-layer capacitance, Cdl , by ECSA = Cdl

Cs
. The cyclic voltammetry (CV) curves were

recorded in potential range with a non-Faradaic current at different scan rates from 20 to
200 mV s−1. The slope of the relative current density vs. scan rate provided the value of
Cdl . Here, the value of ‘Cs’, specific capacitance of the catalyst per unit area under the same
condition was taken to be 1.7 mF cm−2 as described by Panda et al. [23].

3. Results and Discussion
3.1. Characterization of the Composites and the Effect of UCSs

The 3D pricked bimetallic nanostructure was prepared using a urea templated method,
as shown in Figure 1. First, the hydrothermal treatment of an alkaline solution of copper(II)
chloride dihydrate and cobalt(II) chloride hexahydrate generated a needle-like morphology
(Figure S2A). The product was then reacted with pre-synthesized carbon nanospheres
(UCSs), followed by high-temperature calcination. The product was termed CCuU. High
temperatures caused the release of gases generated by the dissociation of urea, resulting
in perforation of the material surface. The surface structure was confirmed by scanning
electron microscopy (SEM), and transmission electron microscopy (TEM) showed perfora-
tion on the surface (Figure 2A,B). The SEM image revealed a sheet structure with a torn
and punctured surface of the composite. The high resolution-TEM (HR-TEM) showed the
presence of crystalline planes corresponding to planes of CuO [(111) [24,25]] and Co3O4
[(220) and (311)] [26,27] (Figure 2C). The lattice mismatch caused surface defects in the
composite. The selected area electron diffraction (SAED) also indicated the presence of CuO
(111), Co3O4 (220) and (400) crystal planes [28] (Figure 2D). Furthermore, the crystal planes
of CCuU were studied by X-ray diffraction (XRD) over a range of 10◦ to 90◦ (Figure 3A). The
pattern showed characteristic (−111), (200), (−112), (202), (−113), (−311), and (310) peaks
for the monoclinic phase of CuO (Reference code: 01-080-1916) and (220), (311), (331), (422),
(511) and (440) planes of cubic phase of Co3O4 (Reference code: 00-042-1467). Furthermore,
the chemical states were analyzed by X-ray photoelectron spectroscopy (XPS), as shown in
Figure S1B. The broad range spectra revealed the presence of Co2p and Cu2p, O1s, and C1s.
The atomic percentages were obtained from the XPS quantification (Table S1). High resolu-
tion analysis of Co2p showed the presence of Co2p3/2 and Co2p1/2 of Co3O4 at 782.1 and
797.7 eV, respectively, with satellite peaks at 788.01 and 803.48 eV (Figure 3B) [29–31]. The
spit-orbit energy separation of ~15 eV and the satellite peaks indicated a spinel structure of
Co3O4 [31,32]. For Cu2p, two peaks at 955.8 and 935.8 eV corresponded to Cu2p3/2 and
Cu2p1/2 of CuO [33], respectively. The satellite peak at 943.5 eV indicated Cu was present in
+2 state (Figure 3C) [29]. Narrow range analysis of C1s revealed the presence of C=C, C=O,
C–O, and O=C–O at 285.00, 285.37, 290.17, and 292.2 eV, respectively (Figure 3D) [34,35].

