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Abstract: In this paper, the micropyramid structure was transferred to the TiO2 substrate by soft
imprinting. Then, the PPy nanobowls were assembled onto the surface of the TiO2 micropyramids
through the induction of the PS template. Finally, a layer of Ag nanoparticles was deposited on
the surface of PPy nanobowls to form a novel Ag nanoparticle/PPy nanobowl/TiO2 micropyramid
SERS substrate. Its structure is similar to the bioinspired compound eyes. This substrate exhibited
excellent antireflection, ultra-sensitivity, excellent uniformity, and recyclability. The concentration
of R6G molecules can be detected as low as 10−9 mol/L, and the Raman enhancement factor can
reach 3.4 × 105. In addition, the excellent catalytic degradation performance of the substrate ensures
recyclability. This work proves that the micropyramid structure can be applied to other SERS
materials besides silicon by the above methods, which broadens the selection range of composite
SERS materials.

Keywords: TiO2 micropyramid; PPy nanobowl; SERS; soft imprinting; bioinspired

1. Introduction

Composites with a specific structure can not only retain the intrinsic properties of each
component, but also can impart other special functions to the composites [1]. Structural
regulation of composites in the development of new functional materials has excellent
application prospects, such as effective utilization of energy, pollution treatment, and func-
tional detection [2–4]. Periodical-ordered bioinspired structures play an important role in
the fabrication of composites, which can be applied to photonic crystals, flat panel displays,
and antireflection coatings, because of the effective improvement in the mechanical, op-
tical, and electrical properties [5–7]. In particular, some bioinspired structures combined
with silicon (Si) micropyramids are of interest, which can efficiently absorb incident light.
According to the equivalent medium theory [8,9], the micropyramid structure fabricated
on the monocrystalline Si surface shows an excellent antireflection effect due to the grad-
ual change in the refractive index from air to Si [10,11]. In addition, the micropyramid
structure has great potential in microelectronic devices such as transistors, semiconductor
chips, and sensors [12–14]. In order to apply this kind of nanostructure to other materials,
many nanomechanical technologies have been developed, such as soft imprinting, self-
assembly, nanoimprinting, electron beam etching, and so on [15–18]. However, most of
the current works are mainly focused on the fabrication of pyramid Si, which limited the
application field.

In our previous works [19,20], the Si-based micropyramid structure was applied to
the fabrication of the SERS substrate, which showed excellent anti-reflection and high
detection sensitivity. TiO2 is an excellent photocatalytic material. If the TiO2 micropyramid
structure can be fabricated and applied to the SERS substrate, its detection sensitivity will
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be improved through the anti-reflective performance of TiO2 micropyramids, and its reuse
will be realized through the photocatalytic performance of TiO2. Here, the TiO2 pyramids
were first fabricated by soft imprinting. Then, the polypyrrole (Ppy) nanobowls were
assembled onto the surface of the TiO2 micropyramids. The uniformly distributed Ag
nanoparticles were subsequently modified on the surface of PPy nanobowls, to form a
novel SERS substrate, which structure is similar to the bioinspired compound eyes. This
structure exhibited excellent anti-reflective performance and the nanobowl structure was
conducive to the enrichment of probe molecules to improve the Raman detection limit of
the SERS substrate. At the same time, the focusing effect of the nanoscale bowl structure
is conducive to improving the plasma resonance of Ag nanoparticles, thereby improving
the Raman signal. Furthermore, the antireflection, photoelectric, photocatalytic, and SERS
performance of the composite substrate were also investigated.

