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Abstract: Giving a deep insight into the microstructure, and realizing the correlation between
microstructure and properties is very important to the precise construction of high-performance
graphene/polymer nanocomposites (GPN). For the promising application in microstructure char-
acterization, much attention has been focused on the effective technique of positron annihilation
lifetime spectroscopy (PALS). Based on the introduction of the basic principle, this review summa-
rized the application progress of PALS in the correlation of microstructure and properties for GPN,
especially for the characterization of free volume and interfacial interaction, and the correlation of
these microstructures and properties.
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1. Introduction

Due to the combination of the viscoelasticity of polymers and the functionality of
nanofillers, polymer nanocomposites have been widely used in the field of composites.
Owing to the excellent mechanical, electrical, thermal, and optical properties of graphene
nanosheets, leading to the rapid development of graphene-based polymer nanocompos-
ites [1–5]. It is well-known that the microstructure of polymer composites determines
the performance of the prepared materials, therefore the microstructure characterization
is highly desirable for the molecular design. For the GPN, the microstructure includes
the interfacial interaction intensity (β) between graphene and polymer, the free volume
(Vf), and the free volume fraction (fv) of the composite. The fv and β are closely related to
their transport properties, such as mechanical, electrical, thermal, and barrier properties.
Therefore, the establishment of qualitative or even quantitative relationships between
these microstructures and properties will be helpful for the precise construction of high-
performance GPN [6–10].

Though many conventional and special techniques have been used for the structural
characterization of GPN, due to various restrictions, it is very difficult to quantitatively
reveal the microstructure such as fv and β. Consequently, it is unfavorable for the estab-
lishment of a relationship between these microstructures and properties [4,11]. Compared
with other characterization techniques, PALS is the most sensitive method to detect the
size and concentration of free volume in polymer composites [12–15]. With the develop-
ment of PALS, this technology can not only characterize the free volume characteristics
of polymer composites, but also can reveal the interfacial interaction between polymer
and nanofiller [16–19], which provided a new approach for the relationship established
between the microstructure and property.

Due to it being a powerful tool in microstructure characterization, PALS was widely
used in the correlation of structure and properties for GPN in recent years. Though there
are some reviews about the application of PALS in the structural characterization of poly-
mer and corresponding composites [20–23], there are few reviews about the application
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of PALS in the structural characterization of GPN. To realize the precise construction of
high-performance GPN, now is an appropriate time to summarize the application progress
of PALS in the correlation of structure and properties for GPN. Firstly, the basic principle of
PALS was introduced, including the correlation between the long-lived lifetime (τ3), inter-
mediate lifetime intensity (I2), and properties, interfacial interaction, respectively. Secondly,
the application of PALS in the structural characterization of graphene and graphene oxide
was summarized. Finally, the application of PALS in the correlation of microstructure and
properties for GPN was summarized, especially for the characterization of free volume and
interfacial interaction, and the correlation of this microstructure and properties.

2. Application Principle of PALS in Polymer Composites Characterization

Since the discovery of positron by Anderson in 1932, the PALS technique was devel-
oped and used as a useful tool to determine the atomic scale defects for a wide variety of
polymer and polymer composites [20,21]. Positrons generated by radioactive sources such
as 22Na can diffuse into the polymer, annihilating directly with free electrons or indirectly
by forming positronium (Ps). Both the generation and annihilation of positron will emit γ
photons, the time interval (annihilation lifetime) of the emitted γ photons is highly depen-
dent on the free volume and interface interaction. The Ps exist in two spin states, namely
para-positronium (p-Ps) and ortho-positronium (o-Ps). Generally, four annihilation lifetime
components can be observed for crystalline polymers (τ1, τ2, τ3, τ4), the τ1 and τ2 were
considered to be the lifetime of p-Ps self-annihilation and positron direct annihilation, and
the τ3 and τ4 were considered to the pick-off annihilation lifetime for o-Ps in amorphous
and crystalline region. As almost no crystalline region exists in the amorphous polymer,
only three annihilation lifetime components can be observed [22,23].

At present, the application of PALS in structure characterization for polymer com-
posites was mainly focused on the measurement of annihilation lifetime [24–28]. On the
one hand, the Vf and fv can be calculated with the value of τ3, and the relationship can
be established between the obtained fv and the material properties [29–33]. On the other
hand, the β can be calculated with the value of I2, which can give a deep insight into the
dispersion state of filler and corresponding properties [16–19].

