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Abstract: As ordered porous materials, metal–organic frameworks (MOFs) have attracted tremen-
dous attention in the field of energy conversion and storage due to their high specific surface area,
permanent porosity, and tunable pore sizes. Here, MOF-derived MnO/C nanocomposites with
regular octahedral shape were synthesized using a Mn-based analogue of the MIL-100 framework
(Mn-MIL-100, MIL: Matérial Institut Lavoisier) as the precursor. Using aberration-corrected environ-
mental transmission electron microscopy (ETEM), MnO nanocages with a diameter of approximately
20 nm were recognized in the MnO/C nanocomposites fabricated, dispersed in a microporous carbon
matrix homogeneously. The nanocages are composed of MnO nanoparticles with a diameter of
approximately 2 nm and with a single crystal structure. The specific surface area of the as-prepared
MnO/C octahedra decreases to 256 m2 g−1 from 507 m2 g−1 of the Mn-MIL-100 precursor, whereas
the total pore volume increases to 0.245 cm3 g−1, which is approximately 29% higher than that of
the precursor (0.190 cm3 g−1). Additionally, when utilized as an electrode for supercapacitors, the
MOF-derived MnO/C nanocomposite demonstrates a towering specific capacitance of 421 F g−1 at
0.5 A g−1 and good cycle stability (94%) after 5000 cycles. Our work reveals that the MnO nanopar-
ticles in MOF-derived MnO/C nanocomposites exhibit nanocage structure characteristics, which
might be inherited from the Mn-MIL-100 precursor with analogous supertetrahedron units.

Keywords: metal–organic frameworks; manganese monoxide; nanocomposite; supercapacitor

1. Introduction

In the field of renewable energy sources, synthesizing electrode materials with both
high energy density and high power density is critical to practical applications [1]. Superca-
pacitors, known as electrochemical capacitors, can be classified as electrical double-layer
capacitors (EDLC) and pseudo-capacitors according to the charge-storage mechanisms. The
electrode materials of EDLC can adsorb and store electrolyte ions on their surface without
redox reactions, resulting in good cycle stability and high power [2,3]. Pseudo-capacitance
is used to designate electrode materials, showing an electrochemical signature with ca-
pacitive electrode: a linear relationship between the charge stored and Faradaic reaction
mechanisms at the electrode materials. The pseudo-capacitors have a higher energy density
and capacitance than the carbon electrode materials used in EDLC. In the last few years,
some investigations have been focused on composite electrode materials combining the two
charge-storage mechanisms. This is because the composite electrode materials with both a
porous structure and a high surface area should be beneficial to maintaining high specific
capacitance coupled with good cycle stability [4,5]. MOFs have been extensively used as
precursors to design porous carbons and carbon-based composites [6–13]. As one of the most
competitive candidate electrode materials of pseudo-capacitors, manganese oxides, includ-
ing manganese oxides derived from MOFs, have been prepared with good electrochemical
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performance [14–19]. However, like most metal oxides, the low electronic conductivity, the
limited effective area, and the rapid capacity fading resulting from the volume changes
and the agglomeration of manganese oxide active materials area major challenge to the
improved electrochemical performance of manganese oxide electrode materials.

As a class of sophisticated nanostructured materials, MOFs have been extensively
used for designing and fabricating porous composites with tunable pore sizes and high per-
formance [20–25]. Li et al. calcined hexagonal cuboid Co-MOF-74 crystals at an optimized
temperature of 350 ◦C to prepare porous Co3O4 nanotubes, which revealed a high specific
capacitance of 647 F g−1 with a current density of 1 A g−1. The Co3O4 nanotubes were used
as electrode materials for supercapacitors [26]. Zheng et al. prepared MOF-derived MnO
nanoparticles distributed in a porous carbon matrix homogeneously. As an electrode mate-
rial for lithium-ion batteries, the MnO/C exhibited an excellent capacity of 1221 mAh g−1

at a current density of 1 A g−1 after 100 cycles [11]. Zhang et al. prepared MOF-derived
porous Mn2O3 octahedra with heat treatment of the Mn-MIL-100 precursors at 400 ◦C,
and the MOF-derived Mn2O3 octahedra electrode materials revealed a high capacity of
755 mAh g−1 after 100 cycles [27].

