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Abstract: Indigo Blue (IB) is a dye widely used by the textile sector for dyeing cellulose cotton fibers
and jeans, being considered a recalcitrant substance, and therefore resistant to traditional treatments.
Several methodologies are reported in the literature for the removal or degradation of dyes from the
aqueous medium, among which photoelectrocatalysis stands out, which presents promising results
in the degradation of dyes when a dimensionally stable anode (DSA) is used as a photoanode. In the
present work, we sought to investigate the efficiency of a Ti/RuO2-TiO2 DSA modified with tin and
tantalum for the degradation of Indigo Blue dye by photoelectrocatalysis. For this, electrodes were
prepared by the thermal decomposition method and then a physical–chemical and electrochemical
analysis of the material was carried out. The composition Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) was
compared to Ti/RuO2-TiO2 (30:70) in the photocatalysis, electrocatalysis, and photoelectrocatalysis
tests. The photocatalysis was able to degrade only 63% of the IB at a concentration of 100 mg L−1 in
3 h, whereas the electrocatalysis and photoelectrocatalysis were able to degrade 100% of the IB at the
same initial concentration in 65 and 60 min, respectively.

Keywords: photoelectrocatalysis; Indigo Blue; dimensionally stable anode

1. Introduction

Dyes are organic substances used in several industrial sectors, such as cosmetics [1],
paints [2], leather dyeing [3], and especially in the textile sector [4]. The textile industry is
responsible for a large amount of highly polluting effluents, with a high organic load. From
an environmental point of view, the dyeing stage is the most worrying due to the large
number of substances that do not bind to the fibers and generate residues that are released
into aquatic environments [5]. Knowing that dyes are potentially toxic pollutants and
resistant to conventional treatment systems, it is necessary to study alternative methods [6].
Numerous alternatives to bleach textile effluents have been proposed [7], including studies
on Advanced Oxidative Processes (AOPs).

AOPs are methods capable of processing high organic loads and causing less sec-
ondary pollution compared to traditional treatment methods [8]. These methods use the
in-situ formation of highly reactive oxidizing species that are capable of promoting the
mineralization of various organic pollutants, originating substances with low toxic po-
tential [9,10]. The generation of these reactive species can be obtained through several
processes, such as electrocatalysis, photocatalysis, and photoelectrocatalysis.

On electrocatalysis, the effluent is subjected to a defined current applied between two
electrodes, the anode, and the cathode, in the presence of a supporting electrolyte. In this
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process, pollutants can be degraded by direct oxidation or indirect oxidation. In direct
anodic oxidation, pollutants are first adsorbed onto the anode surface and then degraded
by electron transfer. In indirect oxidation, oxidants are generated electrochemically by an
anodic or cathodic process, and these are responsible for degrading the pollutant within
the solution [10].

Photocatalysis occurs through the photoexcitation of a semiconductor as a result of
the absorption of incident electromagnetic radiation. If the energy of the incident photon is
greater than the bandgap of the semiconductor, the valence band electrons can be excited to
the conduction band, producing electron/hole pairs (e−/h+). The formed gaps guarantee
the electrochemical system high oxidation capacity and can migrate to the surface to react
directly with organic compounds or react with H2O/OH−, forming hydroxyl radicals
(HO•). In addition, electrons can react with dissolved oxygen and form reactive oxygen
species. These radicals are capable of degrading a wide range of recalcitrant organic
compounds. However, in the absence of an electron acceptor, photogenerated e−/h+ pairs
can also recombine and release energy in the form of heat, reducing the efficiency of the
process [11,12].

Finally, photoelectrocatalysis is a process that employs photocatalysis combined with
electrocatalysis. That is, the semiconductor is radiated with an energy greater than its
bandgap, and a potential or current is also applied, through an external circuit, allowing the
photogeneration of e- which will be continuously driven to the counter electrode to prevent
recombination with the h+ photogenerated, a typical photocatalysis problem [13,14].

Several materials can be used as photoanodes for the photoelectrocatalysis process.
Among them, TiO2 stands out, which has low water solubility, chemical and photochemical
corrosion resistance, low cost, and availability [15]. However, it has several limitations: the
photocatalytic activity of this semiconductor which is limited to UV irradiation, and the
rate of recombination of electron-hole pairs in this semiconductor is high, which reduces
the efficiency of the reaction [15].

