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Abstract: Metal oxides are commonly used in optoelectronic devices due to their transparency and
excellent electrical conductivity. Based on its physical properties, each metal oxide serves as the
foundation for a unique device. In this study, we opt to determine and assess the physical properties
of MoO3 metal oxide. Accordingly, the optical and electronic parameters of MoO3 are evaluated
using DFT (Density Functional Theory), and PBE and HSE06 functionals were mainly used in the
calculation. It was found that the band structure of MoO3 calculated using PBE and HSE06 exhibited
indirect semiconductor properties with the same line quality. Its band gap was 3.027 eV in HSE06
and 2.12 eV in PBE. Electrons and holes had effective masses and mobilities of 0.06673, −0.10084,
3811.11 cm2V−1s−1 and 1630.39 cm2V−1s−1, respectively. In addition, the simulation determined the
dependence of the real and imaginary components of the complex refractive index and permittivity
of MoO3 on the wavelength of light, and a value of 58 corresponds to the relative permittivity. MoO3

has a refractive index of between 1.5 and 3 in the visible spectrum, which can therefore be used as
an anti-reflection layer for solar cells made from silicon. In addition, based on the semiconducting
properties of MoO3, it was estimated that it could serve as an emitter layer for a solar cell containing
silicon. In this work, we calculated the photoelectric parameters of the MoO3/Si heterojunction
solar cell using Sentaurus TCAD (Technology Computing Aided Design). According to the obtained
results, the efficiency of the MoO3/Si solar cell with a MoO3 layer thickness of 100 nm and a Si layer
thickness of 9 nm is 8.8%, which is 1.24% greater than the efficiency of a homojunction silicon-based
solar cell of the same size. The greatest short-circuit current for a MoO3/Si heterojunction solar cell
was observed at a MoO3 layer thickness of 60 nm, which was determined by studying the dependency
of the heterojunction short-circuit current on the thickness of the MoO3 layer.

Keywords: heterojunction; MoO3; simulation; DFT; TCAD

1. Introduction

Modern industries utilize metal oxides abundantly due to their semiconducting nature
since they have proven useful in a wide variety of electronic and optoelectronic devices
including sensors, transducers [1], and solar cells [2]. Metal oxides can be divided into
two types depending on their electrical conductivity: n-type and p-type. Due to the rapid
popularity of metal oxides, they can be synthesized using the simple Sol–Gel method [3]
while mechanically forming a thin layer.

Metal oxides are a key building block for solar cells and photovoltaic devices. They
are also utilized to make transparent solar cells [4], e.g., TiO2/NiOx solar cells are made
entirely of a metal oxide that offers an efficiency of 2.1% and which can transmit light (57%)
in the visible range [5]. Such solar cells could be utilized to cover windows in buildings
and produce electricity without blocking indoor space access to light since the refractive
index of metal oxides is mainly between the refractive index of silicon and air. They can
also be utilized as an anti-reflection coating layer for other silicon solar cell devices [6].
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Furthermore, metal oxides are widely used as an electron transport layer (ETL) and hole
transport layer (HTL) in perovskite-based solar cells [7]. These cells offer a novel hybrid
organic and inorganic structure based on perovskite crystal for light harvesting [8].

Molybdenum trioxide MoO3 is an important oxide conductor with a large potential
for applications in electronics due to its high oxidation state. It is proposed for utilization
in the perovskite solar cell by [9] in order to improve performance. While other compounds
of the low oxidation state of molybdenum are unstable and are practically not used in in-
dustry, MoO3 is much easier to synthesize through the Sol–Gel method [10]. MoO3 mainly
belongs to the group of transition metal oxides, which depends on its electronic properties,
size, phase state and physical–chemical properties. It exhibits good optical and electrical
properties when embedded in multilayer structures or used as a functional coating. In ex-
periments, as a result of crystallization, the optical band gap of MoO3 decreases from 3.1 eV
to 1.7 eV [11]. Therefore, MoO3 can be utilized in various optoelectronic devices by control-
ling the band gap. There are three main polymorphic phases of MoO3. Due to the large
band gap of MoO3, it cannot be used as a photocatalyst material in optoelectronics. Among
them, α-MoO3 with an orthorhombic crystal structure is the most thermodynamically
stable. Nanoscale α-MoO3 is widely used in electrochromic/photochromic devices [12],
pseudo-volumetric charge capacitors [13], supercapacitors [14] and gas sensors [15]. Doped
p-type MoO3 has been used as an HTL in organic solar cells [16].

