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Abstract: In this study, graphene quantum dots (GQDs) and polyvinyl alcohol (PVA) composite was
prepared and then coated on the surface of gold thin film via the spin coating technique. Subsequently,
Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and ultraviolet-
visible spectroscopy (UV–Vis) were adopted to understand the structure, surface morphology, and
optical properties of the prepared samples. The FT-IR spectral analysis revealed important bands,
such as O–H stretching, C=O stretching, C–H stretching, and O=C=O stretching vibrations. The
surface roughness of the GQDs-PVA composite thin film was found to be increased after exposure to
carbaryl. On the other hand, the optical absorbance of the GQDs-PVA thin film was obtained and
further analysis was conducted, revealing a band gap Eg value of 4.090 eV. The sensing potential
of the thin film was analyzed using surface plasmon resonance (SPR) spectroscopy. The findings
demonstrated that the developed sensor’s lowest detection limit for carbaryl was 0.001 ppb, which
was lower than that previously reported, i.e., 0.007 ppb. Moreover, other sensing performance
parameters, such as full width at half maximum, detection accuracy, and signal-to-noise ratio, were
also investigated to evaluate the sensor’s efficiency.

Keywords: graphene quantum dots; polyvinyl alcohol; carbaryl; surface plasmon resonance

1. Introduction

The last decade has witnessed an unprecedented number of studies investigating
the synthesis and application of graphene-based materials, owing to their remarkable
optical and mechanical properties [1–3]. Among the many members of the graphene
family, graphene quantum dots (GQDs) are one of the most recent superstars of the carbon
family. They have attracted significant attention because of their tunable band gap, which
is caused by their smaller size than standard graphene sheets, excellent dispersibility,
and biocompatibility [4–6]. Interestingly, GQDs can be compounded with solid materials
and dispersed in common solvents [7,8]. To date, GQDs have demonstrated substantial
potential in numerous applications, such as sensors [9], catalysis [10], energy devices [11,12],
photothermal therapy [13,14], drug delivery [15], bioimaging [16,17], and solar cells [18].
Regarding optical sensing applications in the detection of pesticides, research indicates that
synthesizing GQDs with a polymer can obtain highly sensitive material.

Based on literature analysis, several studies have detected pesticides using GQDs/
magnetic silica beads-polypyrrole (PPy) [19], nitrogen-doped GQDs-polydopamine (PDA) [20],
and sulfur-doped GQDs-polyvinyl alcohol (PVA) [21]. Among these materials, the PVA polymer
has sparked considerable past and current interest, and studies are still being conducted to this
day. PVA can also reportedly detect pesticides by synthesizing it with copper [22], encapsulated
5-aminofluorescein [23], cellulose silver nanoparticles [24], and gold nanoparticles [25,26]. It is
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worth mentioning that all of the reported materials have been used to detect different types
of pesticides. PVA has been widely used amidst a range of conducting and non-conducting
polymers, owing to its availability in different molecular weights and affordability [27]. Fur-
thermore, PVA is non-toxic and exhibits notable film-forming features, strong water solubility,
easy processability, and is biocompatible and biodegradable [28–30]. These remarkable proper-
ties make PVA an ideal candidate for many applications, including gas sensors [31], biomedical
devices [32], drug delivery [33], fuel cells, and membrane technology [34].

According to previous research exploring GQDs and PVA-based materials for the
optical detection of pesticides, the most commonly used optical methods include fluores-
cence, photoluminescence, colorimetry, and surface-enhanced Raman spectroscopy [35–41].
Although the results obtained have been satisfactory, these methods have some limitations,
including the need for sophisticated equipment, complicated procedures for pre- analysis,
and they are time consuming. The surface plasmon resonance (SPR) method is expected to
eliminate these problems. SPR corresponds to the free electrons on the surface of a metallic
nanoparticle after being excited by the photons of incident light with a certain angle of inci-
dence, which are then propagated parallel to the metal surface [42–49]. SPR is also a highly
effective approach for the optical and label-free detection of tiny molecules, possessing
advantages, including simple and low-cost fabrication, noticeable sensitivity, and quick
analysis times [50–57]. This approach is necessary to identify pesticides such as carbaryl
(1-naphthyl N-methylcarbamate), which comprises one of the main agricultural pesticides
used in the modern agricultural sector. This substance is dangerous for humans because it
severely inhibits acetylcholine esterase and forms strong mutagenic N-nitrosocarbamates,
which lead to nervous system problems [58,59]. Due to its toxicity and broad use, the
detection of this environmental contaminant necessitates the development of sensitive
analytical techniques to track levels of carbaryl and monitor bioaccumulation.