Among the materials commonly applied as photoanodes, dimensionally stable anodes
(DSAs) are considered a photoanode option with a high efficiency for photoelectrocatalysis
reactions. This material can be defined as an anode that uses a titanium substrate and is
commonly coated with oxides of iridium, ruthenium, cobalt, and lead, and these oxides
will act as catalysts to intensify the production of oxidizing species. Zirconium, tantalum,
and tin oxides are used as stabilizers and modulators [16–18].

DSAs exhibit a high electroactive area due to their morphology, and oxidation occurs
either by direct exchange of electrons between the contaminant and the electrode surface
or by indirect in situ electrogeneration of catalytic species with high oxidizing power [19].
Thus, the material has excellent catalytic activity, corrosion-resistant nature, stability, and
high efficiency in the removal of organics in wastewater [19].

In the literature, some works report the application of DSAs for dye oxidation.
Chen et al. used DSA of composition Ti/SnO2–RuO2 in the degradation of the dye Alizarin
Cyanin green, where the process demonstrated good performance and decolorization
efficiency of 80.4% [20]. SnO2 is a good material to be applied in DSAs due to its high
stability corrosion [21], and in this way, it has also been used by Bravo-Yumi et al. (2020),
combined with oxide of iridium and antimony, for the degradation of the dyes: Green A,
Brown DR, and Violet RL, where the discoloration was greater than 86% in all cases after
6 min of processing [22].

Tantalum oxide was also studied in the degradation of dyes, Niu et al. conducted
research using Ta2O5 photocatalysts. The material was recycled from recycled capacitors
and was decorated with polyaniline. It was used in the degradation of Rhodamine B
and exhibited excellent photostability and reusability [23]. In turn, Vercesi et al. (1990)
studied tantalum oxide, and it was found that the material has excellent properties as a
semiconductor and stabilizer and can be used in DSA-type electrodes [24]. As Brazil is the
main producer of this metal, it is interesting to transform tantalum into a technological
product [25], such as electrodes.
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Among the dyes most used by the industry, we have Indigo Blue (IB), widely used for
dyeing cellulose cotton and jeans fibers, being considered a recalcitrant substance, which
causes environmental concern [26].

IB discoloration was studied by Balan and Monteiro (2001) using ligninolytic basid-
iomycete fungi from Brazil. Although 100% of the dye was degraded, the process took
4 days [26]. It was also studied using photocatalysis with Fenton’s reagent. In 45 min, the
concentration of total organic carbon remained constant, and the degradation was 61%.
The initial dye concentration was 25 ppm, where the procedure was performed with a UV
lamp with a power of 90 W [27]. The electrochemical decolorization process has also been
studied for IB by Sanromán et al. (2004), the degradation of 90% of the dye was obtained in
60 min using a platinum electrode (Vigo, GPo, Spain) at a constant voltage of 5 V at pH 4.5
and an initial concentration of 100 µM at 25 ◦C [28].

Due to the wide use of IB dye and the reduced amount of work studying its dis-
coloration by electrochemical means, this article aims to study its degradation by means
of photoelectrocatalysis using an electrode based on Ti/TiO2-RuO2 modified with tin
and tantalum.

2. Experimental
2.1. Preparation of Electrodes

The electrodes of composition Ti/RuO2-TiO2-SnO2-Ta2O5 with the nominal atomic
percentage of 30:40:10:20, Ti/RuO2-TiO2-SnO2-Ta2O5; 30:50:10:10 and RuO2TiO2 30:70
were prepared by the thermal decomposition method. The three precursor solutions
were prepared with 0.1 mol L−1 of ruthenium chloride(III) (Dinâmica®, Serra, ES, Brazil),
titanium isopropoxide(IV) (Dinâmica®, Serra, ES, Brazil), tin chloride (Dinâmica®, Serra,
ES, Brazil), and tantalum ethoxide(V) (Dinâmica®, Serra, ES, Brazil) in ethanol (Dinâmica®,
Serra, ES, Brazil). The temperature of these solutions was controlled between 60 and 65 ◦C
and a mixture of citric acid (Dinâmica®, Serra, ES, Brazil) and ethylene glycol (Dinâmica®,
Serra, ES, Brazil) was added and heated to 80–95 ◦C to promote the esterification reaction.
The mixture was kept in this temperature range for 1 to 2 h until the volume of the solution
was reduced to half.