Silicon-based solar cells account for 95% of solar cells produced in the industry [17].
Silicon is ubiquitous on earth and its reserves are substantial. In order to optimize silicon-
based solar cells, an anti-reflection layer [18], textures [19], nanoparticles [20] and quantum
dots [21] are formed on their surface and volume. The efficiency of the homojunction
silicon-based solar cell does not exceed 29% according to the Shockley–Quisser limit [22].
Therefore, various silicon-based heterojunction solar cells are being designed [23]. ZnO
and perovskite materials coated on the silicon surface as an emitter layer have been found
to increase their efficiency [24]. On the other hand, MoO3 as an emitter layer for silicon
has hardly been researched. Therefore, in this paper, we decided to study the MoO3/Si
heterojunction solar cell using Sentaurus TCAD. The optoelectrical properties of MoO3,
like ZnO, have not been widely studied. In order to model devices in Sentaurus TCAD, the
physical properties of each material must be available. The first principal study determined
the optical and electronic properties of MoO3.

2. Materials and Methods

Semiconductor devices are mainly simulated using TCAD programs that have a
limited material database. However, it is possible to simulate devices made from materials
that are not available in the TCAD program database by creating their parameter files. It
is almost impossible to find all of the needed physical properties of utilized material by
experimentation or simulation from the state of the art. Therefore, the physical properties
of materials can be directly calculated by density functional theory (DFT). Utilizing the
physical properties calculated in DFT, it is then possible to create a parameter file for utilized
materials and model a device made of these materials in TCAD programs. Therefore, in
this scientific work, the physical parameters of MoO3 were calculated using DFT and the
MoO3/Si heterojunction solar cell was simulated in TCAD software.

2.1. Method of Material Simulation

Calculation of the electrical properties of MoO3 was carried out based on DFT using
Cambridge Serial Total Energy Package (CASTEP) code [25] using on-the-fly generation
(OTFG) ultrasoft, and OTFG was performed with norm-conserving pseudopotentials. A
Koelling–Harmon [26] scalar relativistic correction was also utilized to account for any
relativistic effects. The calculation included geometric optimization, optical properties, and
band structure. Figure 1 shows the orthorhombic crystal structure of MoO3 with space
group P21/b21/n21/m. The supercrystal consists of 12 atoms of oxygen (O) and 4 atoms
of molybdenum (Mo). Before determining the properties of the crystal, it was necessary to
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perform geometrical optimization to find an atomic arrangement that made the structure
the most stable. Crystal lattice constants and atomic positions were optimized to find
the lowest energy configuration using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [27]. After geometric optimization, crystal constants were equal to a = 3.9628,
b = 13.8550 and c = 3.6964.
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Figure 1. Crystal structure of MoO3.

In order to deal with exchange-correlation interaction hybrid functionals, the Perdew–
Burke–Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) [28]
and Heyd–Scuseria–Ernzerhof (HSE06) [29] was used. The PBE functional is popular
because it requires minimal computation time. However, this approach does not allow for
highly accurate calculations of the band structure of metal oxides. In return, the HSE06
hybrid functional provides the most accurate results. Nevertheless, the time required for
such calculations is significant. Brillouin zone structures were modeled using modified
Monkhorst-Pack k-point meshes with dimensions of 6 × 2 × 7 and 4 × 1 × 4. Using the
HSE06 hybrid functional allowed us to employ the OTFG norm-conserving pseudopotential
on smaller 4 × 1 × 4 Monkhorst-Pack k-point grids, which considerably reduced the
computational time. In the PBE functional, OTFG ultrasoft pseudopotential and 6 × 2 × 7
Monkhorst-Pack k-point grids improved the precision of the calculations, and therefore,
the kinetic energy limit, the total energy, and the convergence criterion of the residual force
relaxation were calculated as 571.4 eV, 1.0 × 10−6 eV/atom, and 0.03 eV/A, respectively.
For the HSE06 hybrid functional, it was 381 eV, 1.0 × 10−5 eV/atom and 0.07 eV/A. All
calculations were carried out in reciprocal space.