2.1. Correlation between fv and Properties Based on τ3

The most important application of PALS in structure characterization for polymer and
polymer composites is the probing of Vf, which is closely related to the glass transition of
polymer. A simple quantum mechanical model was proposed in 1972 [34], Ps is considered
to be localized in a spherical infinite potential of radius R with a surface electron layer of
thickness ∆R (the empirical value is 0.1656 nm, which has been determined with materials
having well know free volume hole size), and the pick-off annihilation lifetime for o-Ps (τ3)
is correlated with R of the Vf. The correlation of τ3 and R is as follows (Equation (1)) [21]:

τ3 =
1
2

[
1 − R

R + ∆R
+

1
2π

sin
(

2πR
R + ∆R

)]−1
(1)

According to the above-mentioned model, the volume of holes in the polymeric
materials can be calculated through Equation (2) [21]:

Vf =
4
3

πR3 (2)

The formation probability of o-Ps (I3) is correlated with the intensity of the free volume,
and the free volume fraction (fv) of a polymeric material is calculated with Equation (3).
A is a proportionality constant, which has been estimated to be 0.0018 nm−3 to a large
number of polymers [21]. For convenience, relative free volume fraction (fr) (Equation (4))
was defined and used.

fv = AV f I3 (3)
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fr = Vf I3 (4)

The PALS was widely used for the Vf, fv, and corresponding property investigation
for a large number of polymer composites. As reported by Wang and co-workers [26],
the glass transition temperature (Tg) and viscoelastic properties of polycarbonate/multi-
walled carbon nanotube (PC/MWCNT) composites can be revealed by PALS. The higher
the MWCNT content, the lower the Tg, which can be ascribed to the large Vf and the
enhanced polymer mobility. Based on the free volume theory, a direct linear correlation
between fv and the viscoelastic property of PC/MWCNT has been obtained using the WLF
equation. In addition, based on the results of Vf and fv obtained from PALS, the property
change rule of many polymer composites can be explained [24–33]. With the deepening
of the investigation, a quantitative relationship between the Vf, fr, and properties was
established. In the conductivity investigation of poly(ether urethane)-LiClO4 composites, a
direct relationship between the conductivity (σ) and fr has been established based on the
experimental measurements (Equation (5)) [27]. In the gas barrier investigation of styrene-
butadiene rubber composites, the gas barrier is mainly influenced by fv and tortuous
diffusional path effects, and a direct relationship between the diffusion coefficient (D) and
fv has also been established (Equation (6)) [28].

log10 σ(T) = log10 σ
(
Tg

)
+ C1

(
1 −

fg

fr

)
(5)

D =
A
T

exp(−B/ f v) (6)

2.2. Investigation of β Based on I2

The intermediate lifetime τ2 is assigned to the annihilation of positrons trapped in
various vacancies, and the variation of the intermediate lifetime intensity (I2) can be used
to characterize the interfacial interaction between polymer and nanofiller in the polymer
composites [16,17]. According to the simple mixture rule, if no interfacial interaction exists
between polymer and nanofiller, the I2 only comes from the annihilation in the polymer
matrix and nanofiller. Under this condition, I2 is linearly correlated with the content of the
nanofiller (Equation (7)).

I2 = IN
2 W + IP

2 (1 − W) (7)

Actually, the interfacial interaction always exists in polymer composites, thus de-
viations occurred between the theoretical results and the experimental results [16,17].
According to the deviation of theoretical value and experimental value of I2, the interfacial
interaction intensity and the dispersion state of the filler can be qualitatively evaluated. In
the interfacial interaction investigation of phenol-formaldehyde resin/carbon nanotube
composite [35], the experimental results of I2 show negative deviation indicating weak
interfacial interactions between resin and nanotubes. In the interfacial interaction inves-
tigation of epoxy resin/modified clay composites [36], the deviation from the expected
intensity value is maximum for the 1 wt.% clay sample, indicating the strongest interaction
for the sample containing 1 wt.% clay. However, with the linear correlation Equation (7),
the β cannot be investigated in quantitative.

The interaction parameter β was introduced to characterize the interfacial interaction
intensity between polymer and filler, which can be calculated according to Equation (8) [18],
where the superscripts C, N, and P refer to composite, nanofiller, and polymer, and W is the
weight ratio of nanofiller.

IC
2 = IN

2 W + IP
2 (1 − W) + βIN

2 WIP
2 (1 − W) (8)

In the investigation of interfacial interaction and structural transition for epoxy/
nanotube composites by PALS [19], the β of the composites with different nanotube content
was calculated through Equation (8). The results revealed that stronger interfacial interac-
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tions exist in the composites with modified nanotubes, which is in good agreement with
the determination of Tg.