As the structural and optical properties of GQDs-PVA have not been extensively
reported, this study attempted to characterize the structure, surface morphology, and optical
properties of a GQDs-PVA nanocomposite using Fourier transform infrared spectroscopy
(FT-IR), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis).
Importantly, the fabrication of GQDs-PVA for carbaryl pesticide detection has yet to be
investigated using SPR. Thus, this investigation will explore the potential sensing properties
of GQDs-PVA for carbaryl. This study highlights that the future of GQDs research is
boundless, particularly if upcoming studies focus on the ease of eco-friendly synthesis and
improving GQDs-PVA materials.

2. Materials and Method
2.1. Material Preparation

PVA with an average molecular weight of 146,000–186,000 (87–89% hydrolyzed) and
a stock solution (100 mg/mL) of carbaryl (98.0%) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). GQDs synthesized using the hydrothermal method (1 mg/mL) were
provided by ACS Material (Pasadena, CA, USA). The solution emitted blue light (460 nm)
when excited with a 365 nm UV beam. The purity of GQDs was more than 80% with a
particle size of less than 5 nm. For preparation of the PVA solution, 2.0 g of PVA powder
was mixed with 36 mL of deionized water. Then, the solution was stirred for 1 h with a
magnetic stirrer at 90 ◦C. To generate the GQDs-PVA solution, the previously prepared
PVA solution was mixed with the GQDs solution in a 1:1 volume ratio and stirred at
room temperature for 30 min. Figure 1 shows the schematic preparation of the composite
solution. Then, various concentrations of carbaryl solutions were prepared by diluting the
appropriate amount in deionized water, using the diluting formula M1V1 = M2V2.

M1 = Stock concentration
V1 = Stock volume
M2 = Desired concentration
V2 = Desired volume
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Figure 1. The schematic preparation of the composite solution. 
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nm gold thin film using the SC7640 Sputter (Quorum Technologies, West Sussex, UK). 
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ing the spin coating method with the P-6708D Spin Coater (Inc. Medical Devices, Indian-
apolis, IN, USA). Approximately 0.50 mL of the sample solution was placed on the gold 
film and spun at 3000 rpm for 30 s. Figure 2 provides an overview of the steps involved 
in the thin film preparation process. 
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The FTIR spectra of the GQDs, PVA, and GQDs-PVA solutions were recorded using 

an ALPHA II FTIR Spectrometer (Bruker, CA, USA) in ATR mode. Then, the surface mor-
phology of the GQDs, PVA, and GQDs-PVA thin films were examined by using the Di-
mension Edge AFM (Bruker, CA, USA) in intermittent mode, since this mode allows high 
resolution for fragile and thin samples. A UV-3600 UV-VIS-NIR spectrophotometer (Shi-
madzu, Japan) was used to measure the absorbance and band gap of all of the thin films. 

2.4. SPR Spectroscopy 
SPR occurs when a photon of incident light strikes a metal surface, usually a gold 

surface at specific conditions [60–62]. A component of the light energy couples with the 
metal surface layer’s electrons through the metal coating at a specific angle of incidence, 

Figure 1. The schematic preparation of the composite solution.

2.2. Sensing Layer Preparation

First, the glass coverslip (24 × 24 × 0.1 mm3) was cleaned with acetone to eliminate
any fingerprint marks or grime on the glass surface. The glass slip was coated with a 50 nm
gold thin film using the SC7640 Sputter (Quorum Technologies, West Sussex, UK). The
gold-coated glass slip was then deposited with a GQDs-PVA composite thin film using the
spin coating method with the P-6708D Spin Coater (Inc. Medical Devices, Indianapolis, IN,
USA). Approximately 0.50 mL of the sample solution was placed on the gold film and spun
at 3000 rpm for 30 s. Figure 2 provides an overview of the steps involved in the thin film
preparation process.

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 20 
 

 

M1 = Stock concentration 
V1 = Stock volume  
M2 = Desired concentration 
V2 = Desired volume 

 
Figure 1. The schematic preparation of the composite solution. 