2.2. Method of Device Simulation

Nowadays, Lumerical [30], Silvaco [31] and Sentaurus [32] are widely used as TCAD
software. In this paper, Sentaurus TCAD software was used to determine the optical
and electrical properties of the MoO3/Si heterojunction solar cell. The heterojunction
solar cell was modeled using four of them: Sentaurus Structure Editor, Sentaurus Device,
Sentaurus Workbench, and Sentaurus Visual. Each instrument has an independent function.
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In Sentaurus Structure Editor, geometric models of devices are created along with given
information about the type and concentration of doping, and the material present in each
field. Additionally, the created device can be meshed with the required size. In Sentaurus
Device, physical properties are assigned to each material and the necessary parameters of
the device are determined using a numerical method. The results are generated in graphic
and visual forms using Sentaurus Visual. Sentaurus Workbench manages every modeling
task and helps every instrument work together.

The geometric model of the MoO3/Si heterojunction solar cell shown in Figure 2
was created by writing code in the Sentaurus Structure Editor using the Tool Command
Language (TCL). The MoO3 layer thickness was varied from 20 nm to 1200 nm. Si layer
thickness remains unchanged at 9 µm. As the MoO3 material tends to form n-type due to
the vacancy of the oxygen atom [33], this layer was taken as n-type and the silicon base as
p-type. 1 × 1017 cm−3 vacancies were assumed to exist in MoO3, and Boron atoms were
introduced at a concentration of 1 × 1015 cm−3 to form p-type silicon. Aluminum was
used as the front and back contacts of the device. A geometric model was meshed for
calculation in the numerical method. Since simulation outcomes are sensitive to mesh size,
the trade-off between accuracy and computation time increases as the grid size decreases.
While calculation speed increases with increasing grid size, accuracy decreases dramatically.
Therefore, the solar cell must be meshed at an optimal size for appropriate accuracy and
speed of calculation. In this work, the relatively active heterojunction area of the solar cell
was meshed with a size of 1 nm while the other regions were meshed with a size of 10 nm.
Silicon is one of the most studied materials. Therefore, almost all of its physical parameters
were measured in the experiment. Sentaurus TCAD’s material database also has a silicon
material file. But the material properties of MoO3 are not available in Sentaurus TCAD. Its
parameter file was formed based on the values calculated in CASTEP.
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2.3. Theoretical Background of Device Simulation

Several methods were used in the modeling of semiconductor devices. Semiconductor
devices are divided into thermoelectric, optoelectronic and electronic devices. Depending
on the type of device, physical models are selected for modeling. A solar cell is an opto-
electronic device, and its modeling is carried out by determining the optical and electrical
properties of the utilized metal oxide. The Transfer Matrix Method (TMM) and Ray Tracing
methods were utilized for optical simulation. The Ray Tracing method is mainly used to
model textured solar cells [34] while multilayer planar solar cells are modeled in TMM [35]
since it also takes into account the interference phenomena in the layers of solar cells.
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In this scientific work, since the MoO3/Si solar cell is planar, its optical properties were
determined using TMM given in Formula (1).[

Ei
Er

]
= M

[
Et
0

]
(1)

where M is the matrix, Ei is the electrical field of the incident light, Er is the electric field of
reflected light and Et is the electric field of transmitted light.

In TMM, light absorption in each layer is calculated using the Beer–Lambert law given
in Formula (2). Therefore, the concentration of absorbed photons at each point of the solar
cell can be determined utilizing Formula (2).