The 21 cm2 Ti supports, previously blasted with a glass microsphere using the GJS
blaster (PR Jateamento®, Boa Esperança do Sul, SP, Brazil) were washed with running
water and kept in hot ultrapure water for 30 min. Then, they were immersed in a beaker
containing 99.5% pure isopropyl alcohol (NEON®, Suzano, SP, Brazil), and placed in the
USC-1400 ultrasound (UNIQUE®, Indaiatuba, Brazil) with a power of 135 Watts RMS
for 30 min to degrease their surface. Subsequently, the Ti supports were placed in a 20%
HCl solution (NEON®, Suzano, SP, Brazil) at boiling point for 30 min, and subjected to a
chemical attack by 10% oxalic acid (Dinâmica®, Serra, ES, Brazil) for 20 min. The electrodes
were dried in a Toyo TA-1060 heat gun (Toyo®, Curitiba, PR, Brazil), weighed, and brushed
with polymeric resins. After depositing the material, the resin was dried, taken to an oven
at 130 ◦C for 10 min, and then to a muffle furnace at 450 ◦C for 5 min until reaching a mass
of 2 mg. Upon reaching the desired mass, the electrode was calcined for 1 h at 450 ◦C.

2.2. Characterization of Electrodes
2.2.1. Physicochemical Characterization

In order to analyze the formation of oxides formed during the electrode calcination pro-
cess and to determine the crystalline phases present, a study of the film by X-ray diffraction
(XRD) was carried out. Measurements were performed under a grazing angle, measuring
interval 2θ = 10◦ to 90◦ in the interval 0.01◦ min−1, using a Shimadzu diffractometer (Belo
Horizonte, MG, Brazil), model XRD-6000 SSC with a Kα-Cu radiation source (λ = 1.5406 Å)
of the Core Competencies in Petroleum Chemistry (Labpetro).

Other techniques used were scanning electron microscopy (SEM) (São Paulo, SP, Brazil)
and Energy scattering X-ray spectroscopy (EDX) (São Paulo, SP, Brazil)to obtain information
about the structural properties of the material, as well as its morphology, both from JEOL



Nanomaterials 2022, 12, 4301 4 of 16

equipment, model JSM6610LV, with a resolution of 3.0 nm (30 kV), 8 nm (3 kV), 15 nm
(1 kV) from the Carlos Alberto Redins Cellular Ultrastructure Laboratory (LUCCAR).

2.2.2. Electrochemical Characterization

The electrodes were investigated via cyclic voltammetry using the VersaSTAT 4 po-
tentiostat/galvanostat from Princeton Applied Research. The technique allows knowing
the redox processes that occur on the surface of the electrodes, making it possible to obtain
information on the reversibility of the reaction and on the occurrence or not of reactions
parallel to the electron transfer processes, as well as on the charge involved in the process
and the reproducibility of the surface [29].

The electrochemical cell used in the experiments consisted of an Ag/AgCl electrode
as a reference (ANALION, R682A), the DSA working electrode with composition Ti/RuO2-
TiO2-SnO2-Ta2O5 (30:40:10:20); (30:50:10:10) and RuO2TiO2 (30:70), and a counter carbon
electrode (4 cm2). Before each measurement, the system was purged with nitrogen gas
(White Martins, Serra, ES, Brazil) for 15 min in order to remove dissolved oxygen in the
solution used.

Electrode hydration was performed with fifty successive sweeps in the region of
0.2–1.0 V vs. Ag/AgCl in H2SO4 (Sigma-Aldrich®, Cotia, SP, Brazil) 0.5 mol L−1 at
0.05 V s−1. Other analyses were performed using two sequential voltammetric cycles
at 0.01 V s−1 and a potential window of 0.00 to 1.20 V vs. RHE (reference hydrogen
electrode). All reagents used were of analytical grade, and the ultrapure water used was
obtained by the Sartorius purification AriumTM, model MA-UVT (São Bernado do Campo,
SP, Brazil) with a resistivity of 18.0 MΩ cm at 22 ◦C.

In addition, the Ti/RuO2-SnO2-TiO2-Ta2O5 system was evaluated according to its compo-
sition by the stability test at a corresponding density of 750 mA cm−2 in a 0.5 mol L−1 H2SO4
solution. The electrode potential was recorded as a function of time and its useful lifetime,
considering the time required for the potential to reach 6 V vs. RHE.

2.3. IB Dye Degradation Assays
2.3.1. Electrocatalysis

For the electrocatalysis tests, the IB dye concentration was at 100 mg L−1, and an AFR
source, model FA3010-M was used, providing a current of 0.02 A at 25 ◦C until the complete
degradation of the dye. In the electrochemical cell, DSAs of composition Ti/RuO2-TiO2-
SnO2-Ta2O5 were used, which were compared to the standard electrode of Ti/RuO2-TiO2,
in both cases a graphite electrode with an area of 3.15 cm2 was used as the counter electrode
and 150 mL of dye solution were used. The aliquots of the solution were taken every 10 min
and the samples were analyzed with the aid of a UV-Vis spectrophotometer (Hach DR5000,
Jundiaí, SP, Brazil). Color removal percentages were calculated according to Equation (1).