Electron microscopic studies of CCuU could not locate the precise position and corre-
sponding lattice planes of carbon on the CCuU surface. The tiny size of the UCS particles
compared to the micro-dimensional metal composite was not evident in the FESEM and
TEM images. A thorough study of the structural properties of UCS particles (showed
green emission at 520 nm when excited at 420 nm, Figure S3A) revealed an average diam-
eter of ~20–25 nm (Figure S3B). The absence of definite lattice fringes and crystal planes
(Figure S3C,D) indicated that the UCS particles were amorphous. Elemental analysis of C1s
during XPS revealed the presence of C–C, C=C, C=O, and O=C–O peaks (Figure S4) [35].
The XRD pattern (Figure S5) showed a broad peak around 20–26◦ 2θ (Reference code:
00-012-0212) for carbon; the broad peak indicated their amorphous nature [36]. Upon exci-
tation at 532 nm, two distinct peaks at 1258 cm−1 and 1588 cm−1 were observed for UCS
particles which might correspond to the D- and G- bands, respectively in Raman spectra.
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The shifted position of the D-bands indicated the increased size of UCS particles [37] and
an oligomer structure [38]. The peak intensity decreased, and the peak position shifted
after a reaction with the bimetallic motif (Figure S5B). The Raman spectra indicated the
attachment of carbon nanoparticles on the composite surface. Although the microscopic
studies could not identify the precise position and crystal planes of carbon on the composite
surface, the electrochemical activity and electrochemical surface area (ECSA) increased
several-folds (detailed discussion follows).
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The importance of UCSs on the structure and activity of CCuU was examined further
by considering the bimetallic products prepared through similar reaction conditions except
for the individual absence of urea and UCSs. The products are denoted as CCU and CCu,
respectively. SEM revealed perforation on the CCu surface, whereas CCU exhibited an
asymmetric morphology (Figure S6). Hence, the absence of urea did not produce sufficient
roughness on the CCU surface, unlike CCu and CCuU. The XRD pattern indicated that
CCu possessed crystal planes of CuO and Co3O4, whereas CCU possessed planes of CuO
and CoO (Reference code: 00-042-1300), as shown in Figure S54A. It can be concluded that
UCS’s particles caused the oxidation of CoO to Co3O4 since the absence of UCS resulted
in CoO only. The XPS of CCu (Figure S7) revealed the presence of Co2p, Cu2p, C1s, and
O1s peaks in the broad spectrum. Further analysis of Co2p showed peaks for Co2p3/2
and Co2p1/2 of Co2+ at 782.7 and 798.2 eV, respectively. The spin orbit splitting of 16.1 eV
between Co 2p3/2 and Co2p1/2 indicated +2 state of Co as CoO [39]. The Cu2p peaks
were split into two main peaks of Cu2p3/2 and Cu2p1/2 at 936.3 and 956.3 eV, respectively.
Similar peaks were observed for CCU at a broad range analysis (Figure S8). Splitting of
the Cu2p peaks revealed the presence of two peaks for Cu2p3/2 and Cu2p1/2 at 935.4 and
955.6 eV, respectively. The nature of the metal oxides was further supported by the Raman
spectral data (Figure S5B). The F2g, Eg and A1g bands of Co3O4 [40] were present in CCuU
and CCu, while CCU contained peaks of CoO at 498, 543, and 698 cm−1 [41]; however,
the CuO peaks at 296, 343, and 625 cm−1 [42] were present in these three materials. The
results indicated that the presence of urea caused a difference in the reduction process and
oxidation state of Co in the composite. During the reaction, urea decomposes to NH3 and
CO2, which could work as a template and make the particles undergo Ostwald ripening
for the formation of a hierarchical morphology (Figures S2 and S6) [43]. On the other
hand, further addition of carbon nanospheres at higher temperature resulted in a carbon
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coating over the perforated composite structure. The oxidation states of elemental Co were
modified in the presence of urea. Furthermore, the surface area of the composite increased
when urea was used as a precursor. The Brunauer–Emmett–Teller (BET) surface areas
(Figure S9A), measured through nitrogen adsorption and desorption, were 27.22, 27.13,
and 9.72 m2 g−1 with pore volumes of 0.362, 0.342, and 0.0706 cc g−1 for CCuU, CCu, and
CCU, respectively (Table S2). On the other hand, the ECSA was higher in the presence of
UCSs (Figure S9B). Carbon nanoparticles, being good electron transporters, could expand
the contact area with the analyte, which in turn might increase the ECSA [44].

3.2. HER from Alkaline NaCl Solution

The electrocatalytic activity of these catalysts towards the hydrogen evolution reaction
(HER) was studied using alkaline NaCl solutions (1 M NaCl solution in 1 M KOH medium)
and alkaline seawater (1 M KOH) solution. The working electrode of the three-electrode
system was a nickel foam coated with the catalyst materials with the catalyst loading
of 4 mg cm−1. The catalytic activity was monitored in terms of the overpotentials at a
certain current density by linear sweep voltammetry (LSV) at a scan rate of 5 mV s−1 over
a potential range of 0 to −0.6 V vs. RHE. As evident from Figure 4 and Table 1, CCuU
showed the lowest overpotential of 115 mV to obtain a current density of 10 mA cm−2,
whereas commercial Pt/C and other catalysts required higher potential to reach that current
density. The activity and mechanistic path can be understood from the Tafel slope. The
corresponding Tafel slopes were calculated using extrapolation of the linear relationship
between η and LogJ. Figure 4B shows that CCuU had a Tafel slope of 82 mV dec−1 (higher
than CCu and Pt/C). The progress of the reaction could be understood from the Tafel slope
values as they relate the potential required to increase the current density magnitude by
ten-fold [45]. Since the Tafel slope value higher than 40 mV dec−1 can be a result from
contribution of a higher coverage region it might be concluded that the either the Volmer
step or Heyrovsky step at a higher coverage region act as the rate determining step [46].

