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Abstract: Organic–inorganic perovskite solar cells (PSCs) have delivered the highest power conver-
sion efficiency (PCE) of 25.7% currently, but they are unfortunately limited by several key issues,
such as inferior humid and thermal stability, significantly retarding their widespread application.
To tackle the instability issue, all-inorganic PSCs have attracted increasing interest due to superior
structural, humid and high-temperature stability to their organic–inorganic counterparts. Neverthe-
less, all-inorganic PSCs with typical CsPbIBr2 perovskite as light absorbers suffer from much inferior
PCEs to those of organic–inorganic PSCs. Functional doping is regarded as a simple and useful
strategy to improve the PCEs of CsPbIBr2-based all-inorganic PSCs. Herein, we report a monovalent
copper cation (Cu+)-doping strategy to boost the performance of CsPbIBr2-based PSCs by increasing
the grain sizes and improving the CsPbIBr2 film quality, reducing the defect density, inhibiting the
carrier recombination and constructing proper energy level alignment. Consequently, the device with
optimized Cu+-doping concentration generates a much better PCE of 9.11% than the pristine cell
(7.24%). Moreover, the Cu+ doping also remarkably enhances the humid and thermal durability of
CsPbIBr2-based PSCs with suppressed hysteresis. The current study provides a simple and useful
strategy to enhance the PCE and the durability of CsPbIBr2-based PSCs, which can promote the
practical application of perovskite photovoltaics.

Keywords: CsPbIBr2; perovskite solar cells; all-inorganic perovskites; Cu+ doping; stability

1. Introduction

The energy crisis and greenhouse gas emissions are the most crucial worldwide prob-
lems nowadays, which are mainly caused by the low efficiency and excessive consumption
of nonrenewable fossil fuels [1,2]. Thus, the utilization of renewable energies and the devel-
opment of relevant energy conversion technologies are highly urgent and essential [3–7].
Among various types of renewable energies/sources, solar energy has gained particular
interest due to its inexhaustible and clean nature, which can be efficiently utilized by three
main routes: photovoltaic cells, photocatalysis and solar-thermal power generation [1,8–10].
In particular, photovoltaic cells (solar cells) have received increasing attention and achieved
significant progress in the past decades because of their direct and efficient transforma-
tion of sunlight energy into electricity [11–15]. Nowadays, the commercial photovoltaic
markets are dominated by silicon-based solar cells, showing excellent stability and high
PCE of 27.6% [16]. However, silicon-based solar cells are limited by high-cost and complex
fabrication procedures, and toxic by-products in the silicon manufacturing, which are
harmful to the environment [17,18]. Consequently, the development of new-type solar cells
with simple, cost-effective and environmentally friendly fabrication processes is highly
crucial [19,20].
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Among various third-generation solar cells, perovskite solar cells (PSCs) with halide
perovskites as light absorbers are regarded as more attractive than dye-sensitized and
organic solar cells due to the cheap raw materials used, the simple and low-cost fabrication
procedures, as well as their rapidly increasing power conversion efficiencies (PCEs) in
the last 10 years [21,22]. The theoretical limit of the PCE has been known for PSCs and is
approximately 30% [23]. Since the invention of PSCs by Miyasaka et al. in 2009, typical
organic–inorganic PSCs have witnessed a rapid increase in their PCEs from only 3.8% to
over 25% due to several unique advantages of organic–inorganic halide perovskites, such
as proper and adjustable band gaps, large light absorption coefficient, long diffusion length
and superior mobility of carriers [24–27]. The general formula of halide perovskites is
ABX3, where A is monovalent cations including CH3NH3

+ (MA+), CH3(NH2)2
+ (FA+) and

cesium (Cs+), B is divalent cations including Pb2+, Sn2+ and Ge2+, while X represents the
halogen anions including I−, Br− and Cl− [28–30]. It is well accepted that in addition to the
PCEs, the long-term durability under humid, high-temperature and sunlight irradiation
conditions is another key prerequisite for the widespread application of PSCs [31,32].
The plasmonic effect plays a very effective role in improving the efficiency of perovskite
cells. By optimizing the adaptation of the plasmon photovoltaic channel, the relative
efficiency was enhanced 40% [33]. Nevertheless, organic–inorganic hybrid PSCs suffer
from inferior stability due to the high sensitivity of organic–inorganic perovskites against
humidity, heat and light illumination, and they can be decomposed into PbI2 because of
the inherent volatility and hygroscopicity of organic A-site cations (e.g., MA+, FA+) in the
organic–inorganic perovskites [34–37].