% Color Removal =
C0 − Ct

C0
× 100 (1)

Wherein C0, and Ct correspond to the dye concentration at time zero and time t,
respectively.

2.3.2. Photocatalysis

For the photocatalysis tests, an Ultraviolet (UV) light booth, 365 nm wavelength from
T&M instruments model CL6i-45S (Brooklin, SP, Brazil) was used, and no current was
applied to the process. For these tests, electrodes of composition Ti/RuO2-TiO2-SnO2-
Ta2O5 and Ti/RuO2-TiO2 were used, a counter carbon electrode, 150 mL of dye solution
100 mg L−1, and the aliquots of the solution were also taken every 10 min and analyzed
with the aid of a UV-Vis spectrophotometer (Hach DR5000). Results were expressed as a
percentage of color removal, calculated using Equation (1).
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2.3.3. Photoelectrocatalysis

For the photoelectrocatalysis test, the radiation emitted by the UV light cabin was
associated with a current of 20 mA applied by a source, a volume of 150 mL of the dye IB
100 mg L−1 was used with the electrodes of composition Ti/RuO2-TiO2-SnO2-Ta2O5 and
Ti/RuO2-TiO2. The samples were taken every 10 min for analysis in the spectrophotometer.
Equation (1) was also used to analyze the results.

3. Results and Discussion
3.1. Physicochemical Characterization
3.1.1. X-ray Diffraction

The surface morphology of the quaternary electrodes, of composition Ti/RuO2-TiO2-
SnO2-Ta2O5, was analyzed by X-ray Diffraction (XRD) in order to verify the oxides present,
and the result is shown in Figure 1.
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Figure 1. X-ray pattern for the electrodes: Ti/TiO2RuO2 (70:30), Ti/RuO2-TiO2-SnO2-Ta2O5 
(30:40:10:20) and (30:50:10:10) (Ø) RuO2 rutile (PDF 40-1290); (◊) TiO2 rutile (PDF 21-1272). 

Figure 1. X-ray pattern for the electrodes: Ti/TiO2RuO2 (70:30), Ti/RuO2-TiO2-SnO2-Ta2O5

(30:40:10:20) and (30:50:10:10) (Ø) RuO2 rutile (PDF 40-1290); (♦) TiO2 rutile (PDF 21-1272).

Comparing the positions of the peaks obtained with the values established for metallic
titanium and for the Ru, Ti, Sn, and Ta oxides (Figure 1), it is possible to observe that the
material exhibits the presence of metallic titanium, coming from the metallic base, and
also the presence of films in the tetragonal phase of RuO2 and in the rutile phase TiO2.
According to the analysis, it is not possible to observe the presence of SnO2 and Ta2O5.
However, according to the Hume-Rothery rules, in substitutional solid solutions, the atomic
size factor establishes that the difference between the atomic rays of two elements cannot
exceed 15% [30], which occurs when we are considering the ions used for the electrode
(Ru4+, Ti4+, Sn4+, and Ta5+) according to Table 1. Thus, it is possible to say that Sn4+, and
Ta5+ ions were also present in the electrode.
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Table 1. The ionic radius of ions Ru4+, Ti4+, Sn4+, e Ta5+. Adapted from Shannon (1976).

Ion Ionic Radius (nm)

Ru4+ 0.062
Ti4+ 0.056
Ta5+ 0.068
Sn4+ 0.069

Using XRD data, it was also possible to calculate the average crystallite size for the
different crystalline planes of RuO2 and TiO2, using the Scherrer equation [31]:

D = 0.9 × λ/β × cos θβ (2)

where D is the average size of the crystallite, λ the wavelength of the radiation, β the width
of the reflection in radians and θβ the angle of maximum intensity of the reflection. The
results are shown in Table 2.

Table 2. Average crystallite size obtained for the tetragonal RuO2 and TiO2 phases in different
diffraction planes.