I = I0e−αd (2)

where I is the intensity, I0 is the initial intensity, a is the absorption coefficient of the material
and d is the thickness of the layer.

The light beam is refracted and reflected at the boundary of two media. The rela-
tionship between the angles of refracted and incident rays is calculated using Snell’s law.
Fresnel coefficients in Formula (3) were used to determine the energy balance between
incoming, reflected, and absorbed photons across a boundary between two mediums [36].
These Fresnel coefficients are optical boundary conditions.{

rt =
n1 cos β−n2 cosγ
n1 cos β+n2 cosγ

tt =
2n1 cos β

n1 cos β+n2 cosγ
and

{
rp = n1 cosγ−n2 cos β

n1 cosγ+n2 cos β

tp = 2n1 cos β
n2 cos β+n1 cosγ

(3)

where rt and tt are the Fresnel coefficients for transversal polarized light, rp and tp are the
Fresnel coefficients for parallel polarized light, n1 and n2 are the refractive indices of first
and second media, β is the angle of the incident light, and γ is the angle of refracted light.

In the reality, there is roughness on the surface of planar solar cells, therefore some of
the light is scattered due to the roughness of the surface. In TMM, it is possible to calculate
the scattering of light due to the surface roughness of multilayer planar structures [37]. For
this, TMM should be modified. The scalar scattering theory [38] allows the calculation of
the amount of light scattered on the surface. The ratio of the scattered light and the total
light incident on the surface is called the haze parameter. The dependence of the scattering
process on the direction was modeled using the angular distribution function [39]. The
haze functions for the reflection and transmission coefficients in Formula (4) express the
roughness quality of the solar cell’s surface. They adapt the matrix elements used to
calculate the transmission and reflection coefficients in TMM to incorporate the scattered
light as well.

Hr
j,j+1

(
λ, ϕj

)
= 1− exp

[
−
(

4πσrmscr(λ,σrms)nj cos ϕ

λ

)ar]
Ht

j,j+1
(
λ, ϕj

)
= 1− exp

[
−
(

4πσrmsct(λ,σrms)|nj cos ϕj−nj+1 cos ϕj+1|
λ

)at] (4)

where σrms is the mean square roughness of the surface, and ar/t and cr/t are fitting parameters.
The AM1.5G spectrum was chosen as the light source. The concentration of generated

charge carriers was determined using the quantum yield function. The quantum yield
function is a logic function equal to 1 if the energy of the absorbed photon is greater than
the bandgap energy of the material and it forms an electron-hole pair, otherwise, it is equal
to 0, and does not form an electron-hole pair.

According to the band structure, silicon is an indirect semiconductor. According
to the band structure of MoO3 calculated in CASTEP, it was also found to be an indirect
semiconductor. The percentage of radiative recombination in indirect semiconductors is less
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than 1%. Therefore, radiative recombination was not taken into account in the simulation.
Only Shockley–Read–Hall (SRH) and Auger recombinations were accounted for.

The electric field strength and potential around the charge carriers were calculated
using the Poisson equation in Formula (5).

∆ϕ = − q
ε
(p− n + ND + NA) (5)

where ε is the permittivity, n and p are the electron and hole concentrations, respectively,
ND and NA are the concentrations of donor and acceptor, respectively, and q is the charge.

The concentration of charge carriers formed in each semiconductor is calculated
using the Fermi function given in Formula (6). The concentration of charge carriers is
also calculated using the Boltzmann approximation in the analysis. The error rate of the
Boltzmann approximation increases when the input concentration is high. Therefore, in
this scientific work, the Fermi function was used to calculate the concentration of charge
carriers in each layer. The Fermi half-integral in the Fermi function can be calculated using
a numerical method.

n = NcF1/2

(
EF,n−Ec

kT

)
p = NV F1/2

(
EV−EF,p

kT

) (6)

where Nc and Nv are the densities of the states in the conduction and the valence bands,
respectively, Ec is the minimum energy of the conduction band, Ev is the maximum energy
of the valence band, T is the temperature, k is the Boltzmann constant, and EF,n and EF,p are
the quasi-fermi energies.