3. Application of PALS in Graphene and Graphene Oxide Characterization

As the PALS investigation of GPN involves the positron annihilation parameters of
graphene and graphene oxide (GO), thus the application of PALS in these fillers’ char-
acterization has also been summarized. As so far, there are no reports about the PALS
investigation for pristine graphene, which is obtained with liquid exfoliation or chemical
vapor deposition and possesses a perfect sp2 hybrid structure. The positron annihilation
parameters of graphene used in the calculation were obtained from reduced graphene
oxide (RGO), which was obtained with chemical or thermal reduction of GO and partially
restoring the π network.

The PALS parameters of RGO and GO are shown in Table 1. As shown in the table,
there is a big difference between the annihilation parameters of the fillers prepared with
different methods. Chakarabarti and co-workers investigated the PALS of RGO obtained
with the reduction of polyaniline [37], in fact, the obtained RGO contained an impurity of
polyaniline. The intermediate lifetime intensity (I2) of this RGO is 63.8%, which has been
widely used in other groups’ investigations for the calculation of interfacial interaction
intensity (β). The PALS investigation of RGO obtained with potassium carbonate was con-
ducted by Peng and co-workers [38], single-layered RGO with high purity was produced,
and the value of I2 was as high as 94.78%. There is no obvious difference in the annihilation
lifetime for GO obtained with traditional Hummers methods [39] and modified Hummers
methods [40], but there is a big difference in their intensity, which demonstrates that the
preparation methods have a great impact on the concentration of defects or holes.

Table 1. PALS parameters of RGO and GO.

Sample τ1(ps)/I1(%) τ2(ps)/I2(%) τ3(ps)/I3(%) Reference

RGO 63/36 402/63.8 4400/0.2 [37]
RGO 193.2/5.22 337.6/94.78 - [38]
GO 197/21.39 388/78.44 2190/0.17 [39]
GO 200/54.2 440/42.0 2420/3.8 [40]

4. Application of PALS in Structure-Property Correlation for GPN

Due to it being a powerful tool in microstructure characterization, PALS was widely
used in the investigation for GPN in recent years [41], including the GPN used for nanofil-
tration membranes [42,43], gas barrier [44,45], gas separation [46,47], fuel cells [48], super-
capacitors [49]. The correlation of structure and property for GPN is also focused on the fv
and β, which can be obtained with the determination of τ3 and I2.

In the correlation between gas permeation and microstructure of RGO/PEI composite
films, PALS was used to reveal the free volume (Figure 1) [44]. The raw PALS spectra for all
samples are shown in Figure 1a, obvious differences in the decay behavior can be observed
for different samples. The analysis program of PASA and LT was applied to analyze the
raw PALS spectra, the results revealed that only one long-lived o-Ps lifetime can be derived
from the spectra for all samples, and the τo-Ps and Io-Ps are displayed in Figure 1b.
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Figure 1. (a) The raw PALS spectra of PEI/RGO; (b) the variations in o-Ps lifetime and the intensity
in the PEI/RGO composite film [44].

4.1. Correlation of Free Volume Fraction and Property

The Vf and fv of GPN are closely related to their transport properties, such as phase change
temperature, conductivity, gas barrier, thermal conductivity, etc. A quantitative relationship
was established for GPN based on the fv, according to different physical models.

4.1.1. Correlation between fv and Phase Change Temperature

Free volume is an important characteristic of polymer and their composites. Higher fv
can provide more movement space for polymer segments in composites, which is bene-
ficial for the movement of the polymer chain, leading to the decrease of glass transition
temperature (Tg) or melting point (Tm) [50]. In the PALS investigation of GO/polyurethane
composites (Figure 2) [51], the effect of GO content on the fr was studied. With the increase
of GO content, the fr decreased at low GO content and increased at high GO content,
which can be ascribed to the different dispersion states and interfacial interactions. The
changing trend of Tg is contrary to fr, lowest fr was obtained for the composites containing
0.5 wt.% GO, and the highest Tg was observed for these composites. In another work of this
group, the effect of graphene content on the fr for graphene/polyethylene composites was
investigated [52]. With the increase of graphene content, the fr of the composites decreased
gradually, leading to the increase of the Tm.
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Figure 2. (a) o-Ps lifetime τ3 and free volume size Vf, (b) o-Ps lifetime intensity I3, (c) fractional free
volume f r, (d) interfacial interaction β of the GO/WPU composites [51].