2.2. Sensing Layer Preparation 
First, the glass coverslip (24 × 24 × 0.1 mm3) was cleaned with acetone to eliminate 

any fingerprint marks or grime on the glass surface. The glass slip was coated with a 50 
nm gold thin film using the SC7640 Sputter (Quorum Technologies, West Sussex, UK). 
The gold-coated glass slip was then deposited with a GQDs-PVA composite thin film us-
ing the spin coating method with the P-6708D Spin Coater (Inc. Medical Devices, Indian-
apolis, IN, USA). Approximately 0.50 mL of the sample solution was placed on the gold 
film and spun at 3000 rpm for 30 s. Figure 2 provides an overview of the steps involved 
in the thin film preparation process. 

 
Figure 2. Steps involved in thin film preparation process. 

2.3. Characterization 
The FTIR spectra of the GQDs, PVA, and GQDs-PVA solutions were recorded using 

an ALPHA II FTIR Spectrometer (Bruker, CA, USA) in ATR mode. Then, the surface mor-
phology of the GQDs, PVA, and GQDs-PVA thin films were examined by using the Di-
mension Edge AFM (Bruker, CA, USA) in intermittent mode, since this mode allows high 
resolution for fragile and thin samples. A UV-3600 UV-VIS-NIR spectrophotometer (Shi-
madzu, Japan) was used to measure the absorbance and band gap of all of the thin films. 

2.4. SPR Spectroscopy 
SPR occurs when a photon of incident light strikes a metal surface, usually a gold 

surface at specific conditions [60–62]. A component of the light energy couples with the 
metal surface layer’s electrons through the metal coating at a specific angle of incidence, 

Figure 2. Steps involved in thin film preparation process.

2.3. Characterization

The FTIR spectra of the GQDs, PVA, and GQDs-PVA solutions were recorded using an
ALPHA II FTIR Spectrometer (Bruker, CA, USA) in ATR mode. Then, the surface morphology
of the GQDs, PVA, and GQDs-PVA thin films were examined by using the Dimension Edge
AFM (Bruker, CA, USA) in intermittent mode, since this mode allows high resolution for
fragile and thin samples. A UV-3600 UV-VIS-NIR spectrophotometer (Shimadzu, Japan) was
used to measure the absorbance and band gap of all of the thin films.

2.4. SPR Spectroscopy

SPR occurs when a photon of incident light strikes a metal surface, usually a gold
surface at specific conditions [60–62]. A component of the light energy couples with the
metal surface layer’s electrons through the metal coating at a specific angle of incidence,
causing the electrons to move as a response to excitation [63,64]. In an SPR sensor setup,
incident light is utilized using a glass prism with a high reflecting index in the Kretschmann
configuration of the attenuated total reflection (ATR) method [65]. The refractive index
of the material closer to the metal surface determines the stated SPR angle at which
resonance occurs, under the conditions of a constant light source wavelength and thin
metal surface [66]. Thus, detection is accomplished by observing the change in the reflected
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light that is obtained on a detector. In this study, gold was used as the metal film because
gold is inert, has high chemical stability, and efficiently absorbs light [67–70]. Then, GQDs-
PVA was employed as an active layer to improve the sensitivity of the gold film for
detecting pesticides. As a preliminary test, deionized water was injected into the cell, and
the incidence angle for the reflectance curve was recorded as a reference. Subsequently,
different carbaryl concentrations of 0.001, 0.008, 0.01, and 0.08 ppb were injected and left for
5 min to ensure that the carbaryl fully interacted with the GQDs-PVA layer. Figure 3 depicts
the SPR spectroscopy sensor setup. The apparatus consisted of a laser, chopper, polarizer,
sensor chip (gold layer and active layer), prism, photodiode, lock amplifier, stepper motor
with resolution of 0.001◦, and computer to display the changes in the reflected light.
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3. Results and Discussion
3.1. Fourier Transform Infrared Spectroscopy

In this investigation, FTIR spectroscopy was used to identify the structural properties
of GQDs, PVA, and GQDs-PVA films. For wavenumbers ranging from 4000 to 600 cm−1,
the expected functional groups were revealed, consequently confirming the structures of
all samples, as depicted in Figure 4. Referring to the FTIR spectrum of GQDs, the peak
between 3314 and 3694 cm−1 was due to the characteristic O-H stretching vibration. The
bands at 3075, 2867, 2145, 1767, and 1150–1616 cm−1 were assigned to C-H stretching
(alkene), C-H stretching (alkane), which can indicate polycyclic aromatic hydrocarbons [71],
C-N stretching, C=O stretching, and C-O stretching, respectively. Meanwhile, PVA ex-
hibited the O-H stretching vibration, C-H stretching, O=C=O stretching, C-H bending of
aromatic compounds, C=O stretching, C=C stretching, and C-O stretching, attributed to
bands at 3196–3745, 2757, 2124, 1891–1987, 1726, 1575, and 1190 cm−1, respectively. These
results were consistent with those reported by Yang et al. in 2018 [72]. After immobi-
lization of GQDs with PVA composite, O-H stretching became intense at wavenumbers
3140–3786 cm−1. These results indicated that the reaction between GQDs functional groups
and PVA groups occurred via interactions between the oxygenated groups in GQDs and
the hydroxyl groups in PVA [73]. As can be seen in the FTIR spectrum of the GQDs-PVA
film, C-H stretching (alkane), C-H stretching (alkene), O=C=O stretching, C=O stretching,
C-O stretching, and C-H bending were attributed to bands at 2866, 3059, 2180, 1780, 1616,
and 1465 cm−1, respectively. The integration of GQDs with PVA resulted in the formation
of common characteristics and also a new peak, which appeared to be due to C-H bending.
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3.2. Surface Morphology