Carrier transport in semiconductors creates a current. The continuity equation ex-
presses the relationship between the change in the concentration of charge carriers in a
volume of the solar cell and the current. There are four main methods for representing
carrier transport [40]: drift-diffusion, thermodynamic, hydrodynamic, and Monte Carlo.
The drift-diffusion model calculates the carrier transport due to the electric field strength
and the difference in concentration according to Fick’s law [41]. It does not take into account
temperature and other external influences on carrier transport, while thermodynamic or
hydrodynamic models take into account the effect of temperature changes. In this scientific
work, the drift-diffusion model given in Formula (7) was used to determine the carrier
transport. Since the main goal of this work was to determine the photoelectric parameters
of the MoO3/Si solar cell, the effect of temperature on the operation of the solar cell was
not taken into account.

Jn = −nqµn∇Φn
Jp = −pqµp∇Φp

(7)

where Jn and Jp are electron and hole currents, respectively, µn and µp are electron and hole
mobilities, respectively, and Φn and Φp are the electron and hole quasi-Fermi potentials.

The electrical boundary conditions in Formula (8) represent the collection of charge
carriers formed in the semiconductor at the contacts.

ϕ = ϕF +
kT
q asinh

(
ND−NA
2ni,e f f

)
n0 p0 = n2

i,e f f

n0 =

√
(ND−NA)

2

4 + n2
i,e f f +

ND−NA
2

p0 =

√
(ND−NA)

2

4 + n2
i,e f f −

ND−NA
2

(8)

where ni,eff is the effective intrinsic carrier concentration, and ϕF is the Fermi potential of
the contact.
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3. Results and Discussion
3.1. Band Structure

After the geometric optimization of the crystal structure, the next stage of this work
was centered on band structure calculation. The band structure calculation was carried
out utilizing the PBE functional and HSE06 hybrid functional. Figure 3 shows the band
structure of MoO3 calculated using the PBE (a) and HSE06 (b) functionals. The maximum
energy of the valence band corresponded to the T symmetry direction and the minimum
energy of the conduction corresponded to the X symmetry direction. This satisfies the
previous calculation results [42,43]. The band structure obtained with the HSE06 functional
was found to be very similar to the band structure computed using the PBE functional,
supporting the findings of Yu Xie’s simulation results [44]. However, the band gap energy
was drastically different. In the HSE06 hybrid functional, band gap energy was found to be
3.027 eV, and in the PBE functional, it was equal to 2.12 eV.
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In the experiment carried out by [45], it was found that the band gap of MoO3 was
3.2 eV. A 94.6% accuracy in the HSE06 hybrid functional and a 66.25% accuracy in the PBE
functional were achieved by calculating the band gap of MoO3. Qian Qu [46] calculated
the band gap of MoO3 using HSE06 and PBE functionals with 90% and 53.5% accuracies,
respectively. Figure 4 shows the density of states of MoO3. There is a sharp difference in
the density of the states calculated in PBE and HSE06 due to the various band gaps. In
HSE06 and PBE, the density of the states at the Fermi level was equal to 2.5 electrons/eV.
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3.2. Effective Mass

The effective mass represents carriers with different energy movements in the crystal
lattice. By examining the band structure, the effective mass can be calculated. In most
semiconductors, the energy range around the lowest energy of the conduction band and
the highest energy of the valence band can be calculated using the parabolic function E(k)
in Formula (9).

E(k) = E0 +
}2k2

2m∗
(9)

where E is the energy, E0 is the energy at k = 0, k is the wavenumber, m* is the effective
mass, and h̄ is the Planck constant.