2. Materials and Methods
2.1. Chemicals and Materials

Acetone (CH3COCH3), chloroform (CHCl3), ethanol (CH3CH2OH), ammonium hy-
droxide (NH3·H2O), hydrogen peroxide (H2O2), hydrochloric acid (HCl), potassium hy-
droxide (KOH), n-butyl titanate (C16H36O4Ti), pyrrole (Py, C4H5N), stannous chloride
dihydrate (SnCl2·2H2O), sodium dodecyl sulfate (SDS), rhodamine 6G (R6G), and potas-
sium persulfate (KPS) were purchased from Sinopharm Chemical Reagent Co., LTD.,
Shanghai, China. Silver nitrate (AgNO3), polydimethylsiloxane (PDMS, (C2H6OSi)n), and
styrene (C8H8) were purchased from Sigma Aldrich Trading Co., LTD., St. Louis, MO, USA.
All reagents were used directly without further purification. The Si wafers (p-type (100))
were obtained from Youyan Guigu, Beijing, China.

2.2. Fabrication of PDMS Template

Firstly, the Si wafer with 1 cm × 2 cm was washed with acetone, chloroform, ethanol,
and deionized water successively to remove the impurities. Then, the hydrophilic treatment
of Si wafer was placed in a solution (the volume ratio of NH3.H2O: H2O2: H2O was 1:1:5)
at 80 ◦C. Subsequently, the Si wafer was etched to form the pyramid Si (p-Si) in a KOH
solution for 35 min at 90 ◦C [21–23]. Whereafter, the PDMS prepolymer with the curing
agent in a mass ratio of 10: 1 was poured onto the silicon micro-pyramids. After curing for
3 h at 75 ◦C, the inverted pyramid PDMS template was obtained [24,25].

2.3. Fabrication of Pyramid TiO2

TiO2 sol was synthesized with the typical sol–gel method [26]. Then, 60 µL of TiO2
sol was dropped on the Si wafer (2 cm × 2 cm) and imprinted with the PDMS template
immediately. The above sample was placed at room temperature for 24 h until the solvent
volatilized completely. The pyramid TiO2 (p-TiO2) was obtained after the PDMS template,
and the sample was separated. Finally, the pyramid TiO2 was calcined in a tube furnace at
a heating rate of 1 ◦C/min to 450 ◦C for 3 h.

2.4. Assembly of PPy Nanobowls and Ag Nanoparticles on p-TiO2

The 500 nm polystyrene (PS) microsphere prepared in our laboratory was dropped
onto the Py solution with SDS to form a monolayer of closely packed PS spheres [20]. Then,
FeCl3 was added to the above solution as an initiator to polymerize Py into PPy, which
experimental details refer to our previous work [27]. After 30 min of polymerization, the
closely packed single-layer PS spheres with PPy were transferred to the surface of p-TiO2.
After drying at room temperature, the above sample was treated with toluene to remove
the PS spheres, and then p-TiO2 with PPy nanobowls (b-PPy/p-TiO2) on the surface of Si
was obtained. Finally, Ag nanoparticles were deposited onto the surface of b-PPy/p-TiO2
to form Ag/b-PPy/p-TiO2 by the typical reduction method [20].
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2.5. Characterization

The different samples were pasted onto the conductive adhesive, and the microstruc-
ture of them was tested by field emission scanning electron microscopy (SEM, S-4800,
Hitachi, Tokyo, Japan). UV–visible near-infrared spectrophotometer (UV-3600plus, Shi-
mazu Company, Kyoto, Japan) was used to analyze the reflectance of the samples. X-ray
powder diffraction (XRD, Bruker AXS D8, Karlsruhe, Germany) was used to test the crystal
patterns of the samples. The photoelectric properties of the samples were analyzed by the
electrochemistry station (CHI660, Shanghai Chenhua Company, Shanghai, China), in which
the sample, the conductive glass, and Ag/AgCl was used as the working electrode, the
counter electrode, and the reference electrode, respectively, and 0.5 mol/L of Na2SO4 as the
electrolyte. The samples were illuminated by the simulated solar through a Pt sheet to test
the photoelectric performance. R6G was photodegraded under visible light irradiation. The
absorption spectrum of the solution was recorded with a UV–visible spectrophotometer
(TU-1901, Beijing Persee General Instrument Co., LTD., Beijing, China) to analyze the
photocatalytic performance of the SERS substrate. The Raman performance of the SERS
substrate was detected by a confocal microscopy Raman spectrometer (Renishaw inVia,
Renishaw PLC, Gloucestershire, UK), and R6G was used as the probe molecule.