All-inorganic halide perovskites are considered as attractive alternatives to their
organic–inorganic counterparts to tackle the above-mentioned instability issue due to
having superior intrinsic structural stability and much lower sensitivity against humidity
and heat [38,39]. During the past seven years, CsPbIxBr3−x (0 ≤ x ≤ 3) as an important
class of all-inorganic halide perovskites, has received particular attention as an efficient
light absorber for PSCs due to the tunable band gaps, high intrinsic stability and superior
carrier transport capability, etc. [40,41]. For instance, the PCEs of CsPbI3-based PSCs with a
proper band gap of 1.73 eV have reached 21% nowadays. However, CsPbI3 perovskites
suffer from the detrimental phase transformation from black CsPbI3 non-perovskite yellow
phase with a much wider band gap (3.01 eV) at room temperature, exhibiting negative
impacts on the PCEs and the stability of CsPbI3-based PSCs [42,43]. In contrast, CsPbBr3
perovskites have exhibited excellent phase structural stability and high heat/moisture
tolerance, which suffered from the extremely large band gap (2.3 eV), remarkably limiting
sunlight absorption range and then the cell performance [44,45]. On this basis, mixed halide
all-inorganic CsPbIBr2 perovskite has attracted extensive interest due to the well-balanced
band gap value (2.05 eV) and phase structural stability [46,47].

For single-junction PSCs, the calculated Shockley–Queisser limit is approximately
33%. Various approaches such as greatly increasing grain size, significantly reducing
defect amount and band gaps, significantly improving carrier transport and separation
capability, as well as constructing tandem PSCs, may allow approaching or surpassing
the Shockley–Queisser limits of PSCs [3,48–50]. Nowadays, the PCEs of CsPbIBr2-based
PSCs have exceeded 12%, which is much inferior to the organic–inorganic PSCs [51,52]. It
has been reported that the limited PCEs of CsPbIBr2-based cells are mainly caused by the
inferior quality CsPbIBr2 films fabricated by the conventional solution route, exhibiting
numerous pinholes, grain boundaries and defects, which functioned as recombination
sites for photoinduced carriers to suppress the cell performance [53,54]. Therefore, a
variety of strategies have been devoted to achieving high-quality CsPbIBr2 light-absorbing
films, such as interfacial modification, functional/selective cation doping, post-treatment
process and additive engineering, etc. [55–57]. Among these available strategies, cation
doping/substitution is widely employed to tailor the optical/electronic properties and film
quality of CsPbIBr2, which plays significant roles in creating homogeneous nucleation sites
to control the crystallization and growth of CsPbIBr2 crystals, contributing to remarkably
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enhanced perovskite film quality [58–60]. Nowadays, the cation doping in CsPbIBr2 is
mainly focused on the utilization of divalent metal cations to substitute Pb2+, including Sn2+,
Cu2+, Zn2+, Ba2+, Eu2+, etc., which effectively enhance the crystallinity and morphology of
CsPbIBr2 films [61–66]. For instance, Sn2+ plays a crucial role in regulating the band gap
and enhancing the film quality of CsPbIBr2, and Zhao et al. have reported that remarkably
enhanced PCE (11.33%) and long-term stability were achieved by Sn2+ doping in CsPbIBr2-
based PSCs [61,64]. In our previous work, we have found that Cu2+ doping in CsPbIBr2
with optimized doping concentration effectively inhibited the carrier recombination by
reducing the defect amount, and it enhanced the perovskite film quality by improving the
crystallinity and enlarging the grain sizes, thereby remarkably improving the PCEs and
humid/thermal stability of CsPbIBr2-based PSCs [62].

