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Abstract: The effect of the nano-sized γ′ phase on the ultrasonic and mechanical properties of the
IN939 superalloy was investigated. The results indicate that the microstructure characteristics of the
nano-sized γ′ phase directly affected the ultrasonic longitudinal velocity, the attenuation coefficient,
and the mechanical properties. The ultrasonic longitudinal velocity increased with the volume
fraction of the γ′ phase, whereas the attenuation coefficient was similar to the fractional change
in the γ channel width. The lower fractional change in the γ channel width, in combination with
a high volume fraction of the γ′ phase, was conducive to improving the mechanical properties of the
superalloy. Additionally, the variation in the ultrasonic properties could reflect the variation in the
mechanical properties of the IN939 superalloy, which was beneficial for optimizing the heat treatment
process and characterizing the γ′ phase precipitation behavior in a nondestructive manner.
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1. Introduction

The IN939 superalloy is extensively used in the gas turbine industry due to its superior
mechanical properties, and oxidation and corrosion resistance [1,2]. In order to improve gas
turbine energy efficiency and lower carbon dioxide emissions, it is necessary to optimize
the service performances of superalloys [3]. Extensive research on nickel superalloys has
shown that the morphology, size distribution, and volume fraction of nanometer-sized
precipitated phases (γ′ and γ” phase) in the γ matrix are crucial for obtaining the desired
service performances [3–11]. The γ′ phase is an A3B intermetallic phase, in which A is
Ni and Co, and B is Al and Ti; it precipitates from the austenitic γ matrix and has a face-
centered cubic crystal structure (ordered L12 structure) [3,5,6]. The size distribution and
volume fraction of the nanometer-sized precipitated γ′ phase are highly dependent on the
temperature and time of the heat treatment [9–11]. Therefore, selecting appropriate heat
treatment processes is crucial for the service performances of superalloys.

Ultrasonic properties, which result from the interactions between the ultrasonic wave and
the microstructures of materials, have been extensively used for optimizing heat treatment pro-
cesses [12,13] and characterizing the microstructures [14,15] and mechanical properties [16,17]
of materials. Ultrasonic velocity and attenuation reflect variations in the grain size [18,19], vol-
ume fraction, the size of the precipitated phase [20–23], the type of precipitated phase [15,24],
and the defects during the heat treatment of superalloys. Ultrasonic velocity has been reported
to increase with the formation of the precipitate phases, whereas the dissolving or coarsening
of precipitates leads to decreases in velocity [12,14–16,20–22,25]. This is mainly because the
formation and dissolution of the intermetallic precipitates change the composition of an al-
loy, improving the elastic modulus and increasing the ultrasonic velocity [14,16,20,22]. The
ultrasonic velocity of an alloy increases with the increase in the volume fraction of the nano-
sized γ′ phase and η phase, but carbide has little effect on ultrasonic velocity [14,15,24].
Further, it has been found that the change in ultrasonic velocity caused by the change in
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the microstructure of a superalloy is consistent with the change in mechanical properties.
Additionally, various precipitates scatter sound waves, which influence attenuation val-
ues [21,26]. The phase change and microstructure characteristic parameters show strong
correlations with variation trends in the ultrasonic attenuation coefficient. During the
aging treatment of the IN625 alloy, Laves phase dissolution and Ti- and Nb-rich phase
precipitation led to a decrease in the attenuation value [26]. The attenuation coefficient,
contrary to the change trend of the ultrasonic velocity, was found to be consistent with
the fractional variation in the γ channel width of the superalloy [21]. In conclusion, the
aforementioned correlations have shown that ultrasonic velocity and attenuation can reflect
the formation, morphologies, and microstructure characteristics of the precipitation phases
during the heat treatment of superalloys.

In this study, various microstructure characteristics of the nano-sized γ′ phase in the
IN939 superalloy were prepared using different aging treatment processes. To evaluate
the nano-sized γ′ phase effect and obtain an optimal heat treatment process, the ultrasonic
properties, microhardness, and tensile properties of aging-treated samples were measured.
Additionally, the relationships between the ultrasonic properties and mechanical properties
of the IN939 superalloy were obtained, which is beneficial for optimizing the heat treatment
process and characterizing the γ′ phase precipitation behavior in a nondestructive manner.