Electrode Composition Average Crystallite Size (nm)

Nominal Experimental (EDX) 101 110 111 202 211 310 321 400

Ti/RuO2-TiO2-SnO2-Ta2O5
(30:50:10:10)

Ti/RuO2-TiO2-SnO2-Ta2O5
(40:32:6:21) - - 26 77 39 - 54 -

Ti/RuO2-TiO2-SnO2-Ta2O5
(30:40:10:20)

Ti/RuO2-TiO2-SnO2-Ta2O5
(46:32:5:17) - 27 40 77 39 - 82 -

Ti/RuO2-TiO2 (30:70) Ti/RuO2-TiO2 (21:79) 35 28 - - 54 - - 86

From the data obtained in Table 2, it is noted that lower values were obtained for
Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10), which according to Cheng et al. could provide
better electronic and photocatalytic properties [32]. Knowing that better electronic and pho-
tocatalytic properties are possible when smaller crystallite radii are found, it is expected that
the quaternary electrodes of composition Ti/RuO2-TiO2-SnO2-Ta2O5 in both studied pro-
portions will obtain promising results when compared to the standard Ti/TiO2RuO2 (70:30).

3.1.2. Scanning Electron Microscopy

The analysis of the physical characteristics of the DSA electrodes of composition
Ti/TiO2RuO2 and Ti/RuO2-TiO2-SnO2-Ta2O5 was performed by scanning electron micro-
scope, SEM. This equipment is widely used for microstructural analysis of solid materials
and images can be obtained with magnifications of up to 100,000 times and resolutions
of up to 20 nm [32,33]. In Figure 2, the morphology of the materials is presented at
500× magnification, obtained through SEM, it is evident that the surfaces of both materials
have structure considered by the literature similar to “mud cracked”, typical for DSAs
prepared by the thermal decomposition method. In this morphology, the cracks designated
the macro roughness, while the pores exhibited the micro-roughness [19].

3.2. Electrochemical Characterization
3.2.1. Cyclic Voltammetry

The electrochemical behavior of the previously prepared DSAs was investigated via
cyclic voltammetry, the following compositions were tested: Ti/RuO2-TiO2-SnO2Ta2O5
(30:40:10:20) and Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10) in duplicate, so the first tests
were carried out to find the electrolyte with the highest charge. The electrolytes tested
were: Na2SO4 (0.05 mol L−1), NaCl (1.67 mol L−1), and H2SO4 (0.5 mol L−1), so that the
concentrations were defined so that all solutions had the same ionic strength (µ = 0.25).
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In this way, the values between the anodic (qa) and cathodic (qc) charge densities were
calculated based on Figure 3, as shown in Table 3.
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Figure 3. Cyclic voltammograms obtained for the electrode composition Ti/RuO2-TiO2-
SnO2Ta2O5 (30:40:10:20) and Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10), with the electrolytes: Na2SO4

0.05 mol L−1 (−), H2SO4 0.05 mol L−1 (−), and NaCl 0.167 mol L−1 (−). Conditions: v = 0.05 V s−1,
potential range: 0.00 to 1.20 V vs. Ag/AgCl.

Table 3. Calculated values of the relationships between anodic and cathodic charge densities for the
DSAs. Conditions: v = 0.01 V s−1, potential range: 0.00 to 1.20 V vs. Ag/AgCl.

Electrode qa/C m−2 qc/C cm−2 qa/qc

H2SO4 0.050 mol L−1

Sample 1—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:40:10:20) 19.0 22.6 0.843
Sample 2—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:40:10:20) 10.0 11.3 0.881
Sample 1—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10) 16.5 18.9 0.873
Sample 2—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10) 21.8 25.1 0.868

NaCl 0.167 mol L−1

Sample 1—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:40:10:20) 15.4 21.6 0.712
Sample 2—Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) 16.9 19.0 0.890
Sample 1—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10) 11.7 14.2 0.823
Sample 2—Ti/RuO2-TiO2-SnO2-Ta2O5 (30:50:10:10) 13.1 16.0 0.817

Na2SO4 0.050 mol L−1

Sample 1—Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) 12.2 14.5 0.835
Sample 2—Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) 9.42 13.9 0.674
Sample 1—Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10) 10.8 10.8 0.994
Sample 2—Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10) 10.2 15.5 0.656
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Figure 3 illustrates the behavior of the Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) and
Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10) electrodes. In the investigated potential range
(0.00 to 1.20 V vs. Ag/AgCl), it is possible to observe in all voltammograms an increase in
the current response by 1.1 V vs. Ag/AgCl which is associated with the oxygen evolution
reaction (OER) of water oxidation. In the region of 0.10 to 0.70 V vs. Ag/AgCl, it is possible
to observe a peak attributed to the Ru(III)/Ru(IV) redox transition, this is more visible in
the composition sample (30:50:10:10) with H2SO4 electrolyte. It is also possible to observe
the second peak in the region between 0.8–1.1 V vs. Ag/AgCl, assigned to Ru(IV)/Ru(VI)
redox transition [18,34].