The roughness features of all spin-coated thin films were identified by AFM with
the scan size fixed to 2 µm × 2 µm. Figures 5–8 show the AFM results for GQDs, PVA,
GQDs-PVA, and GQDs-PVA after contact with carbaryl, following the composite materials
being thoroughly coated on the surface of the gold thin film. As can be observed in Figure 5,
the 2D image of the GQDs thin film revealed a relatively rough surface with a root mean
square (RMS) roughness of 0.99 nm, similar to that observed by Anas et al. in 2019 [74].
Meanwhile, the 2D image of the PVA thin film in Figure 6 showed an even and circular
surface structure, with an RMS roughness value of 2.86 nm. Then, the GQDs-PVA thin
film in Figure 7 displayed an RMS roughness value of 1.12 nm with the surface appearance
showing an even and granular structure. These changes in RMS roughness values may
have been influenced by the formation of a network of GQDs nanoparticles with the PVA
polymer [75]. After the GQDs-PVA thin film was exposed to carbaryl, the RMS roughness
value increased to 1.38 nm, which proved the interaction of carbaryl with the GQDs-PVA
thin film. The 2D image of the GQDs-PVA film after contact with carbaryl showed a fairly
uniform surface structure with some white spots, which could be due to the carbaryl
molecules, as depicted in Figure 8.

3.3. Optical Properties

The optical properties of the composite materials were observed based on the UV-Vis
spectrum with a spectral resolution of 0.1 nm. Thus, the absorption spectra of GQDs, PVA,
and GQDs-PVA thin films were obtained at different wavelengths, ranging from 200 to
500 nm. As can be observed in Figure 9, the absorbance of GQDs showed the highest value
of 3.8 at 281.7 nm. Meanwhile, the absorbance of PVA showed the lowest value of 3.3 at
275.4 nm. After GQDs were immobilized with the PVA layer, the absorbance value was
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approximately 3.7 at a wavelength of 276.3 nm. This peak may be attributed to the n–π*
transition of the carbonyl group, as presented in the FTIR analysis [76].
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Figure 9. UV-Vis absorption spectra of GQDs, PVA, and GQDs-PVA thin films.

The absorbance, A, is one of the important parameters for obtaining the optical band
gap value for samples. Therefore, Beer Lambert’s law was used to interpret the data, as
shown in the equation below [77]:

a = 2.303
A
t

(1)

where a is the absorbance coefficient stated in units of m−1, and t represents the sample
thickness in meters (m). Then, the Tauc equation was followed [78]:

a =
k(hv− Eg)

1
2

hv
(2)

where k indicates the constant value, h is Plank’s constant, hv represents the photon energy,
and Eg indicates the band gap. Then, Equation (2) was derived to obtain Equation (3) below:

(ahv)2 = k(hv− Eg) (3)

Plotting the graph of (αhv)2 against hv was estimated to obtain the band gap for the GQDs,
PVA, and GQDs-PVA thin films, respectively. By extracting the extrapolated straight lines on
the x-axis from the Tauc equation, he optical band gaps were obtained for all samples [79].
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Based on the graphs shown in Figures 10–12, the optical band gap of GQDs was
4.087 eV, which aligned with the study by Bhatnagar et al. in 2017 [80]. The band gap for
PVA was 4.061 eV and after GQDs were immobilized, the energy band gap was increased to
4.100 eV. The possible reason that the energy band gap of GQDs−PVA had the highest value
compared to GQDs and PVA alone might be due to the quantum confinement effect. In the
quantum confinement phenomenon, electrons and nanoscale holes in the semiconductor are
trapped or confined [81]. As a result, the energy difference between full and empty states
increases or widens the semiconductor’s band gap. According to Zhu et al. in 2017, the
band gap in a quantum dot crystal is size dependent and can be altered to provide a range
of energies between the valence and conduction bands. Additionally, because of quantum
confinement, the band gap energy of a quantum dot increases as its size decreases [82].
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3.4. Potential Plasmonic Sensing