In addition, Zhang et al. obtained irregular cubic porous Mn2O3 by heat treatment of
the Mn-MIL-100 precursors at 700 ◦C, which revealed intensive catalytic activity for CO
oxidation [15]. They also demonstrated that the calcination temperature for the MOF pre-
cursors had an obvious effect on the catalytic activity of the Mn2O3 prepared. Reinsh et al.
prepared an Mn-based analogue of the MIL-100 framework, and the structure of the ob-
tained MOF was revealed by time-dependent energy-dispersive X-ray powder diffraction
(EDXPD) experiments carried out under solvothermal conditions [14]. The results showed
that the framework structure of the obtained MOF was stable in both methanol and in
ethanol, whereas the crystallinity decreased when the solvent was exchanged with water.
In addition, the MOF revealed an amorphous structure when those solvents were removed
by heating under vacuum, whereas a crystal structure was obtained when those solvents
were removed at room temperature under vacuum. Furthermore, Reinsh et al. reported
that the residual acid can be removed easily by washing the synthesized MOF in ethanol
solution, which is necessary for the MOF to remove the unreacted organic linkers, as the
residual acid might be attached or encapsulated within the MOF.

Generally, MOFs are fabricated by metal ion units and organic linkers [14,28,29]. G
Férey et al. reported a new crystalline MOF, MIL-100, with a very high surface area up
to 3100 m2 g−1, which is configured by a supertetrahedron with inorganic bricks as the
corners and tricarboxylate anions as the faces [29]. Two types of cavities are fabricated from
the cages of the supertetrahedron—pentagonal windows and hexagonal apertures—and
two types of pores are obtained with a diameter of approximately 2.5 nm and 2.9 nm,
respectively. Although it is a challenge to observe the nanocages or the topological structure
of MOFs in TEM due to the instability of organic ligands under electron beam irradiation,
many efforts have been made to obtain high-resolution TEM images or atomic-resolution
TEM images [30–32]. Mayoral et al. reported that atomic observations of Zn-MOF-74 can
be obtained using Cs-corrected scanning transmission electron microscopy (STEM) [31].
Zhu et al. used a direct-detection electron-counting camera to observe the local structures of
an MOF (ZIF-8) with high precision, and those atomic-resolution TEM images can provide
a new insight into the self-assembly mechanism of ZIF-8 [32]. In this paper, octahedral
MnO/C nanocomposites were synthesized by heat treatment of Mn-MIL-100 precursors at
600 ◦C. MnO nanocages with a diameter of approximately 20 nm are observed in the MnO/C
nanocomposites fabricated using advanced aberration-corrected electron microscopy.

2. Materials and Methods
2.1. Synthesis of MnO/C Nanocomposites

Mn-MIL-100-derived MnO/C nanocomposites were fabricated according to the fol-
lowing procedures: (1) adding 50 mL ethyl alcohol in a beaker; (2) dissolving 1.222 g
1,3,5-BTC (trimeric acid, 1,3,5-benzenetricarboxylic acid) in ethyl alcohol to form solution
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A; (3) adding 24 mL ethyl alcohol in a beaker followed by adding 2.174 g manganese nitrate
(Mn(NO3)2·4H2O) to form solution B; (4) adding solution B to A to form a mixture; (5) heat-
ing the mixture at 120 ◦C for 12 h in a vacuum-drying oven; (6) centrifuging the mixture to
obtain precipitation after the mixture had cooled down to room temperature; (7) washing
and centrifuging the precipitation with ethyl alcohol three times; (8) drying at 60 ◦C for
12 h in a vacuum-drying oven to obtain Mn-MIL-100; and (9) heating the as-prepared
Mn-MIL-100 precursor at 600 ◦C for 2 h in a tube furnace with a heating rate of 3 ◦C/min
to obtain MOF-derived MnO/C nanocomposites with regular octahedral morphology.