In the region of 1.0 V vs. Ag/AgCl, begins the chlorine evolution reaction and an
increase in the current response is also observed, normally associated with the coexistence of
the water oxidation [18]. However, the composition DSA (30:40:10:20) in Na2SO4 and NaCl
medium overlap, which indicates that this peak must be attributed just to the oxidation
of water. Finally, a slight increase in charge is observed in relation to the voltammogram
when the Na2SO4 electrolyte is used, compared to NaCl and Na2SO4 under an identical
ionic strength, which is also possible to observe in Table 1. Finally, it is also possible
to observe that, except for sample two of Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) when
Na2SO4 0.050 mol L−1 was used, all samples present their ratios between cathodic and
anodic charge close to the unit value, which indicates a behavior close to reversible.

The following experiments were carried out with the DSA of composition Ti/RuO2-
TiO2-SnO2Ta2O5 (30:40:10:20), due to the high value of the cathodic and anodic charge
when using NaCl as a supporting electrolyte. The electrolyte was chosen because when
using NaCl, it was possible to notice that after some voltammetry the solution became
translucent, as can be seen in Figure 4. The initial hypothesis is that the IB is oxidized
by the presence of NaCl in the solution when a certain potential is applied. Since it is
reported in the literature that when the NaCl salt is used as a supporting electrolyte, and
an overpotential is applied in relation to the chloride reduction potential (Equation (3)),
there is the generation of active chlorine species (Cl2, HClO, ClO−) within the solution so
that these species are capable of promoting indirect oxidation of the dye in question [35,36].
The formation of active chlorine species occurs by the oxidation of the chloride anion (Cl−)
at the anode, releasing chlorine (Cl2(aq)). As chlorine diffuses within the reaction, it is
hydrolyzed, forming HClO and Cl−, as can be seen in Equations (4)–(6) [37].

Cl2(g) + 2e−
 2Cl−(aq) E◦ at 25 ◦C = +1.36 V (3)

2Cl−(aq)→ Cl2(aq) + 2e− (4)

Cl2(aq) + H2O(l)→ HClO(aq) + Cl−(aq) + H+(aq) (5)

HClO(aq) 
 H+(aq) + ClO−(aq) (6)
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3.2.2. Stability Test

The stability of the Ti/RuO2-SnO2-TiO2-Ta2O5 system as a function of its composition
was evaluated at a current density of 750 mA cm−2 in 0.5 mol L−1 H2SO4, considering
the time required for the potential reaches 6 V vs. RHE, as shown in Figure 5 and Table 4.
Once above this potential, DSA is considered inactive, due to the total degradation of the
active layer of the deposited oxide, or by the formation of a TiO2 film in the metallic Ti
layer/active layer [38].
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H2SO4, j = 750 mA cm−2.

Table 4. Comparison of ADEs in relation to stability. Conditions: 0.5 mol L−1 H2SO4, j = 750 mA cm−2.

Electrode Time (min)

Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) 82
Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10) 142

In Figure 5, the DSA of composition Ti/RuO2-TiO2-SnO2Ta2O5 (30:50:10:10), presented
a potential variation as a function of time slower than the DSA (30:40:10:20), indicating it to
be more susceptible to extreme conditions. Regarding the binary composition Ti/RuO2-
TiO2 (30:70), it is possible to find in the literature good durability of the material [39,40].

3.3. Indigo Blue Dye Degradation Assays
3.3.1. Electrocatalysis

The electrocatalysis assay was performed with a DSA of composition Ti/RuO2-TiO2-
SnO2Ta2O5 (30:40:10:20) which was compared to the standard Ti/RuO2-TiO2 (30:70). The
degraded solution consisted of IB at a concentration of 100 mg L−1, with 2 mL of con-
centrated sulfuric acid, used to solubilize the dye and NaCl electrolyte 0.167 mol L−1.
In Figure 6, it is possible to observe the UV-Vis spectrum of the solution in the visible
wavelength region.
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Figure 6. UV-Vis spectrum of the solution containing IB. Effect of photoelectrocatalysis on the
absorption spectra in the UV-Vis region of the IB dye and UV irradiation. Condition: ∆λ = 400–900 nm,
i = 20 mA, UV light λ = 365 nm, CIB = 100 mg L−1, CNaCl = 0.167 mol L−1, T = 25 ◦C.