2. Experimental Procedures

The IN939 superalloy (provided by Jiangsu Longda Superalloy Material Co., Ltd.,
Wuxi, China) employed in this work had the main chemical composition (wt.%): Cr, 22.21;
Co, 18.84; Ti, 3.66; W, 1.96; Al, 1.99; Ta, 1.36; Nb, 1.08; C, 0.15; Zr, 0.06; B, 0.006; and the rest
of Ni.

The cylinder samples of Φ30 × 110 mm underwent four different heat treatment
processes to produce various microstructures. All samples were treated with solid solution
at 1160 ◦C for 4 h. The aging temperatures of the HT1 and HT2 samples were 850 and
1000 ◦C, respectively. The HT3 sample was treated with two-step aging, and the HT4 sample
was treated with a standard heat treatment process. The sample codes and corresponding
heat treatment processes are listed in Table 1.

Table 1. Heat treatment processes for IN939 superalloy.

Sample Code Heat Treatment Process

HT1 1160 ◦C/4 h, FAC 1 + 850 ◦C/24 h, AC 2

HT2 1160 ◦C/4 h, FAC + 1000 ◦C/6 h, AC
HT3 1160 ◦C/4 h, FAC + 1000 ◦C/6 h, AC + 800 ◦C/4 h, AC
HT4 1160 ◦C/4 h, FAC + 1000 ◦C/6 h, FAC + 900 ◦C/24 h, AC + 700 ◦C/16 h, AC

1 FAC: fast air cooling, 2 AC: air cooling.

The microstructures were investigated using scanning electron microscopy (SEM,
Helios G4 CX, Thermo Fisher Scientific, Waltham, MA, USA). Moreover, the morphology
evolutions and composition of the γ′ phase were also identified using transmission elec-
tron microscope (TEM, Talos F200X, Thermo Fisher Scientific, Waltham, MA, USA) and
an energy dispersive spectroscopy detector. Image-J 6.5 analysis software was used to
examine the microstructure features of γ′ phase after various heat treatments using the
same methods as those in reference [27–29]. The morphology of the γ′ phase is connected
to the measurement of the particle size. The size of a cubic γ′ phase is equal to the average
of the length and width, whereas the size of a spherical phase is its diameter.

The ultrasonic properties of cubic samples with dimensions of 20 × 20 × 3 mm were
evaluated at ambient temperature following the various aging treatments using a 20 MHz
delay line transducer (Olympus company, Waltham, MA, USA) in contact pulse-echo and
immersive pulse reflection modes. The ultrasonic longitudinal velocity and attenuation
coefficient were calculated using the same methods as those in reference [21].

Vickers hardness testing was conducted using an indentation tester (HMV-G20ST,
Shimadzu, Japan) with a 9.8 N load and a 15 s holding time. Ten different sites on each
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sample were used to measure hardness, and the average values were used to obtain the
hardness value. Bar-shaped samples with gauge lengths of 35 mm and diameters of 5 mm
were used for tensile testing. The room-temperature tensile properties were tested by
universal testing machine (INSTRON 3382, INSTRON, MA, USA) at a consistent strain rate
of 2.5 × 10−4 s−1, and testing was repeated three times to verify data accuracy.