In order to determine the effective mass of the hole from the band structure given
in Figure 3a, a separate set E(k) was extracted from the upper point of the valence band
(Figure 5b) and points close to it. In addition, to determine the effective mass of the electron,
another band structure E(k) was extracted from the lower point of the conduction band
(Figure 5a) and points close to it.
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Based on these points, a parabolic function of the valence band and conduction
band corresponding to Formula (9) was created using the parabolic approximation of the
polynomial function. In the parabolic approximation of the band structure, the effective
masses of the electron and the hole were determined by the second-order differentiation of
the parabolic function with respect to k, as given in Formula (10).

m∗ = }2
(

d2E
dk2

)
(10)

According to the calculation results, the effective mass equals 0.06673 for an electron,
and −0.10084 for a hole. So, the effective mass of the hole is 1.5 times greater than the
effective mass of the electron. In Dandogbessi’s work [47], the effective mass of the hole
was found to be three times larger. It was determined that the probability of tunneling in
MoO3 [48] is high due to the very light-effective masses of electrons and holes.

3.3. Carriers Mobility

One of the primary kinetic characteristics of charge carriers in a semiconductor is
mobility. In materials science, the mobility of charge carriers is mainly calculated using
Boltzmann Transport Theory (BTT) [49]. BTT cannot be calculated using the CASTEP code
of the first-principle method. Therefore, a new method for BTT is found and calculated in
another way. However, using the theory of Shockley and Barden [50], it is possible to deter-
mine the mobility of charge carriers only by calculating the band structure and the effect of
mechanical force. Electron and hole mobilities are calculated using Formula (11) [51].

µ =
(8π)

1
2 h4eCij

3(m∗)
5
2 (kbT)

3
2 E2

ij

(11)

where e is the electron charge, T is the absolute temperature, kb is the Boltzmann constant,
Cij is the elastic constant of the crystal, and Eij is the energy change per unit volume.

Since the monocrystalline silicon grown in a 111 direction was selected as the base in
the MoO3/Si solar cell, a band structure was calculated to determine the elastic modulus
by applying a mechanical force to the crystal in the (1,1,1) direction. Furthermore, MoO3
grown on silicon should have (1,1,1) orientations. Therefore, in order to determine the
mobility of charge carriers in the (1,1,1) direction of MoO3, the force was applied in this
direction. According to the obtained result, it was determined that the elastic modulus C
was equal to 184 GPa. The volume of the crystal in the initial state was V0 = 202.949341
A3, and after applying the mechanical force it was equal to V = 202.340036 A3. In addition,
in the initial state, the maximum energy of the valence band was EV0-EF = −0.00531 eV
and the maximum energy of the conduction band was EC0-EF = 2.18 eV. After applying the
force, it was equal to EV-EF = −0.06005 eV and EC-EF = 2.24 eV, respectively. The change in
the valence band maximum or conduction band minimum energy per unit volume was
calculated using Formula (12) [50].

Eij =
dE(
dV
V0

) (12)

where dE is the energy difference before and after stress, V0 is the initial volume of the
crystal, and dV is the volume difference before and after stress.

According to the results obtained after applying the mechanical force, the change in
the maximum energy of the valence band per unit volume is Eij

(v) = 18.247 eV, and the
change in the minimum energy of the conduction band per unit volume is Eij

(c) = 160 eV.
According to the parameters determined using the PBE functional, the electron and hole
mobilities were also calculated and equal to 3811.11 cm2V−1s−1 and 1630.39 cm2V−1s−1,
respectively.
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3.4. Optical Properties

It is vital to know the optical properties of materials that are used in optoelectronic
devices. The most basic optical property of materials is the complex refractive index given
in Formula (13).

N = n + ik (13)

where n is the real part and k is the imaginary part of the complex refractive index.
The experiment measures the absorption and reflection coefficients to determine the

material’s complex refractive index. The system given in Formula (14) is solved using the
experimentally measured absorption and reflection coefficients, and the real and imaginary
parts of the complex refractive index are determined.

A = 1− exp
(
− 4πkx

λ

)
R = (n−1)2+k2

(n+1)2+k2

(14)

where x is the position, λ is the wavelength, R is the reflection coefficient, and A is the
absorption coefficient.