M + H2O + e− → M−H + OH− (1)

M−H + H2O + e− → H2 + OH− + M (2)

where M−H represents a hydrogen atom adsorbed on a catalyst surface. The rate-limiting
step of alkaline NaCl water HER on CCuU might be related to the initial water dissociation
and associated M−H adsorption [47]. The higher catalytic activity is often corroborated by
the smaller charge transfer resistance [48]. Therefore, the electrochemical impedance (EIS)
studies were performed to calculate the charge transfer resistance (Rct). The corresponding
Nyquist plot over a frequency range of 100 kHz to 1 Hz and amplitude of 7 mV (Figure 4C)
indicated the smallest diameter of the semicircle for CCuU, with Rct = 1.0 Ω.

Table 1. Account of the catalytic activities of the materials in the alkaline NaCl solution.

Catalysts η (mV)
@10 mA cm−2

Tafel Slope
mV dec−1 Rct Ω J0 mA cm−2

Pt/C 226 60 1.70 0.76
CuuU 150 70 1.20 1.51
CouU 192 135 1.48 0.59
CCu 224 105 1.47 0.46
CCU 120 64 1.43 0.77

CCuU 115 82 1.00 1.20
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3.3. HER from Alkaline Seawater

Although the activities were significant for the seawater-like model, it is often difficult
to achieve the HER on an actual seawater system due to stability and corrosion-related
limitations [49]. Hence, the catalytic activities of the as-synthesized composites were
tested on an actual seawater system under alkaline conditions, according to the above-
mentioned experimental conditions. The seawater was treated with KOH solution, and
the supernatant was used for the experiment. Figure 5 and Table 2 present the catalytic
activities. As observed from the figure, the overpotential of 73 mV was required to attain
10 mA cm−2 current density by CCuU. This η10 value is smallest along as-synthesized
catalysts and much smaller than the commercial Pt/C (η10 = 219 mV) under experimental
conditions. However, it might be noticed that the η100 was higher for CCU by 10 mV than
CCuU. The activity was further understood from Tafel slopes. The Tafel slope for CCuU
was 58 mV dec−1 whereas that for the Pt/C was 108 mV dec−1. The Tafel slope for CCU
was 73 mV dec−1. This value of Tafel slope indicated that the Heyrovsky reaction might be
the rate determination step with [46,50],
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Table 2. Account of the catalytic activities of the catalysts in alkaline seawater.

Catalysts η (mV)
@10 mA cm−2

Tafel Slope
mV dec−1 Rct Ω J0 mA cm−2

Pt/C 219 108 0.8 0.679
CuuU 127 85 0.8 0.213
CouU 198 115 0.9 0.265
CCu 240 125 1.2 0.915
CCU 87 73 1.0 0.962

CCuU 73 58 0.7 0.173

These values indicated a comparative activity of CCuU and CCU although Pt/C
possessed lower activity compared to the as-synthesized composites. The EIS studies
showed smaller Rct values for CCuU of 0.7 Ω compared to that of CCU (1.0 Ω) (Figure 5C).
The results confirmed its highest activity of CCuU towards alkaline seawater through the
fastest electron transfer. The catalytic activity of CCuU dominated over CCu, CCU, CuuU,
and CouU, indicating that a proper composition of precursor materials results in a stable
and electroactive material. It can further be noticed that the activity of catalysts was better
for natural seawater than the seawater model. This might be due to the fact that in the
seawater model or actual seawater electrolyte, there is more than one type of cation, and the
electrolyte induces natural corrosion, which could be conquered by the CCuU through the
carbon coating on the surface. The turnover frequency values (TOF) values were calculated
at 200 mV to understand the efficiencies of conversion of substrates into H2. As shown in
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Table 3 and Figure S10, the CCuU (0.43 s−1) and CCU (0.5 s−1) have almost comparable
activity explaining their similar rate of progress and direct influence of UCS particles. When
compared with previous reports, it was found that the η10 value is smaller than most of
the previously reported materials. The high activity has been observed to be associated
with significant stability (Figure S11). The above-mentioned results suggest that the as-
synthesized catalyst CCuU exceed the activity of the commercial Pt/C. Furthermore, while
constructing a two-electrode cell using IrO2 as the anode material, the cell potentials were
calculated to be 1.593 V for CCuU and 1.683 V for Pt/C @ 10 mA cm−2 (Figure S12). These
results indicate that CCuU could be successfully commercialized for hydrogen generation
from alkaline seawater.