Nevertheless, it should be noted that the monovalent cation doping in the B-site of
CsPbIBr2 is much less investigated, which needs further exploration. Herein, we have
employed monovalent copper cations (Cu+) as effective B-site dopants for CsPbIBr2 per-
ovskites, which effectively improved the CsPbIBr2 film quality in terms of a suppressed
amount of grain boundaries, increased crystallinity and grain sizes, passivated surface
defects and inhibited interfacial carrier recombination. After optimizing the Cu+ dop-
ing concentration, the CsPbIBr2-0.50%Cu cell produced a superb PCE of 9.11%, 25.8%
higher than that of the pristine cell. Furthermore, Cu+ doping also remarkably improved
the high-temperature and humid durability of CsPbIBr2-based PSCs with reduced hys-
teresis effect. Our current work can present some important insights for the design of
high-performance all-inorganic PSCs, which may promote the widespread application of
perovskite photovoltaics.

2. Materials and Methods

F−-doped tin oxide (FTO) glasses (2.2-mm thick and 7 Ω sq−1) were first cleaned
by various solvents, dried by N2 and further treated by oxygen plasma cleaning [56].
Detailed information about the fabrication of CsPbIBr2-based PSCs with a configuration
of compact TiO2 (c-TiO2)/perovskite/2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamine)-
9,9′-spirobifluorene (Spiro-OMeTAD)/Ag can be found in our previous work [62]. As
for the Cu+-doped CsPbIBr2-based cells, different amounts of as-prepared 0.2 M cuprous
bromide/dimethyl sulfoxide (CuBr/DMSO) solution were added into the 1 M CsPbIBr2
precursor solution to prepare various Cu+-doped CsPbIBr2 films at fixed molar ratios of
0.25, 0.50 and 0.75%. The effective area of the cell was 0.0625 cm2 in this work. For the
thermal stability test, the carbon electrode was deposited by doctor blade for the hole-
transporting layer (HTL)-free CsPbIBr2-based PSCs and the detailed information can be
found in our previous work [62].

X-ray diffraction (XRD) patterns of various samples were acquired by X-ray diffrac-
tometer (Rigaku Smartlab, Matsubara-cho, Tokyo, Japan) with CuKα radiation.
X-ray/ultraviolet photoelectron spectroscopy (XPS/UPS) profiles of various samples were
acquired by XPS spectrometer (PHI5600 Versa Probe, Brooklyn, NY, USA). Energy-dispersive
X-ray spectroscopy (EDX, Octane Ultra, Lafayette, LA, USA) and scanning electron micro-
scope (SEM, Hitachi S-4800, Chiyoda-ku, Tokyo, Japan) were employed to investigate the
microstructures and elemental mapping of various films. The surface roughness values
of various perovskite films were acquired by atomic force microscopy (AFM, SmartSPM,
Horiba, Minami-ku, Tokyo, Japan). Ultraviolet–visible (UV-vis) and photoluminescence
(PL) spectra were obtained by Lambda 750 s spectrometer (PerkinElmer, Waltham, MA,
USA) and fluorescence spectrometer (PerkinElmer, FL 6500, Waltham, MA, USA), respec-
tively. Photocurrent density-voltage (J−V) curves of various cells were acquired by Zolix
solar simulator under 1 Sun irradiation (100 mW cm−2) after calibration. Electrochemical
impedance spectroscopy (EIS) and external quantum efficiency (EQE) and spectra of var-
ious cells were acquired by electrochemical workstation (CHI760E) and Zolix Solar Cell
Scan 100 instrument, respectively.
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3. Results and Discussion