4.1.2. Correlation between fv and Conductivity

The fv of polymer composites is also closely related to conductivity. Lower fv can pro-
mote the formation of interfacial areas with high density for GPN, limiting the movement
and relaxation of polymer segments. This facilitates the formation of conductive networks,
leading to the conductivity improvement of GPN [53–56]. In the PALS investigation of the
γ irradiation effect on the conductivity of polyvinyl alcohol/polyethylene glycol/graphene
(PVA/PEG/RGO) composites, the correlation between conductivity and Vf was established
(Equation (9)) [57]. Through the data fitting of conductivity (σ) and Vf, the critical free
volume Vi* was obtained. For the nonirradiated and irradiated PVA/PEG/RGO samples,
the Vi* for the charge carriers/ion transport is 80.34 and 82.16 Å3 respectively. In the inves-
tigation of polycarbonate (PC)/RGO composites, the conductivity and fr were correlated
with PALS (Equation (10)) [58]. The value of f 0, fd, and b was calculated to be 25.62%,
0.5663%, and 1.047 × 10−6 S/m, respectively.

σ = σ0 exp(−γVi∗

Vf
) (9)

fr = f0 + fde−
σ
b (10)

4.1.3. Correlation between fv and Gas Barrier

The fv of polymer composites is also closely related to the permeability of gas and
water. Lower fv can promote the formation of a zigzag channel effect in the GPN, which
can decrease the transport rate of small molecules, leading to the enhancement of the
barrier properties [59–62]. In the investigation of the alcohol dehydration performance of
alginate composite with RGO and graphene quantum dots [63], the co-dopping membrane
has the better alcohol-blocking capability. Because the diameter of free volume for the
co-dopping membrane is 3.109 Å, which is smaller than the kinetic diameter of methanol
(3.8 Å) but large enough for the transport of water (2.6 Å), leading to better performance
for methanol/water separation. In the investigation of the orientation effect of sulfonated
GO (SG) on the gas barrier for SG/nafion composite membrane, the fv under different
orientations was determined with PALS [30]. In addition, the diffusion coefficient (Dc) can
be calculated with Equation (11), thus the orientation effect of SG on the gas barrier can be
revealed with PALS.

Dc = Ae(−B/ f v) (11)
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4.1.4. Correlation between fv and Thermal Conductivity

The fv of polymer composites is also closely related to thermal conductivity. This can be
ascribed to that the free volume holes own a radius at the angstrom level and can be an effec-
tive center for phonon scattering, while the phonon is very important for the transportation
of heat. Thus, the larger the fv, the lower the thermal conductivity [64]. In the investigation
of RGO content on the thermal conductivity of porous PVA/RGO composites [64], the
correlation between fv and thermal conductivity was established (Equation (12)). Increas-
ing free volume holes of PVA/RGO composites lead to an enhancement in the phonon
scattering and hence a decrease in the thermal conductivity.

κ = κm exp
(
− f v

t

)
+ κ0 (12)

4.2. Correlation of Interfacial Interaction Intensity and Property

The interfacial interaction between polymer and filler is not only closely related to the
dispersion state of graphene, but also closely related to the composite properties, including
mechanical strength, conductivity, thermal conductivity, and gas barrier. According to
the relationship between intermediate lifetime intensity (I2) and interfacial interaction
intensity (β) (Equation (8)), the correlation between interfacial interaction and property
was established.

4.2.1. Correlation between β and Mechanical Property

In the investigation of GO/polyurethane composites [51], the effect of GO content
on the β was revealed with PALS through Equation (8), and a correlation between the β
and mechanical property was established. The change of the composite tensile strength
is consistent with the variation of β, because the tensile strength is closely related to the
interfacial interaction, which can transfer the stress from the soft polymer matrix to the
hard nanofiller. A similar phenomenon has also been observed in graphene/polyethylene
composites (Figure 3) [52], which demonstrated that the relationship between interfacial
interaction and mechanical property can be established with the PALS technique.
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4.2.2. Correlation between β and Conductivity

In the investigation of PC/RGO composites [58], the change of β as a function of RGO
content was revealed. The composite with 0.5 wt.% RGO has the largest β, suggesting
the interfacial interaction is strongest when the conductive network is formed. High
β is beneficial for the formation of high-density interfacial regions, which can limit the
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movement and relaxation of the polymer chain, inducing the formation of conductive
networks [53–56].