Table 3. Account of TOF alkaline seawater and electroactive sites of the as synthesized materials.

Catalyst TOF s−1 Cdl = d(∆J)
2dV

ECSA cm−2 Rf = SECSA
Sgeo

CuuU 0.34 0.0199 11.7 11.7
CouU 0.19 0.0186 10.9 10.9
Ccu 0.09 0.0173 10.17 10.17
CCU 0.5 0.0270 15.8 15.8
CcuU 0.43 0.0302 17.7 17.7

It was observed that CCU possessed a lower BET surface area than CCu, the electro-
catalytic activity of CCU was higher than CCu in both cases and the η value was quite
comparable with CcuU for alkaline seawater HER. This can be understood further by
calculating the ECSA values [47]. The ECSA was calculated by measuring the double-layer
capacitance, Cdl , at the potential window of 0.1 to 0.4 V using CV at different scan rates
(Table 3) [51]. As shown in Figure S9, the porous CCuU showed the highest Cdl values
followed by CCU and CCu, indicating a larger number of exposed active sites and larger
specific surface area resulting in improved HER activity [49]. The results suggested that the
presence of the carbon nanoparticle support increased the active catalytic sites by increasing
the electroactive surface area [20]. The improved HER for the actual seawater sample rather
than the salt-treated freshwater might be due to the improved conductivity in the presence
of spare metal ions, such as Na+, Mg2+, Ca2+, and K+ [52], than KOH and alkaline NaCl
solutions [48]. As in the present case, the presence of Na+, Zn2+, and K+ ions on the CCuU
surface was found from the XPS analysis (Figure S11). Furthermore, it has been previously
reported that in many cases depending on the catalyst surface, NaCl concentration and
amount of sacrificial agents might cause large differences in hydrogen production efficiency
in natural seawater and synthetic seawater models [52].

3.4. Stability of CCuU

In addition to the activity, stability is also an important factor that decides the signifi-
cance of catalysts during the electrolysis of seawater [49]. Figure 6 shows that during the
chronopotentiometry study at a current of 130 mA over 10 h, the CCuU remained almost
unchanged with a slight voltage drop of ~15 mV. The SEM image showed a perforated
surface as before the HER. The XRD showed the retention of almost all peaks with slight
deviations in peak intensities, which might be due to interactions with reaction intermedi-
ates. The high structural stability can be attributed to the presence of a conductive carbon
layer on the composite surface which further offers plenty of active sites [21]. The effect
of the protective carbon layer can further be understood by studying the fluorescence of
carbon nanoparticles in the presence and absence of chloride ions (Figure S13). It was
observed that even after attachment with chloride ions (as evident from FTIR studies) the
fluorescence of carbon nanoparticles did not change due to the retention of fundamental
electronic properties. The post-HER characterization did not indicate a significant change
of the morphology and oxidation state, the voltage loss can be understood by the formation
of a white precipitate with the progress of the reaction after 10 h, resulting in a variation
of the current density over time. This precipitate was removed by adding a few drops of
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0.5 M HCl solution. The removal of the precipitate is important to prevent the blocking of
the active sites during long-term stability test [53].
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3.5. Effects of Cl− and Activity of CCuU

The effect of Cl- was understood by studying the catalytic activity in 1 M KOH which
showed that the electrocatalytic activities of the materials differ in the absence of Cl− or
seawater in the alkaline medium. CCuU showed a higher overpotential of 128 mV, whereas
commercial Pt/C showed a lower overpotential of 199 mV than that in alkaline seawater
and alkaline NaCl solution. EIS revealed small semicircle curves for the catalysts (Figure 7,
Table 4). This difference in activity in the alkaline medium only can be understood by
considering the Cl− ions present in the medium. The calculated Tafel slope value of CCuU
(87 mV dec−1) indicated that the process would have a rate determining step of Volmer or
Heyrovsky following a Volmer–Heyrovsky mechanism [47]. There might be factors, such
as the co-adsorption of coexisting cations in seawater on the catalyst surface or in the WE
itself [54,55] that can contribute to the rate determination. The HER in the alkaline medium
is strongly affected by the H2O (H2O-M) and hydroxyl (OH-M) on the catalyst surface [15].
The presence of Cl− in the medium affected the progress of the HER because Cl− is a harder
base than OH− [3]. Moreover, the medium pH affected the catalytic activity transport of
the ions [56]. On the other hand, based on the above-mentioned results and comparison of
previous reports (Table S3), the as-synthesized perforated CCuU nanocomposites would
work as an efficient alternative to alkaline seawater hydrogen evolution.
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Table 4. Account of catalytic activities of the catalysts in 1 M KOH.