Cu+ cations with three different molar ratios of 0.25, 0.50 and 0.75% were doped into
CsPbIBr2, which were labeled as CsPbIBr2, CsPbIBr2-0.25%Cu, CsPbIBr2-0.50%Cu and
CsPbIBr2-0.75%Cu, respectively. Figure S1 displays the typical cross-sectional SEM image
of as-fabricated CsPbIBr2-0.50%Cu cell and it was found that the 350 nm-thick perovskite
film was firmly adhered on the surface of c-TiO2 film. Based on the J−V curves of various
CsPbIBr2 cells, as depicted in Figure 1a and relevant photovoltaic parameters in Figure
S2, the Cu+ doping in CsPbIBr2 significantly boosted the PCEs of corresponding cells by
increasing the fill factor (FF) and short-circuit current density (Jsc). More specifically, the
unmodified cell displayed a champion PCE of 7.24% with an open-circuit voltage (Voc)
of 1.16 V, a Jsc of 10.4 mA cm−2 and an FF of 0.597. In addition, the cell performance
of Cu+-doped CsPbIBr2-based PSCs exhibited a volcano-like trend with increased Cu+

doping contents, suggesting that the introduction of a suitable concentration of Cu+ cations
significantly enhanced the PCEs of CsPbIBr2 cells. Particularly, the CsPbIBr2-0.50%Cu cell
displayed the highest PCE of 9.11%, with a Voc of 1.19 V, a Jsc of 11.6 mA cm−2 and a FF of
0.658 (Table S1). The CsPbIBr2-0.75%Cu cell exhibited a reduced PCE, which was mainly
attributed to decreased FF value induced by the poor quality of CsPbIBr2 film and higher
defect concentration, which will be discussed later. Based on the EQE spectra in Figure 1b,
the CsPbIBr2-0.50%Cu cell displayed higher EQE values than those of the pristine cell at a
wavelength range of 300 to 600 nm. In addition, CsPbIBr2-0.50%Cu cell generated a larger
integrated Jsc value of 9.7 mA cm−2 than that of the pristine cell (8.1 mA cm−2), which
was consistent with the J−V results (Figure 1a). To confirm the universality of such PCE
enhancement, 20 devices for each type of PSC (without and with 0.50%Cu+ substitution)
were fabricated and tested with the photovoltaic parameter distributions displayed in
Figure 1c. It is clear that the average PCE of the CsPbIBr2-0.50%Cu cell was much larger
than that of the unmodified device due to the significantly improved Jsc and FF values
(Figure S2). In addition, based on the maximum power point tracking (MPPT) profiles of
PSCs as depicted in Figure 1d, the CsPbIBr2-0.50%Cu cell produced much larger stabilized
PCE and Jsc values than those of the pristine CsPbIBr2 cell at the maximum power point.

It is well accepted that the PCEs of PSCs are determined by several crucial factors in-
cluding the transport and recombination behavior of photogenerated carriers, defect density,
sunlight absorption capability and energy level alignment between various films [67,68].
In order to elucidate the impacts of Cu+ substitution on the CsPbIBr2 film quality and the
performance of CsPbIBr2-based PSCs, we employed XRD technique to investigate the crys-
tallinity and the crystal structures of pristine CsPbIBr2 and various Cu+-doped CsPbIBr2
films. As depicted in Figure 2a, main characteristic peaks assigned to the α-phase CsPbIBr2
structure were observed in all samples, while no obvious impurity phases were found for
all investigated films, revealing that Cu+ doping at different concentrations exhibited no
obvious influences on the pure-phase cubic structure of CsPbIBr2. Based on the magnified
XRD peaks in Figure 2b, the characteristic XRD peaks gradually shifted to higher angles
with the increased Cu+ doping amounts, implying that the Cu+ cations with smaller ionic
radius (0.60 Å) than that of Pb2+ (1.19 Å) were successfully doped in the lattice of CsPbIBr2
with a lattice contraction [69,70]. UV-vis absorption spectra were employed to evaluate
the impacts of Cu+ substitution on the light absorption capability of CsPbIBr2 film. As
depicted in Figure 2c, the Cu+ doping effectively increased the light absorption intensity
of CsPbIBr2 film at 450–600 nm, especially for the CsPbIBr2-0.50%Cu film. Based on the
Tauc plots of various films acquired from the UV-vis spectra in Figure S3, the band gap
values of CsPbIBr2, CsPbIBr2-0.25%Cu, CsPbIBr2-0.50%Cu and CsPbIBr2-0.75%Cu were
calculated to be 2.08, 2.07, 2.07 and 2.06 eV, respectively. It can be concluded that the Cu+

doping can improve the light absorption capability of CsPbIBr2 film, although the Cu+