The maximum lambda found for the IB was 657.0 nm, with this data the calibration
curve was performed in the UV-Vis, and this curve was used to determine the concentration
of the solution as a function of the reaction time. The test was performed with the two DSAs
in triplicate, with a current of 20 mA supplied by the AFR source. The results obtained are
shown in Figure 7.
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CIB = 100 mg L−1, CNaCl = 0.167 mol L−1, T = 25 ◦C.
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During the electrocatalysis process, it was possible to observe the formation of bubbles
on the surface of the electrode, due to the reaction of the detachment of oxygen and chlorine,
which can negatively influence the reactive area of the DSA. However, based on the curve,
the DSA obtained a good response, even with a low current (20 mA) and both tested
anodes were able to remove 100% of the color of the IB dye in 65 min, demonstrating that
the anodic oxidation was effective for the removal of color background. As reported by
Soni et al. (2020), the use of NaCl as an electrolyte provides indirect oxidation, in addition,
as sulfuric acid is being used in the dilution of IB, it is an acidic medium, which is also
favorable for a high color reduction with electrodes like DSA by indirect oxidation [41].
When comparing the performance of the electrodes, it is possible to observe that at the
beginning of the reaction the standard Ti/RuO2-TiO2 (30:70) obtained a better performance,
until it matched the performance of the composition Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20)
in 25 min, and from that moment the quaternary electrode started to perform better when
compared to the standard. The good performance with a standard electrode was already
expected because it is a widely used composition, with 70% TiO2 which is a catalyst with
great light absorption properties [15] and 30% of RuO2, a promising catalyst for hydrogen
evolution reaction [42]. On the other hand, the composition of the quaternary anode also
presents Ta2O5 with excellent properties as a semiconductor and stabilizer [20], but its
application has been little studied in DSAs and SnO2 with a significant electrooxidation
capacity and corrosion stability [23]. In this way, when used together, it was possible to
obtain a competitive result with the standard formulation.

3.3.2. Photocatalysis

For the photocatalysis assay with the same DSAs of composition Ti/RuO2-TiO2-
SnO2Ta2O5 (30:40:10:20) and Ti/RuO2-TiO2 (30:70), in addition to the same solution of AI
100 mg L−1, with 2 mL of concentrated sulfuric acid, used to solubilize the dye and NaCl
electrolyte 0.0167 mol L−1. The test was performed in triplicate and the results obtained
are shown in Figure 8.
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As the color removal process by photocatalysis was inefficient, the time was limited
to 3 h. It is possible to observe that in the photocatalysis DSA Ti/RuO2-TiO2 (30:70),
type as standard, more effective color removal was obtained when compared to the new
DSA formulation tested (Ti/RuO2-TiO2-SnO2Ta2O5), showing that standard DSA has a
better response to UV light when compared to quaternary composition. This is due to
the higher proportion of TiO2 in the second electrode, which is a material that has great
light absorption properties and, due to this characteristic, it is currently widely applied to
photocatalytic and antibacterial technology [15].

3.3.3. Photoelectrocatalysis

The photoelectrocatalysis assay was performed with the same DSAs of composition
Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) and Ti/RuO2-TiO2 (30:70), and the same solution
of IB 100 mg L−1, with 2 mL of concentrated sulfuric acid, and a supporting electrolyte
NaCl 0.0167 mol L−1. The test was performed in triplicate and the results obtained are
shown in Figure 9.
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for the DSAs Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20) e Ti/RuO2-TiO2 (30:70). Condition: UV light
λ = 365 nm, i = 20 mA, CIB = 100 mg L−1, Cénacle = 0.167 mol L−1, T = 25 ◦C.

For the photoelectrocatalysis test, the performance of DSA Ti/RuO2-TiO2-SnO2Ta2O5
(30:40:10:20) was better than the standard, since a color removal of 100% in 60 min was
achieved; however, only 5 min later the DSA Ti/RuO2-TiO2 (30:70) achieved 100% color re-
moval. When combining UV irradiation with the current, the quaternary formulation again
obtained competitive results, since, as mentioned, SnO2 has significant electrooxidation and
Ta2O5 acted as a stabilizer. In Figure 10, it is possible to observe the color of the solution
before and after 65 min of photoelectrocatalysis, the final solution has a yellowish color.
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Figure 10. (A) solution of IB (100 mg L−1) solubilized in H2SO4 in NaCl (0.167 mol L−1); (B) the same
solution after the photoelectrocatalysis process for 65 min, and (C) solution after photoelectrocatalysis
and addition of Na2SO3.