The interaction of photons and electrons in the system is described using the terms
of excitation of the main electrons depending on time. There are two main methods for
calculating optical properties: DFT Khon–Sham orbitals [52] and time-dependent DFT
(TD-DFT) [53]. TD-DFT calculation accuracy is high but its computation requires a lot of
time. The imaginary part of the complex permittivity of MoO3 was calculated using DFT
Khon–Sham orbital theory. It can be considered that the complex permittivity describes the
real transitions between occupied and unoccupied electronic states. The real and imaginary
parts of the complex permittivity are linked by the Kramers–Kronig [54] relationship. This
relationship was used to determine the real part of the complex permittivity. The calculated
results show the dependence of complex permittivity on the light wavelength, as shown
in Figure 6. The real part of the complex permittivity represents the relative permittivity.
Furthermore, the relative permittivity at high frequency represents the optical permittivity.
According to the obtained results, it was determined that the optical permittivity is equal
to ε = 58.
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Figure 6. Dependence of the complex permittivity of MoO3 on light wavelength.

After calculating the real and imaginary parts of the complex permittivity, the real and
imaginary parts of the complex refractive index were determined by solving the system of
equations given in Formula (15). Based on the obtained results, the dependence of the real
and imaginary parts of the complex refractive index on the light wavelength is shown in
Figure 7. {

ε1 = n2 − k2

ε2 = 2nk
(15)

where ε1 is the real part and ε2 is the imaginary part of the complex permittivity.
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In the ultraviolet spectrum, the imaginary part of the complex refractive index of
MoO3 is equal to k = 2, which means that the absorption coefficient equals 8.37 × 107. It
absorbs mainly ultraviolet light as other metal oxides [55]. As the wavelength increased
from 100 nm to 330 nm, the refractive index significantly increased from 0.5 to 3.2. Like
other metal oxides, the real and imaginary parts of the complex refractive index decreased
with increasing wavelength.

3.5. I-V Characteristics

The I-V characteristics of a solar cell must be measured to ascertain its photoelec-
tric parameters. In an experiment, the I-V characteristic is determined by measuring the
relationship between the current and the voltage generated when the solar cell is illumi-
nated using a variable resistance. Figure 8 shows the I-V characteristics of MoO3/Si solar
cells with MoO3 layer thicknesses of 20 nm, 100 nm and 1000 nm. When the thickness
of the MoO3 layer changed, the output power and short-circuit current changed, but the
open circuit voltage did not change. According to the I-V characteristics obtained in the
simulation, the short-circuit current of the MoO3/Si solar cell did not increase linearly
depending on the thickness of the MoO3 layer. The short-circuit current increased when
the thickness changed from 20 nm to 100 nm, and decreased when the thickness changed
from 100 nm to 1000 nm. The efficiency of the MoO3/Si heterojunction solar cell with a
MoO3 layer thickness of 100 nm and Si layer thickness of 9 µm was 8.8%. In the simulation,
the efficiency of a silicon-based homojunction solar cell with the same size was equal to
7.56%. It means that the efficiency of the MoO3/Si solar cell is 1.16 times higher than that
of a homojunction silicon solar cell of the same size. Due to the flat surface and a very
thin base thickness, we obtained a low efficiency for n-MoO3/p-Si and n-Si/p-Si with the
same sizes. In [34], it was found that the efficiency of the silicon homojunction solar cell
can reach 21% if its surface was textured and the base thickness was 190 µm. Therefore, if
the surface of the MoO3/Si solar cell was textured and the base thickness was more than
190 µm, its efficiency could reach 24.4%. According to the results obtained with CASTEP,
it was determined that MoO3 mainly absorbs ultraviolet rays in the range of 100–300 nm.
Further, silicon mainly absorbs rays with a wavelength in the range of 300–800 nm in the
visible field. In addition, according to the result given in Figure 7, the refractive index of
MoO3 is an average of 2.5 in the visible spectrum region. The refractive index of silicon is
3.88 [56]. Therefore, since the refractive index of MoO3 is between the refractive indices
of air and silicon, it also acts as an anti-reflection layer [57] in silicon-based solar cells. In
addition, it serves to expand the absorption spectrum of the silicon-based solar cell due to
its good absorption of rays in the ultraviolet range. Therefore, the efficiency of the MoO3/Si
heterojunction solar cell was 1.24% higher than that of the silicon-based homojunction
solar cell.
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Figure 8. I-V characteristic of the MoO3/Si solar cell with different thicknesses of MoO3.