Catalysts η (mV)
@10 mA cm−2

Tafel Slope
mV dec−1 Rct Ω J0 mA cm−2

Pt/C 199 96 0.64 0.131
CuuU 164 90 0.65 0.202
CouU 171 103 0.82 0.316
CCu 179 123 0.70 0.559
CCU 186 115 0.64 0.294

CCuU 128 87 0.70 0.961

4. Conclusions

In summary, a carbon nanosphere-supported CuO/Co3O4 bimetallic composite (CCuU)
was successfully synthesized via heat treatment for electrolysis reaction. Detailed charac-
terization showed that the presence of urea increased the surface roughness and carbon
nanoparticles increased the electroactive surface area. The surface defects and the oxide
induced ion transportation boosted the catalytic activity. The CCuU, when deposited on
NF, exhibited significant catalytic activity and stability as a cathode material for HER in
both alkaline saline water and alkaline seawater with much low overpotential (115 mV
and 73 mV @ 10 mA cm−2) compared to most of the previously reported materials. The
post-HER characterization of CCuU showed an almost unmodified physical state of the
catalyst material. The stability may arise from the synergism within the metal oxides and
the carbon coating. This study, describing the effects of amorphous carbon nanoparticles on
the electrocatalytic activity of metal composites towards seawater splitting, would further
contribute to research on seawater-based fuel cells as an alternative energy source.



Nanomaterials 2022, 12, 4348 13 of 15

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12234348/s1, Figure S1: Calibration of Hg/HgO electrode
in 1 M KOH solution (saturated with 5% H2/Ar gas) at a scan rate of 2 mV/s; Figure S2: (A) SEM
image of CCuU before calcination. (B) Broad range XPS spectra of CCuU; Figure S3: (A) Schematic of
UCS synthesis. (B) Spectral profile, (C) TEM, (D) HRTEM, (E) FFT image of UCS particles; Figure S4:
XPS (A) Broad range spectra and (B) Elemental analysis of C1s of UCS; Figure S5: (A) XRD pattern
and (B) Raman spectra of UCS, CCuU, CCU, and CCu; Figure S6: SEM images; before calcination (A)
CCu and (B) CCU and after calcination (C) CCu, and (D) CCU; Figure S7: (A) Broad range spectra of
CCu. Elemental analysis of (B) Co2p, (C) Cu2p, and (D) C1s; Figure S8: (A) Broad range spectra of
CCU. Elemental analysis of (B) Co2p, (C) Cu2p, and (D) C1s; Figure S9: (A) BET isotherm of CCuU,
CCU, and CCu. (B) Capacitive current density ∆J0.35 V as a function of scan rate (v) in the range of
0.1 to 0.4 V versus RHE for as-synthesized catalysts; Figure S10: TOF values of materials in alkaline
seawater during HER. The TOF values were calculated at 200 mV; Figure S11: Chronoamperometric
test of (A) CCuU over 40 h, and (B) Pt/C over 10 h in alkaline seawater at the over-potentials of 85 mV
and 220 mV, respectively. (C) Broad range XPS spectrum of CCuU after 10 h scanning; Figure S12: (A)
Polarization curves, and (B) Schematic illustration of the two-electrode cell containing CCuU/Nifoam
and Pt/C/Nifoam (individual) as the cathode and IrO2/Nifoam as the anode for two-electrode
system; Figure S13: (A) Fluorescence spectral profile and (B) FT-IR spectra of alkaline UCS in absence
and presence of chlo-ride ions; Table S1: Atomic % of the elements as obtained from the XPS; Table S2:
Surface area analysis of composites; Table S3: The comparative account of HER activity by different
electrocatalysts. References [4,14,18,19,57–60] are cited in the Supplementary Materials.
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