In the initial SPR analysis, the gold thin film was used as a baseline to compare the
gold-modified GQDs-PVA layer. As a preliminary test, deionized water was injected into
the cell and the incidence angle for the reflectance curve was recorded as a reference. Then,
injections of carbaryl concentrations at 0.001, 0.008, 0.01, and 0.08 ppb were recorded.
During the analysis, a sharp dip in the curve was obtained at a specific incidence angle
that corresponded to the resonance angle, which resulted from the reflected light reduced
because of the efficient transfer of energy to surface plasmons. As shown in Figure 13,
the incidence angle for the reflectance curve of the gold thin film was recorded at 53.323◦.
As expected, the gold thin film had a weak binding capacity and was unable to distin-
guish changes in the refractive index of different concentrations of carbaryl, which led to
approximately the same shift of the resonance angle.
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Figure 13. SPR reflectance curve as a function of incidence angle for gold thin film in the detection of
different concentrations of carbaryl.

Then, the SPR analysis was continued by modifying the gold thin film with the
GQDs-PVA solution. The SPR spectra for the GQDs-PVA sensor films in contact with
deionized water and all concentrations of carbaryl are shown in Figure 14. The resonance
angle obtained for deionized water was 53.694◦ while the resonance angle for carbaryl
concentrations of 0.001, 0.008, 0.01, and 0.08 ppb were 53.709◦, 53.787◦, 53.809◦, and 54.390◦,
respectively. The resonance angles increased and shifted slightly to the right with increasing
carbaryl concentrations. The resonance angle incremental increasing trend can be attributed
to the absorbed carbaryl filling the space between the GQDs-PVA layers. This finding was
supported by previous research reporting that GQDs-PVA has a reticular structure to
which small molecules can attach [75]. Moreover, electron changes on the surface of the
GQDs-PVA also occurred in the presence of carbaryl adsorption, which led to changes in
the refractive index when the carbaryl concentration increased. The electrons involved were
probably from the COOH− anion in GQDs and NH3+ cation in carbaryl. It also must be
pointed out that this investigation had a limit of detection of 0.001 ppb, which was a lower
limit detection than that reported by previous studies detecting carbaryl using various
optical methods [36–41,83–90]. Comparisons with other studies are listed in Table 1.
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Table 1. Comparison of this study with other carbaryl sensors using various materials in terms of
limit of detection.

Method Material Limit of Detection
(ppb) Reference

Surface plasmon resonance
Monoclonal antibody 1.380 [36]

Gold modified GQDs-PVA 0.001 This study

Colorimetry

Idophenyl acetate-acetylcholinesterase 2.010 [37]

Gold nanoparticles 1.500 [38]

Silver reduced-graphene oxide
Carbon quantum

dots-AuNPs-acetylcholinesterase
0.200 [39]

p-acetamidobenzenesulfonyl azide–AuNPs 50.000 [83]

Fluorescence

Cadmium telluride quantum dots 0.120 [40]

Graphene quantum dots 0.360 [88]

3,5-di(2′,5′-dicarboxylphenyl)pyridine 6.700 [89]

Flavourzyme-stabilized gold nanoclusters 0.470 [90]

Photoluminescence Silicon quantum
dots- acetylcholinesterase/choline oxidase 0.007 [84]

Chemiluminescence Lum-AgNP 1000 [85]

Colorimetry and
Chemiluminescence Dual-graphitic carbon nitride/bismuth ferrite 0.033 [86]

High Fundamental Frequency
Quartz Crystal Microbalance Monoclonal antibody 0.050 [87]

Liquid Chromatography with
tandem mass spectrometry Acetylcholinesterase 20.000 [41]

To analyze the sensing parameters of GQDs-PVA thin film in the detection of carbaryl,
the shift of resonance angle was introduced [91]. Based on the data in Table 2, the shift of
the resonance angle was calculated by subtracting the resonance angle of different carbaryl
concentrations from the resonance angle of deionized water. As a result, the shift of the
resonance angle increased with increasing carbaryl concentration when in contact with
GQDs-PVA thin film [92].
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Table 2. The resonance angle and shift of resonance angle for the detection of various concentrations
of carbaryl (0−0.08 ppb).