doping displayed no obvious influences on the band gap values of CsPbIBr2, which may be
beneficial for the PCE improvement of corresponding PSCs. Based on the steady-state PL
spectra of various CsPbIBr2 films as depicted in Figure 2d, the Cu+-doped CsPbIBr2 films
exhibited much lower PL intensity than the CsPbIBr2 film, demonstrating that the carrier
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recombination was effectively suppressed after introducing Cu+ cations to reduce the defect
amount. Moreover, CsPbIBr2-0.75%Cu film with excessive Cu+ doping amount displayed
a higher PL intensity than that of CsPbIBr2-0.50%Cu, implying more defects were formed
in the CsPbIBr2-0.75%Cu film, agreeing well with the J−V results. It should be noted that
the PL spectra of Cu+-doped CsPbIBr2 films exhibited several split peaks due to the phase
segregation of CsPbIBr2 films, which may be beneficial for the PCE enhancement [62,71].
Based on the TRPL spectra as depicted in Figure S4, CsPbIBr2-0.50%Cu film delivered a
much higher average carrier lifetime of 3.21 ns than the CsPbIBr2 film (0.88 ns) due to
the effectively suppressed defect concentration, which was favorable for the transport
and separation of carriers. XPS was further employed to explore the influences of Cu+

substitution on the chemical states of various ions in CsPbIBr2 films, with results displayed
in Figure S5. All the XPS peaks of CsPbIBr2-0.50%Cu film shifted to lower binding energies
compared with the CsPbIBr2 film due to the shrinkage of the BX6 octahedron caused by
Cu+ doping induced by the changed interatomic force [58,72].
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0.50%Cu devices, (c) statistical PCE distributions of PSCs based on CsPbIBr2 and CsPbIBr2-0.50%Cu,
(d) steady PCE and Jsc values of CsPbIBr2 and CsPbIBr2-0.50%Cu cells.
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The morphology and quality of perovskite film plays a vital role in governing the
performance of PSCs [54,73]. More specifically, compact perovskite films with large grain
sizes and few grain boundaries are beneficial to suppress the carrier recombination [13,74].
Based on the top-view SEM images of CsPbIBr2 and various Cu+-doped CsPbIBr2 films in
Figure 3a–d and Figure S6, the pristine CsPbIBr2 film displayed an inferior morphology
with abundant pinholes and small grains, while the quality of CsPbIBr2 film was signifi-
cantly improved after Cu+ doping in terms of reduced amount of pinholes and larger grain
sizes. Particularly, the CsPbIBr2-0.50%Cu film showed a dense and uniform morphology
with remarkably enlarged grain sizes and reduced amount of grain boundaries (Figure 3c,d).
Nevertheless, CsPbIBr2-0.75%Cu film with excessive Cu+ doping amount exhibited smaller
grain sizes than those of CsPbIBr2-0.50%Cu film, as displayed in Figure S6c,d. In addition,
it was found that all elements were uniformly distributed on the CsPbIBr2-0.50%Cu film, as
depicted in Figure 3e, demonstrating homogeneous distribution of Cu+ dopants. Based on
the AFM images as depicted in Figure 3f,g and Figure S7, the CsPbIBr2-0.50%Cu film deliv-
ered a lower root-mean-square (RMS) surface roughness of 29.9 nm than the CsPbIBr2 film
(31.3 nm), benefiting the interfacial charge transfer at perovskite film/HTL interface [75,76].