3. Results and Discussion
3.1. Microstructural Evolution

Figure 1 illustrates the morphology evolutions of the γ′ phase in the IN939 superalloy
samples under various heat treatment conditions. The energy spectrum analysis (EDS)
of the TEM shows that the γ′ phases were mainly in the form of (Ni, Co)3 (Al, Cr, Ta,
Ti) (Figure 1e). In addition, the aging treatments showed a substantial impact on the
morphology of the γ′ phase, which changed its shape from spherical to cuboid. It is
evident from the SEM image and the inserted HAADF-TEM image in Figure 1a,b that the
morphology of the γ′ phase in the HT1 and HT2 samples is spherical. The HT3 and HT4
samples contained spherical and near-cuboid γ′ precipitates in comparison to the HT1 and
HT2 heat-treated samples. The morphological changes of the γ′ particles are mainly due to
the competition between elastic strain energy and interface energy under various aging
conditions [3,7,30,31]. Due to the fine size of the γ′ phase, the lattice mismatch between
the γ matrix and γ′ phase is generally low for the HT1 and HT2 samples. As a result, the
isotropic interfacial energy causes the spherical γ′ phase to form. With further coarsening
and undergoing Ostwald ripening of the γ′ phase, the elastic strain energy increases faster
than the interfacial energy [5,7,30,31]. At this time, the elastic strain energy controls and
predominates the spherical to the cuboidal shape of γ′ in the HT3 and HT4 samples.
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Figure 2 depicts the volume fractions and sizes of the γ′ phase and γ channel width
under various aging treatments. From the TEM micrographs considering over 200 pre-
cipitates, the size of the γ′ phase in the HT1 sample was the smallest (72 nm), and the
volume fraction was 24.3%. However, compared with the HT1 heat treatment, the sizes
of γ′ precipitated from the HT2 sample (115 nm in diameter) and HT3 sample (129 nm in
length) were significantly increased, whereas the volume fractions were decreased. For
the standard four-step heat treatment, the average size of the γ′ phase was approximately
143 nm in length, and the volume fraction was 27.8% in the HT4 sample. In addition, the
variations in the γ channel width obtained through the image analysis are also displayed
in Figure 2b. The narrowest γ channel width was found in the HT1 sample, whereas the
widest was found in the HT2 sample. The γ′ phase grows with the core of small γ′ phase
particles precipitated by the solid solution process. Its growth is controlled by the diffusion
of the alloying elements caused by aging temperature and time. With the increase in aging
temperature and time, the faster the diffusion rate of alloying elements and the faster the
growth rate of the γ′ phase. Additionally, the Ostwald ripening phenomenon and the
merger of the γ′ phase appeared with an increase in the aging temperature and time, which
caused the γ′ particle size to gradually grow [3,5,30]. For the HT1 sample, the alloying
elements diffuse slowly at low temperatures, increasing the matrix supersaturation, which
decreases the critical nucleation energy of the γ′ phase, promotes the nucleation rate, and
increases the volume fraction of the γ′ phase. Meanwhile, the short diffusion time prevents
the growth of the γ′ phase, resulting in the smaller size of the γ′ phase. In addition, as the
aging time is further prolonged, the γ′ phase dissolves and merges, enlarging the matrix
γ channel.
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3.2. Ultrasonic Properties

The effect of the γ′ phase on the ultrasonic longitudinal velocity is shown in Figure 3.
The ultrasonic longitudinal velocity increased as the volume fraction of the γ′ phase
increased, which is in agreement with previous studies [14,20–22]. The minimum ultrasonic
longitudinal velocity appeared in the HT2 heat-treated sample, and the corresponding
volume fraction of the γ′ phase in the microstructure was 16.5%. However, for the HT4
sample with a 27.8% volume fraction of the γ′ phase, the ultrasonic longitudinal velocity
was the largest.
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The ultrasonic longitudinal velocity of the alloy was related to both Young’s modulus
and density, which is in accordance with the V∝ (E/ρ)0.5 equation [14,32]. Therefore,
Young’s modulus and density were the major reasons for the variation in the ultrasonic
longitudinal velocity of the alloy. The γ′ precipitates throughout the heat treatment process
altered the elastic modulus but showed little impact on the density of the alloy. According to
a previous study [15,32], the Young’s modulus of the γ′ phase (210 GPa) was approximately
11% higher than the γ matrix (190 GPa). As a result, the Young’s modulus of the superalloy
increased with the volume faction of the γ′ phase in the microstructure, which increased
the ultrasonic longitudinal velocity of the superalloy. As shown in Figure 3, for the HT4
sample with a 27.8% volume fraction of the γ′ phase, the ultrasonic longitudinal velocity
reached the maximum value.

Figure 4 indicates the variation trend of the ultrasonic attenuation coefficient of the
IN939 alloy after different heat treatment processes. The ultrasonic attenuation coefficient
reached the minimum value (0.34 dB/mm) in the HT1 sample and the maximum value
in the HT2 sample. For the HT3 and HT4 samples, the attenuation values were close
to 0.47 dB/mm, although these two samples showed very different volume fractions
and sizes of the γ′ phase. Moreover, it can be seen that the variations in the ultrasonic
longitudinal velocity and attenuation presented opposite trends, which is similar to the
results of previous research [21]. Mukhopadhyay et al. [21] claimed that the variation trend
of the attenuation coefficient induced by variation in the γ′ phase showed a similar trend to
the fractional change in the γ channel width (the ratio of the γ channel width to (γ channel
width + γ′ precipitation size)), which was primarily governed by a dislocation–damping
mechanism. The microstructure analysis in Figure 2 shows that the size of the γ′ phase
and the width of the γ channel were affected by different aging treatments. The fractional
change in the γ channel width of samples with different heat treatments from small to large
was in the order of HT1, HT4, HT3, and HT2, as shown in Figure 4. Therefore, the variation
in the attenuation coefficient was mainly due to the fractional change in the channel width,
which changed the motion of dislocation in the γ channel during ultrasonic propagation.
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3.3. Mechanical Properties