Concentration of Carbaryl (ppb) Resonance Angle, θ (Degree) Shift of Resonance Angle, ∆θ (Degree)

0 53.694 0
0.001 53.709 0.015
0.008 53.787 0.093
0.01 53.809 0.115
0.08 54.390 0.697

Full width at half maximum (FWHM) is a parameter that can indicate a sensor’s
efficiency and accuracy [93]. The FWHM can be evaluated as the distance between the
curve points at half the maximum peak level of the reflectance curve, as shown in Figure 15.
Theoretically, a lower FWHM value indicates a shaper reflectance curve, which represents
better sensor accuracy [94]. Through the FWHM data, detection accuracy (DA) can be
obtained. DA is defined as the ratio of the shift of the resonance angle relative to the
FWHM [95]. Therefore, DA is inversely proportional to the FWHM. In this analysis, the
FWHM was experimentally measured from the reflectance curve for GQDs-PVA thin film
after interaction with different concentrations of carbaryl.
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curve (for deionized water).

As shown in Figure 16, the FWHM was increased from 3.043◦ to 3.090◦ when the
carbaryl concentration increased from 0.001 to 0.01 ppb. Then, from 0.01 to 0.08 ppb,
the FWHM value decreased to 2.930◦. Based on the data obtained, the trend in FWHM
outcomes was not particularly stable. It fluctuates between increases and declines. As
mentioned before, the FWHM value has an inverse relationship with DA, where a lower
FWHM value gives better sensor detection accuracy. Thus, in this analysis, the detection
of 0.08 ppb carbaryl was attributed to the smaller FWHM value of 2.930◦ and highest DA
value of 0.341 degree−1.

Another important performance parameter of an SPR sensor is the signal–to–noise
ratio (SNR). In other words, the SNR is evaluated to compare the level of the desired signal
to the background noise [96]. In this SPR analysis, the value of the resonance angle shift
was multiplied by DA to identify the SNR, as shown in Equation (4) below:

SNR =
∆θSPR

FWHM
= ∆θSPR × DA (4)
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From the data obtained for SNR values using Equation (4), the evolution of SNR with
increasing carbaryl concentration was plotted. As illustrated in Figure 17, increasing the
carbaryl concentration appeared to reduce the noise in the SPR signal, resulting in higher
SNR values for the suggested sensor.
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Table 3 summarizes the FWHM, DA, and SNR values for GQDs-PVA thin film in the
detection of various concentrations of carbaryl. Based on the results presented, the best
FWHM was obtained at the higher concentration of carbaryl (0.08 ppb) with a value of
2.930◦. Notably, FWHM values are inversely proportional to DA values. Thus, in this
analysis, 0.08 ppb carbaryl was detected at the highest DA value of 0.341 degree−1.

Table 3. The FWHM, DA, and SNR values for GQDs-PVA thin film in the detection of carbaryl
(0.001–0.08 ppb).

Concentration of Carbaryl
(ppb)

Full Width Half Maximum
(Degree)

Detection Accuracy
(Degree−1) Signal-to-Noise-Ratio

0.001 3.043 0.329 0.005

0.008 3.084 0.324 0.030

0.01 3.090 0.324 0.037

0.08 2.930 0.341 0.238
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4. Conclusions

In this work, GQDs-PVA was successfully prepared using a simple chemical method
and coated on gold film using the spin coating technique. Then, the structure, surface
morphology, and optical and sensing properties were analyzed. FTIR analysis determined
that the structure of the GQDs synthesized with PVA had the main components of O-H
bonding, C=O bonding, C-H bonding, and O=C=O bonding. AFM analysis revealed
that the surface morphology of the GQDs was affected by PVA with the appearance of
a granular structure for GQDs-PVA. In addition, the value of RMS roughness increased
after GQDs-PVA thin film was exposed to carbaryl solution and the surface became fairly
uniform with white spots. Subsequently, the UV-Vis spectra of the thin films were evaluated
to obtain the direct band gap of GQDs-PVA. This composite material had the highest energy
band gap, 4.100 eV, compared to the single elements. Thus, the optical band gap data
revealed that the GQDs-PVA exhibited semiconducting behavior. The GQDs-PVA thin film
was investigated by SPR for potential sensing of carbaryl, where it showed high potential
with a limit of detection of 0.001 ppb. Therefore, this study reveals the huge potential of
GQDs-PVA for optical sensor applications in the detection of pesticides.
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