The carrier recombination behavior of CsPbIBr2 film after Cu+ doping was investigated
by EIS at a fixed voltage of 0.5 V under dark conditions, as depicted in Figure 4a. As can be
seen, a low-frequency arc corresponding to the recombination resistance (Rrec) existed in
the Nyquist plots, which was inversely proportional to the degree of carrier recombination
at the interfaces between the perovskite films and TiO2/Spiro-OMeTAD layer [77,78]. The
CsPbIBr2-0.50%Cu cell generated a larger Rrec value than the CsPbIBr2 cell, suggesting that
the Cu+ doping remarkably suppressed the interfacial carrier recombination. Based on
the dark J−V curves as displayed in Figure 4b, the CsPbIBr2-0.50%Cu cell delivered much
smaller current densities than those of the pristine CsPbIBr2 cell, demonstrating that the
photo-generated carriers were efficiently transported through charge-transporting layers of
the CsPbIBr2-0.50%Cu cell instead of direct shunting, leading to reduced voltage/current
loss and enhanced cell performance, which was attributed to the improved morphology
and quality of CsPbIBr2-0.50%Cu films.
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Hole-only and electron-only PSCs with structures of FTO/PEDOT:PSS/pervoskite/
Spiro-OMeTAD/Ag and FTO/TiO2/pervoskite/[6,6]-phenyl-C61-butyric acid methyl ester
(PCBM)/Ag were prepared to determine the trap densities of PSCs by measuring the dark
J−V curves using the space charge-limiting current model [13,79]. As shown in Figure 4c,d,
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the traps were gradually filled until the applied voltage reached the trap-filling-limit voltage
(VTFL). The trap densities (Ndefects) can be estimated by the equation of Ndefects = 2εε0VTFL

eL2 ,
where ε is the relative dielectric constant of CsPbIBr2 (approximately 8); ε0 is the vacuum
dielectric constant; e represents elementary charge; and L is the thickness of CsPbIBr2
film (350 nm, Figure S1). The VTFL values were 0.43 and 0.38 V for electron-only devices
with CsPbIBr2 and CsPbIBr2-0.50%Cu films, corresponding to trap densities of 3.10 and
2.75 × 1015 cm−3, respectively. As for hole-only devices, the hole defect densities of
CsPbIBr2 and CsPbIBr2-0.50%Cu films were 3.90 and 1.59 × 1015 cm−3 based on VTFL
values of 0.54 and 0.22 V, respectively. This suggested that the Cu+ doping effectively
reduced the trapping centers for both electrons and holes of CsPbIBr2 film.

UPS technique was used to explore the effects of Cu+ substitution on the energy level
alignment of CsPbIBr2-based PSCs. As displayed in Figure S8 and Table S2, the valence
band maximum (EVBM) was calculated as −5.58 and −5.52 eV for CsPbIBr2 and CsPbIBr2-
0.50%Cu, respectively, while the corresponding conduction band minimum (ECBM) was
calculated to be −3.50 and −3.45 eV, respectively, based on the relationship of band
gap = ECBM − EVBM [80]. In addition, the Fermi level of CsPbIBr2 was slightly increased
from −3.74 to −3.68 eV after the introduction of 0.50% Cu+, which was closer to the CBM
position (−3.51 eV) due to the n-type nature of Cu+-doped CsPbIBr2 [81]. The upshifted
VBM position of CsPbIBr2-0.50%Cu effectively promoted the hole extraction from Spiro-
OMeTAD to the perovskite layer. Moreover, the larger energy differences between the
CBMs of CsPbIBr2-0.50%Cu and TiO2 may provide a higher driving force for the electron
injection from light-absorbing film to the electron-transporting layer [72]. Furthermore, the
hysteresis index of the CsPbIBr2 cell was reduced from 0.48 to 0.43 after the introduction of
0.50%Cu based on the J−V curves of corresponding PSCs under reverse and forward scan
directions (Figure S9 and Table S3), which was attributed to the improved CsPbIBr2 film
quality and promoted charge transfer, benefiting the cell stability.

Besides the device efficiency, the humid and thermal stability is another crucial factor
for the development of PSCs. As depicted in Figure 5a, the CsPbIBr2-0.50%Cu cell retained
94% of its primary PCE after storing in humid air with a relative humidity (RH) of 15–30%
at 25 ◦C for 400 h, much superior to the pristine device (57%) under the same conditions.
Furthermore, the PCE of the CsPbIBr2-0.50%Cu cell maintained 80% after 600 h storage in
ambient condition with a RH of 15–30%. The high-temperature air stability of PSCs was
evaluated by preparing HTL-free cells (FTO/c-TiO2/perovskite/carbon). The photovoltaic
parameters of HTL-free CsPbIBr2 and CsPbIBr2-0.50%Cu cells are listed in Table S4. It was
found that the CsPbIBr2-0.50%Cu cell delivered a superior PCE retention ratio of 97% to
that of the CsPbIBr2 device (76%) after storing in ambient condition at 85 ◦C for 1000 h
(Figure 5b).