The average Vickers hardness values of the samples under various aging treatments
are shown in Figure 5. The hardness of the HT1 sample after low-temperature aging
treatment (440 Hv) was significantly higher than the HT2 sample (356 Hv) with high-
temperature aging treatment. Moreover, the hardness of the HT3 sample after three-step
heat treatment was 9.2% higher than the HT2 sample. After four steps of heat treatment,
the hardness of the HT4 sample was close to that of the HT1 sample and 20.2% higher than
the HT2 sample.
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Figure 6 displays the tensile properties at room temperature for each of the four heat
treatment conditions. It is abundantly clear that the γ′ phase significantly affected the
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tensile properties. The HT1 sample showed a yield strength of 1023 MPa, an ultimate
tensile strength of 1195 MPa, and an elongation of 11.8% at room temperature, which
is an excellent combination of mechanical properties. However, the HT2 sample, with
the lowest volume fraction and largest size of the γ′ phase, showed the lowest tensile
properties at room temperature. The HT3 sample showed better tensile properties than
the HT2 sample. Moreover, compared with the HT1 sample, the ultimate tensile strength
and yield strength decreased slightly, but the elongation increased. These results indicate
that the alloy could obtain outstanding room-temperature tensile properties by aging
at a low temperature for an extended period of time. A finer size with a high volume
fraction of the γ′ phase and a narrower channel of the γ matrix made deformation of
the microstructure more difficult, thus increasing the hardness and strength and slightly
reducing the ductility [9,10]. According to the results in Figures 1 and 2, high hardness
and tensile properties were obtained in the HT1 sample due to the high fraction and dense
distribution of the nano-sized γ′ phase.
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Figure 7 shows the relationships between the mechanical properties and ultrasonic prop-
erties. The results show that the variation in ultrasonic longitudinal velocity was essentially
commensurate with variations in hardness and tensile properties in the IN939 alloy, which
is consistent with previous research on other nickel-based superalloys [12,22,23]. The lon-
gitudinal ultrasonic velocity depended on the change in the elastic modulus caused by
the precipitation of the nano-sized γ′ phase in the superalloy. Conversely, the variation
trend of the ultrasonic attenuation coefficient was opposite to those of the hardness and
tensile properties of the alloy. The mechanical properties of the alloy were mainly affected
by the influences of the volume fraction and the size characteristics of the γ′ phase on the
dislocation movement. The ultrasonic longitudinal velocity reflected the change in the
volume fraction of the γ′ phase, and the attenuation coefficient effectively reflected the size
characteristics of the γ′ phase. Therefore, the measurement of the ultrasonic longitudinal
velocity and attenuation coefficient could be effectively used to monitor the microstructure
variations in superalloys that, in turn, drive changes in the mechanical properties. It could
be used as a nondestructive method to characterize microstructure changes in superalloys
during heat treatment. According to the results of the relationships between microstruc-
tures, and ultrasonic and mechanical properties, the optimal heat treatment process in this
paper, considering economy and convenience, was the HT1 process.
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4. Conclusions

In this paper, the effect of the nano-sized γ′ phase on the ultrasonic and mechanical
properties of the IN939 superalloy was investigated.

The aging treatment used showed an important effect on tailoring the morphology
and size distribution of the nano-sized γ′ phase. After aging at 850 ◦C for 24 h, the IN939
superalloy showed less fractional change in the γ channel width, a 24.3% volume fraction
of the γ′ phase, and excellent mechanical properties.

The ultrasonic velocity increased with the volume fraction of the γ′ phase, whereas the
ultrasonic attenuation and velocity change exhibited opposite trends that were consistent
with the fractional change in the channel width.

Additionally, the variation in the ultrasonic properties could reflect the variations in
the microstructure and mechanical properties of the IN939 superalloy, which were beneficial
for optimizing the heat treatment process and characterizing the γ′ phase precipitation
behavior.
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