2.2. Characterization

X-ray diffraction (XRD) patterns were collected on a Rigaku D/max 2500 PC X-ray
diffractometer (Rigaku, Tokyo, Japan) with Cu Kα radiation source (λ = 0.15406 nm).
Scanning electron microscope (SEM) images were conducted on a S-4800 field-emission
scanning electron microscope (Hitachi, Tokyo, Japan). Transmission electron microscopy
(TEM) images, high-resolution TEM images (HRTEM), electron diffraction pattern (EDP)
and high-angle annular dark-field scanning transmission electron microscopy (HAADF-
STEM) images were taken in an aberration-corrected ETEM (FEI-Titan G2, 300 kV, Thermo
Fisher Scientific, San Francisco, CA, USA). Nitrogen adsorption–desorption was deter-
mined on an ASAP-2020e system analyzer (Micromeritics, Norcross, GA, USA) at 77 K to
obtain the specific area and pore volume for the MOF precursor and MOF-derived MnO/C
nanocomposites. Fourier-transform infrared spectroscopy (FT-IR) was conducted on a
Bruker Vector 22 FT-IR spectrometer (Bruker, Berlin, Germany) to obtain the functional
groups of the H3BTC, the as-prepared Mn-MIL-100precursor and Mn-MIL-100-derived
MnO/C nanocomposites. To obtain carbon signals in MnO/C nanocomposites, a Ra-
man spectrum was run on a Renishaw Invia Raman spectrometer (Renishaw, Gloucester-
shire, UK).

2.3. Electrochemical Characterization

In a three-electrode system with a BTS-5V 10 mA system and a 1 mol L−1 Na2SO4 so-
lution, electrochemical measurements were tested. The Mn-MIL-100-derived MnO/C elec-
trode was prepared by grinding the activated material with acetylene black and polyvinyli-
dene fluoride (PVDF) with a mass ratio of 70:20:10. The mass loading of the activated
materials on the current collector was approximately 3 mg cm−2. The CHI 660E electrochem-
ical workstation (Shanghai Chenhua, Shanghai, China) was used for cyclic voltammetry
(CV) and electrochemical impedance spectroscopy (EIS).

3. Results and Discussion
3.1. Structure Characterization

Figure 1a shows the XRD pattern of the Mn-MIL-100 precursor. Marked with vertical
colored lines, the position of those Bragg peaks on the XRD pattern of the as-prepared
Mn-MIL-100 precursor matches well with the XRD pattern of Mn-MIL-100 reported by
Reinsch, indicating a very similar framework structure corresponding to the zeotypic
MTN network, where the supertetrahedra (ST) replace the tetrahedral nodes [14]. In
addition, the framework structure of the as-prepared Mn-MIL-100 precursor is also similar
to the Cr-MIL-100 [29]. G Férey et al. reported a combined chemistry–simulation method
to obtain MIL-100 materials, where the simulated pattern of the hybrid structure with
zeotypic MTN-type matched well with the targeted experimental pattern of Cr-MIL-100,
and the MOF exhibited a crystalline structure with a giant cubic cell (volume approximately
3.8 × 105 Å3) [29].

The surface areas and porosity of the as-prepared Mn-MIL-100 precursor was exam-
ined by nitrogen adsorption–desorption measurement (Figure 1b,c). The Mn-MIL-100 pre-
cursor fabricated reveals a feature of microporous materials, as shown in Figure 1b. The
Brunauer–Emmett–Teller (BET) isotherm curve gives a specific surface area of 507 m2 g−1

and total pore volume of 0.190 cm3 g−1. Micropores (0.7 nm, 0.8 nm and 1.2 nm) and meso-
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pores (2.2 nm and 20 nm) can be detected in the as-prepared MOF precursor (Figure 1c),
indicating a hierarchical pore structure. A uniform octahedral structure with a side length
of roughly 1 µm is evident in the morphology of the manufactured Mn-MIL-100 precursor
(Figure 1d). Figure 1e shows the amplified SEM image acquired from the blue box in d,
indicating a rough and uneven surface of the natural fracture surface. The diameter of the
cavity in the as-prepared Mn-MIL-100 precursor is approximately 20 nm, which matches
well with the pore of 20 nm in Figure 1c.
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Figure 1. Structure characteristics of the as-prepared Mn-MIL-100 precursor. (a) XRD; (b) Nitrogen
adsorption–desorption isotherms indicating a feature of microporous materials; (c) pore size distri-
bution curve indicating a hierarchical pore structure; (d) SEM indicating octahedral morphology;
(e) amplified SEM acquired from the blue box in (d) indicating the natural fracture surface of the
as-prepared Mn-MIL-100 precursor with inset SEM image acquired from the red box in (e).