Cu+ involved in the lattice of CsPbIBr2 partially substituted the Pb2+-occupied B-site,
causing a lattice contraction, and resulted in a reduced bandgap for Cu+-doped CsPbIBr2
film. The reduced bandgap is beneficial for broadening light absorption band edge, thus
facilitating the increase of photocurrent density. A previous study suggested that lattice
contraction caused by doping could lead to improved heat stability for PSCs [82]. The
presence of grain boundaries and pinholes might act as defect centers, trapping charge
carriers, thereby reducing the PCE of PSC [83] Homogeneous and compact perovskite
morphology with large grain sizes, less grain boundaries and pinholes enhanced the
light capture of Cu+-doped perovskite film. The chemical bonds were enhanced after
Cu+ doping, leading to higher phase stability [84]. Moreover, the defect density and the
nonradiative recombination of the films were reduced.
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4. Conclusions

In summary, we report a monovalent Cu+ cation doping approach to boost the PCEs
and humid/thermal durability of CsPbIBr2-based all-inorganic PSCs. It was found that the
introduction of a proper amount of Cu+ cations into CsPbIBr2 effectively passivated the de-
fects, improved the perovskite film quality, suppressed the interfacial carrier recombination
and enhanced the energy level alignment. Consequently, the optimized Cu+-doped cell
exhibited a superb PCE of 9.11% with reduced hysteresis, which was 25.8% higher than that
of pristine cell (7.24%). Moreover, the Cu+ doping also remarkably improved the thermal
and humid stability of CsPbIBr2-based PSCs. For instance, the CsPbIBr2-0.50%Cu device
retained 97% of the primary PCE after 1000 h storage at 85 ◦C in humid air, while the PCE
of the pristine PSC declined to 76% under the same conditions. This work provides some
important insights for the fabrication of durable CsPbIBr2-based all-inorganic PSCs with
higher PCEs, which may promote the commercialization of this technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12234317/s1, Figure S1: Cross-sectional SEM images of
CsPbIBr2-based cell; Figure S2: (a) PCE, (b) Jsc, (c) Voc and (d) FF distributions of CsPbIBr2-based
PSCs without and with 0.50% Cu+ doping with the corresponding average values shown inside;
Figure S3: Tauc plots of CsPbIBr2 films with different Cu+ doping concentrations; Figure S4: TRPL
spectra of CsPbIBr2 and CsPbIBr2-0.50%Cu films; Figure S5: XPS spectra of the pristine CsPbIBr2 and
CsPbIBr2-0.50%Cu films: (a) Cs 3d, (b) Pb 4f, (c) I 3d, (d) Br 3d and (e) XPS survey spectra; Figure S6:
Top-view SEM images of the (a, b) CsPbIBr2-0.25%Cu and (c, d) CsPbIBr2-0.75%Cu films; Figure S7:
3D-AFM models of (a) pristine CsPbIBr2 and (b) CsPbIBr2-0.50%Cu films; Figure S8: UPS spectra of
pristine CsPbIBr2 and CsPbIBr2-0.50%Cu films: (a) the cut-off energies (Ecut-off) and (b) the positions
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of Fermi edge; Figure S9: J–V curves of (a) pristine CsPbIBr2 and (b) CsPbIBr2-0.50%Cu cells under
revere and forward scan directions; Table S1: Photovoltaic performance parameters of CsPbIBr2-
based PSCs with different Cu+ doping concentrations; Table S2: Calculated energy levels of pristine
CsPbIBr2 and CsPbIBr2-0.50%Cu films; Table S3: Photovoltaic parameters of pristine CsPbIBr2 and
CsPbIBr2-0.50%Cu cells under revere and forward scan directions; Table S4: Photovoltaic parameters
of carbon-based HTL-free PSCs based on CsPbIBr2 and CsPbIBr2-0.50%Cu perovskites.
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