As the initial suspicion is that the characteristic color is due to the presence of chlo-
rinated compounds from the electrolyte (Equations (3)–(6)), sodium sulfide was used in
this final solution. When reacting with chlorine and water, HCl was formed (Equation (7)),
with translucent color, as can be seen in Figure 10, which confirms that the yellow color is
due to the presence of chlorine in the solution.

Cl2(aq) + Na2SO3(aq) + H2O(l)→ Na2SO4(aq) + 2HCl(aq) (7)

Figure 6 shows the UV-vis spectrum of the initial solution of IB dye 100 mg L−1

and after different reaction times. The IB dye has only one peak in the visible region, at
λ = 657 nm, and Figure 6 shows that in the first 15 min of reaction there is a decrease in this
characteristic band, which continues to become smaller and smaller until it is no longer
possible to be observed after 60 min. At that time, the absorbance of the solution was
0.007 and the color removal was 100%. At the time of 60 and 65 min, it is also possible to
observe the formation of a new peak, close to 430 nm, characteristic of the yellow color that
the solution takes on at that time due to the formation of chlorinated compounds. Other
techniques have already been tested in the removal of IB, Table 5 presents some works and
the results obtained in this article. Among the techniques used, the use of fungi stands
out, which, in addition to being environmentally friendly, presented 100% color removal;
on the other hand, for the removal to be complete, it took 4 days. Another technique that
stands out is adsorption, because it uses a high initial concentration and obtains a removal
of 90%; however, adsorption consists only of the transfer of mass from the fluid phase
to the surface of the solid, allowing the separation of the components of the fluid, but
not its degradation. In this work, the techniques of photocatalysis, electrocatalysis, and
photoelectrocatalysis were explored using the DSA Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20)
compared to Ti/RuO2-TiO2 (30:70). Photocatalysis did not perform well, as it took 3 h
to remove just 63% of the dye, whereas the electrocatalysis and photoelectrocatalysis
techniques had an excellent performance when degrading 100% of the IB at a concentration
of 100 mg L−1 at 65 and 60 min, respectively, using a current of 20 mA. It is important to
highlight that in the last two techniques mentioned, the performance of the new formulation
was very similar to the standard composition of the electrode, demonstrating that the new
composition is competitive, as well as interesting because they bring into their formulation
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SnO2 and Ta2O5, which, as mentioned, are materials with good stability. However, the new
composition is still in the testing phase and therefore more in-depth studies are needed.

Table 5. Comparison between techniques used to remove IB dye from aqueous medium.

Technique C0 (IB) Conditions Color Removal Reference

Adsorption 100 mg L−1 30 min, 3 g de vermicompost, 1000 rpm, 25 ◦C 90% 6
Ligninolytic basidiomycete fungi - Fungi Phellinus gilvus 4 days, 25–30 ◦C 100% 26
Photocatalysis + Fenton reagent 25 mg L−1 45 min, UV light, Fenton reagents - 27

Electrochemical discoloration 26 mg L−1 60 min, 5 V, pH 4.5, 25 ◦C 90% 28
Photocatalysis 100 mg L−1 3 h, UV light, 25 ◦C 63% Present work
Electrocatalysis 100 mg L−1 65 min, 20 mA, 25 ◦C 100% Present work

Photoelectrocatalysis 100 mg L−1 60 min, luz UV, 20 mA, 25 ◦C 100% Present work

4. Conclusions

With the data obtained, it is possible to say that the DSA of composition Ti/RuO2-TiO2-
SnO2Ta2O5 (30:40:10:20) has promising results in the degradation of the IB dye, especially
when applying a current, even if low. Since the results found when the photoelectrocatalysis
technique was applied, with a current of 20 mA and UV irradiation, were the best, with a
color removal of 100% in 60 min. However, electrocatalysis obtained similar results, when
applying at the current of 20 mA with a removal also of 100% in 65 min. Color removal
when using photocatalysis with both DSAs was unsatisfactory, with maximum removal of
48% when using the quaternary anode. When comparing the results of the standard DSA
and Ti/RuO2-TiO2-SnO2Ta2O5, it is possible to affirm that the new composition performed
well, with results that just did not stand out when using photocatalysis. Thus, the data
obtained show the applicability of DSA Ti/RuO2-TiO2-SnO2Ta2O5 (30:40:10:20), which is
shown to be an effective activity for removing color from textile effluents such as IB from
the aqueous medium.
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