Figure 2a shows the XRD pattern of the MOF-derived octahedral MnO/C nanocom-
posites. The XRD pattern reveals signals of a cubic structure MnO (Standard card JCPDS
No. 00-007-0230) and amorphous carbon. Those peaks at 35◦, 41◦, and 58◦ correspond
to the (111) (200) and (220) planes, respectively, of the cubic MnO with space group of
Fm-3m (225). By measuring nitrogen adsorption–desorption at 77 K, the specific surface
area and porosity of the MOF-derived octahedral MnO/C nanocomposites were also found
(Figure 2b,c). The BET isotherm curve of as-prepared octahedral MnO/C gives a specific
surface area of 256 m2 g−1, significantly lower than that of the Mn-MIL-100 precursor
(507 m2 g−1). Although the specific surface area of as-prepared octahedral MnO/C is
lower than that of Mn-MIL-100 precursor, its total pore volume increases to 0.245 cm3 g−1,
approximately 29% higher than that of the precursor (0.190 cm3 g−1). When compared
with the Mn-MIL-100 precursor, MOF-derived octahedral MnO/C nanocomposites have
micropores around 0.2 nm, 0.7 nm and 1.2 nm (Figure 2c). Mesopores around 2.2 nm,
2.7 nm and 20 nm observed in the MOF precursor can be detected in the MnO/C nanocom-
posites (Figure 1c). The morphology of the MnO/C nanocomposites formed from MOFs is
depicted in Figure 2d, which take a smaller regular octahedral shape with a length of about
0.5 µm. However, the MOF-derived octahedral MnO/C nanocomposites do not contain
any collapsed facets. TEM (Figure 2e) and the electron diffraction pattern (EDP) (Figure 2f)
of a single octahedral MnO/C indicate a polycrystalline structure, as confirmed by the
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electron diffraction rings corresponding to the (111), (200), and (220) planes respectively,
which coincide well with those Bragg peaks on the XRD patterns (Figure 2a).
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octahedral morphology; (e) TEM of a single octahedral MnO/C; (f) EDP corresponding to (e) showing
a polycrystalline structure of the octahedral MnO/C.

To further study the phase constituent of the MOF-derived octahedral MnO/C nanocom-
posites, we characterized the microstructures of the as-prepared MnO/C nanocomposites by
high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).
The HAADF-ETEM image (Figure 3a) indicates the morphology of a single octahedral
MnO/C. Figure 3b shows a mosaic structure with MnO nanocrystals uniformly embedded
in a carbon matrix. Figure 3c shows that MnO has a three-dimensional nanocage topology
structure, which was self-assembled by MnO nanocrystals of about 1–2 nm in diameter.
Figure 3d is the HRTEM image of the MOF-derived octahedral MnO/C nanocomposites,
demonstrating nanoscale MnO particles (~2 nm) embedded with high density in a carbon
matrix homogeneously. Figure 3e is the amplified HRTEM image acquired from the blue-box
region indicating that the nanoscale MnO particles embedded in C-matrix are single crystal
structure, which is confirmed by the corresponding fast Fourier transform (FFT) (Figure 3f).

The Raman spectrum of the MOF-derived octahedral MnO/C nanocomposites (Figure 4a)
exhibits two broad peaks in the range of 1200–1700 cm−1: D-band (1338 cm−1, disordered
graphite) and G-band (1584 cm−1, crystalline graphite). The ratio of area of D-band to G-band
is 0.84, indicative of a higher degree of ordered graphite. In addition, the Raman spectrum also
exhibits a specific signal of D + D’ peak at 2930 cm−1 associated with defect density, indicating
that the crystalline graphite in the MOF-derived octahedral MnO/C nanocomposites is of high
defect density. Unreacted organic linkers may be connected to or encapsulated within MOFs,
and in order to remove these organic linkers, thorough washing is required. To illuminate the
functional groups of the 1,3,5-BTC, the as-prepared Mn-MIL-100 precursor and the Mn-MIL-
100-derived MnO/C nanocomposites, FT-IR spectra were obtained on a Bruker Vector 22 FT-IR
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spectrometer (Figure 4b). The FT-IR spectrum of the as-prepared Mn-MIL-100 precursor reveals
a totally different curve from that of the FT-IR spectrum of the initial raw material of 1,3,5-BTC,
indicating that the residual acid was removed from the Mn-MIL-100 precursor thoroughly.
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3.2. Formation Mechanism