According to the I-V characteristics given in Figure 8, since the photoelectric parame-
ters change nonlinearly depending on the thickness, the dependence of the short-circuit
current on the thickness of the MoO3 layer was studied and shown in Figure 9. The MoO3
layer thickness was changed from 20 nm to 1200 nm. A sharp change in short-circuit
current was observed in the thin layers. When the thickness was 20 nm, the minimum
short-circuit current was 15.54 mA/cm2; when the thickness was 60 nm, the maximum
short-circuit current was 18.15 mA/cm2.
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Figure 9. Dependence of the short-circuit current of the MoO3/Si heterojunction solar cell on the
thickness of the MoO3 layer.

When the thickness changed from 60 nm to 160 nm, the short-circuit current decreased
by 3.48 mA/cm2, and when the thickness changed from 160 nm to 200 nm, the short-circuit
current increased by 0.6 mA/cm2. When the thickness increased from 200 nm to 1200 nm,
the short-circuit current decreased linearly to 1.41 mA/cm2. When the thickness of MoO3
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was thin, the amount of absorption in the emitter layer was very small but high in the base.
Figure 10 shows the dependence of the absorption coefficient of the MoO3/Si solar cell
on the wavelength of light when the thickness of the MoO3 layer was 20 nm, 60 nm and
160 nm. When the thickness of the MoO3 layer was 60 nm, the absorption coefficient in the
visible region of the spectrum was the highest. Therefore, MoO3 with a thickness of 60 nm
was the optimal anti-reflection layer for silicon. Thus, the short-circuit current of the solar
cell was the highest at this thickness. Since MoO3 has a band gap of 3.2 eV, it mainly absorbs
short-wavelength light. Hence, the maximum absorption shifts to the UV region when
the thickness increases. When the thickness of the MoO3 layer increases, the amount of
light absorption in this layer increases, but its anti-reflection property decreases. Therefore,
the amount of light absorption in the silicon base decreases. Since silicon mainly absorbs
rays in the visible range [58], the absorption coefficient in the visible range decreases with
increasing thickness.
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4. Conclusions

The use of metal oxides in photovoltaics as anti-reflection layers and transparent elec-
trically conductive electrodes is becoming popular. The main purpose of this scientific work
was to calculate the physical parameters of MoO3, research the MoO3/Si heterojunction
solar cell and determine the optimal thickness for the MoO3 layer. For that, the physical
parameters of MoO3 were determined using the CASTEP code. PBE and HSE06 functionals
were used to calculate the electronic properties of MoO3. In both HSE06 and PBE, MoO3
was found to be an indirect semiconductor. However, the band gap was calculated with
94% accuracy in HSE06 and 66.25% accuracy in PBE. Therefore, it is recommended to
use HSE06 when calculating the electronic properties of metal oxides. According to the
obtained results, the band gap and electron affinity of MoO3 proved that it could be an
n-type semiconductor. Therefore, it was predicted that MoO3 could be used as an emitter
layer for a silicon-based solar cell, and a MoO3/Si heterojunction solar cell was investigated
using Sentaurus TCAD. Since the bandgap and electron affinity of silicon and MoO3 are
acceptable for the formation of a high-quality heterojunction, there were no disturbances
in the I-V characteristics of the MoO3/Si structure. According to the results obtained
using TCAD, it is possible to use MoO3 as both the anti-reflective layer and the emitter
layer for the silicon-based solar cell. In addition, since the electron mobility in MoO3 is
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three times greater than that of the hole, it can be used as an electron transport layer for a
perovskite-based solar cell.
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