4.2.3. Correlation between β and Thermal Conductivity

The interfacial interaction between polymer matrix and filler has an important effect
on thermal conductivity, which dominates the delivery of phonon between filler and
polymer [62]. In the investigation of the PVA/RGO composite [64], the β between PVA and
RGO was also revealed through Equation (8). The interfacial thermal resistance increased
with the increase of β, and reached the highest at the load level of 0.5 wt.%. This can be
attributed to the high specific surface area can provide more functional sites, which can
scatter phonons and dampen the phonons’ vibration amplitude at the surface, leading to
higher thermal resistance.

4.2.4. Correlation between Interfacial Interaction and Gas Barrier

Although the β was not revealed in the gas barrier investigation for GPN till now,
yet the correlation between interfacial interaction and the gas barrier has been established
in qualitative. Strong interfacial interaction between the polymer matrix and GO/RGO
can limit the motion of the polymer chain, consequently, reducing the fv and increase the
tortuous path, enhancing the gas barrier properties [44,59–62].

Except for the PALS, there is another positron annihilation technique namely Doppler
broadening spectra (DBS) of annihilation radiation, which has also been widely used in
the microstructure characterization for GPN in recent years [42,43]. The DBS can probe
the energy broadening from electron motion in the atoms or molecules at the site where
the annihilation takes place, which represents the momentum density in the longitudinal
direction of annihilation radiation. The parameterized value (S parameter) in the low
momentum region of DBS indicates the extent of free volumes in the substrates of polymeric
systems [22].

The positron lifetime in polymer composites is sensitive to the size of free volume,
while the momentum distribution of electrons in DBS is more sensitive to their chemical
environments [65,66]. In the investigation of polyzwitterion membrane via assembly of
GO-based core-brush nanosheet [67], slow positron annihilation DBS was used to reveal
the microstructure, the smaller S parameter indicates a more compact membrane structure.
In the investigation of spirobisindane-functionalized graphene oxide (SFGO)/ polyimide
nanocomposite membranes [68], the S parameter as a function of positron incident energy
was provided. As the author stated, the larger of the S parameter, the larger the free volume.
Obvious drops were observed at energy less than 0.8 KeV, these drops occurred when
positrons are closer to the surface, and the defect and different chemical nature of the
surface can be detected. In the investigation of GO-modified Poly(N-isopropylacrylamide)
(mPNIPAm) membranes [69], DBS was used to qualitatively yield information about the
free volume. A minimum S parameter of 0.456 was observed in the deposition layer of GO,
and the S parameter of the deposition layers after the GO grafted to mPNIPAm in the order
of GO-PNCOOH,NH2 (0.471) > GO-PNCOOH (0.461) > GO-PNCONH2 (0.459).

5. Conclusions and Future Prospects

Due to their excellent physical and chemical properties, graphene-based polymer
nanocomposites have been widely studied and applied. It has become an important
investigation direction of the precise construction of high-performance GPN, which is
highly desirable for the revealing of the microstructure that determines transport properties,
including fv, β, and the correlation of this microstructure and property. The PALS technique
can not only reveal the free volume characteristic of GPN, but also be used to investigate
the interfacial interaction between graphene and polymer matrix, which provided a new
approach for the construction of the relationship between the structure and property of
such composite. Combined with the condensed state physical model of materials, the
quantitative relationship between the fv and conductivity, thermal conductivity, and barrier
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performance of this composite can be established, which lays the foundation for the precise
construction of GPN. With the development of high-performance GPN, the quantitative
relationship between fv and more properties will be established. The interfacial interaction
determines the dispersion state of graphene, which is also closely related to the properties
of the GPN. Though the β parameter can be calculated now, yet there are no reports
about the quantitative correlation between β and properties, which need more attention.
In addition, the S parameter originating from DBS is another important parameter for
the microchemical environment investigation. However, there are few reports about the
quantitative correlation between the S parameter and properties, which also need to be
paid more attention.

In fact, except for the GPN, PALS has been widely used in the investigation of other
materials, such as new synthetic polymers, novel inorganic compound, and their compos-
ites. On the other hand, except for the PALS, other new positron annihilation techniques
such as Doppler broadening spectra (DBS), and angular momentum correlation (AMC) can
also be used for the microstructure characterization of materials. With the deepening of re-
search, a more quantitative relationship will be established for more materials according to
the different physical model, which will promote the precise construction of new materials.
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