The formation mechanism of the MOF-derived MnO/C nanocomposites with a regular
octahedral morphology is schematically demonstrated in Figure 5. During the preparation
process, 1,3,5-BTC acts as the trimeric building unit of the MIL-100, which is configured by
the supertetrahedron (ST) with inorganic bricks as the corners and tricarboxylate anions
as the faces [14,29]. As a result, Mn-MIL-100 with zeotypic MTN framework structure
are obtained. In addition, two types of cavities are fabricated from the three-dimensional
nanocages of the ST, the pentagonal windows and hexagonal apertures, and two types
of pores are obtained with a diameter of approximately 2.5 nm and 2.9 nm, respectively.
Those MIL-100 fabricated reveal similar lattice parameters for Mn-MIL-100 (7.3299 nm) and
Cr-MIL-100 (7.2906 nm), respectively [14,29], and the resulting MIL-100 framework have a
giant cubic cell with volume of approximately 380 nm3 [29]. In this paper, a very similar
XRD pattern with framework structure corresponding to the zeotypic MTN network was
obtained for the as-prepared Mn-MIL-100 precursor (Figure 1a), indicating similar lattice
parameters and cell volume to that reported by Reinsch et al. [14]. Interestingly, spherical
particles with a diameter of approximately 20 nm were observed on the natural fracture
surface of as-prepared Mn-MIL-100 precursor (Figure 5a), indicating that the building units
of the Mn-MIL-100 precursor are the spherical particle, a giant molecule self-assembled by
the three-dimensional ST nanocages.
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MIL-100-derived MnO/C nanocomposites. (a) Fabrication process of Mn-MIL-100 precursor, with
the SEM image acquired from Figure 1e; (b) formation mechanisms of Mn-MIL-100-derived MnO/C
nanocomposites, with the HAADF-STEM image acquired from Figure 3c.

Note that the 1,3,5-BTC was decomposed and carbonized when the as-prepared
Mn-MIL-100 precursor was heated to 600 ◦C, resulting in the shrink or wrinkle of the
ST. It can be hypothesized that analogous ST units inheriting from the as-prepared Mn-
MIL-100 precursor exist in a transitional state with manganese ion as the corners and
carbon as the faces (Figure 5b). According to the phase diagram of C-Mn, Mn has no
solubility in C at 600 ◦C, resulting in slight deviation of carbon from the faces of ST.
The porous carbon-coated shell was wrapped around the MnO core, resulting in a core–
shell configuration for the ST-derived MnO/C nanoparticle. The resulting framework
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corresponds to the three-dimensional nanocages of the ST with zeotypic MTN structure,
in which the MnO nanoparticles replace the ST nodes (Figure 5b). Our work reveals that
the MnO nanoparticles exhibit nanocage structure characteristic of MOF-derived MnO/C
nanocomposites, which may provide guidance towards understanding other MOFs or
MOF-derived materials [33–36].

3.3. Electrochemical Properties

The electrochemical performance of MOF-derived MnO/C nanocomposites was eval-
uated in 1 mol L−1 Na2SO4 solution. The CV curves of the MnO/C electrode materials at
various scan rates (1–100 mV s−1) with a potential range of −1.0 V to 0 V are displayed in
Figure 6a. The approximate rectangular shape of the CV curves shows that the charge of
the MnO/C nanocomposites varied nearly linearly with the charging potential. Instead
of simple accumulating ions at the surface of the electrode, charges are stored in the MnO
pseudo-capacitive electrode through surface faradic redox reactions. The electrostatic
charge–discharge curves of the MnO/C electrode material at different current densities are
given in Figure 6b. The MnO/C electrode exhibits an excellent high-rate discharge ability
with high specific capacitance of 421, 359, 324 and 270 F g−1 at a current density of 0.5,
1, 2 and 5 A g−1, respectively. In addition, the MnO/C electrode exhibits excellent cycle
stability, i.e., a high capacitance retention of 94% after 5000 cycles (Figure 6c).
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discharge curves; (c) cycling stability; (d) EIS in a high frequency region; (e) diagram of an equivalent
circuit; and (f) Ragone plot of the symmetrical supercapacitor.

Figure 6d shows the EIS of the MnO/C electrode materials. The semicircle in the
high-frequency area exhibits an electrochemical reaction’s impedance. Utilizing ZView
electrochemical impedance software’s least-square approach, the impedance spectra were
fitted with an analogous circuit model (Figure 6e, Rct means the electrochemical reaction’s
charge transfer resistance). The fitted results show that the Rct of MnO/C nanocomposites
is about ~0.1 Ω.

To further evaluate the MnO/C electrode material, an asymmetric MnO/C//AC
supercapacitor was assigned. MnO/C nanocomposites and activated carbon are used
as positive and negative electrode materials (Figure 6f), respectively. The results of the
symmetrical supercapacitor show that the specific energy density is 15.5 Wh kg−1 at a power
density of 680 W kg−1 and the highest power density is 6800 W kg−1 at an energy density
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of 6.2 Wh kg−1, corresponding to Mn-based electrode materials (Figure 6f). These positive
electrochemical results can be attributed to three factors: the unique nanocage structure
that can restrain the volume expansion effectively, the embedded single particle structure
that can suppress the agglomeration, and the 3D porous carbon network’s structure that
can improve the conductivity of the MnO/C nanocomposites. Table 1 summarizes the
previously investigated capacitance and cycling stability of mannite-based oxide electrode
materials. [37–40] Clearly, our MnO/C electrode has both high capacitance and good
cycle stability.

Table 1. Summary of recent progress in manganese-based oxide electrode materials.

Electrode Material Capacity
Current Density

Cycle Performance
Current Density Ref.

MnO/rGO 51.5 F g−1/0.5 A g−1 15,000 cycles/0.5 A g−1 [37]
MnOx/CCNF 271 F g−1/1 A g−1 5000 cycles/1 A g−1 [38]

Mn3O4/ graphene 502 F g−1/1 A g−1 1000 cycles/5 A g−1 [39]
MnOx/C 807 F g−1/1 A g−1 2500 cycles/1 A g−1 [40]
MnO/C 421 F g−1/0.5 A g−1 5000 cycles/5 A g−1 This work

The as-prepared Mn-MIL-100-derived octahedral MnO/C nanocomposite electrode
has high values in terms of specific capacitance, cyclic stability, as well as power density
and energy density. High specific surface area (256 m2 g−1) and hierarchical pore structure
with high total pore volume (0.245 cm3 g−1) affect the capacitance of the porous carbon
materials in the MOF-derived octahedral MnO/C for EDLCs. In addition, the nanocage
structure, the nanoscale MnO single crystal, as well as the high density of MnO nanoparticles
embedded in a carbon matrix homogeneously affect the capacitance of the MnO materials
for pseudo-capacitors.

4. Conclusions

In conclusion, utilizing Mn-MIL-100 as a precursor, high-density MnO nanoparticles
with a single crystal structure were in situ synthesized. The XRD pattern of the produced
Mn-MIL-100 precursor matches the framework structure of the zeolite MTN network.
Spherical particles with a diameter of approximately 20 nm were observed on the natural
fracture surface of the as-prepared Mn-MIL-100, indicating that the building units of
the Mn-MIL-100 precursor are the spherical particle, a giant molecule self-assembled
by the three-dimensional ST nanocages. MnO nanocages with a diameter of around
20 nm were identified in the Mn-MIL-100-derived MnO/C nanocomposites using HAADF-
STEM images. The Mn-MIL-100-derived octahedra MnO/C nanocomposite used as a
supercapacitor electrode exhibited high values.
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