3. Results and Discussion
3.1. Fabrication of Ag/b-PPy/p-TiO2 SERS Substrate

The fabrication process of the Ag/b-PPy/p-TiO2 SERS substrate is shown in Scheme 1.
Firstly, the Si micropyramids (p-Si) were obtained by anisotropic etching of alkali. It
can be seen from Figure 1a that the closely arranged micropyramids is all over the Si
surface. After the PDMS template was duplicated from the p-Si, the TiO2 micropyramids
(p-TiO2) were fabricated through the soft imprinting method. Subsequently, the p-TiO2
substrate (Figure 1b) was calcinated, which morphology and XRD pattern are shown in
Figures 1b and 2, indicating that the p-TiO2 morphology is similar to that of p-Si and TiO2
is anatase type. Meanwhile, the PS spheres, which morphology is shown in Figure 1c,
were transferred to the Py solution. After a period of time, a certain amount of Py was
adsorbed on the undersurface of PS spheres, and then FeCl3 was added to the above
solution. After polymerization, a tightly wrapped PPy film on the undersurface of PS
spheres was formed, which morphology is shown in Figure 1d. Then, the tightly wrapped
PPy film with PS spheres was transferred onto p-TiO2. After the PS spheres were peeled off,
the PPy nanobowls (b-PPy) were obtained on p-TiO2. It can be seen from Figure 1e that the
PPy nanobowls uniformly covered the surface in a large area, and a regular 3D structure is
formed. Finally, Ag nanoparticles (NPs) were deposited on the surface of b-PPy/p-TiO2
to form the Ag/b-PPy/p-TiO2 SERS substrate, in which the structure is similar to the
bioinspired compound eyes (Figure 1f).

3.2. Raman Performance of the Ag/b-PPy/p-TiO2 SERS Substrate

In order to evaluate the advantages of this composite SERS substrate of Ag/b-PPy/p-
TiO2 on the Raman performance, p-TiO2 and b-PPy/p-TiO2 were selected as comparison
samples. R6G is used as the probe molecule to record the Raman performance on the
different substrates. As seen in Figure 3a, there is almost no Raman signal for p-TiO2
and b-PPy/p-TiO2. However, the Raman signal on the Ag/b-PPy/p-TiO2 substrate is
significantly higher than that of other SERS substrates. The excellent Raman performance
of Ag/b-PPy/p-TiO2 can be attributed to the following two aspects. On the one hand,
the 3D structure with a rough surface, consisting of the pyramid structure of TiO2, the
nanobowl structure of PPy, and the uniformly deposited Ag NPs, form a large number
of hot spots [28–30]. At the same time, the photogenerated electrons generated by the
incident light absorbed by PPy are transferred to the Ag nanoparticles, further increasing
the electromagnetic field intensity on the silver surface, thus improving the Raman signal of
the SERS substrate. Thus, the Raman signal of Ag/b-PPy/p-TiO2 is obviously higher than
that of others. On the other hand, the 3D bioinspired structure of the Ag/b-PPy/p-TiO2
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substrate conforms to the equivalent medium theory [31,32], which makes the refractive
index from the air to the substrate change gradually, and can improve the absorption of
light effectively, as shown in Figure 3b. Moreover, the plasmon resonance generated by Ag
NPs can effectively increase light absorption and broaden the spectral absorption range.
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In addition to the high Raman signal intensity, sensitivity, uniformity, and recyclability
are also important to measure Raman performance. The lowest detection concentration
of R6G is investigated to evaluate the sensitivity of the Ag/b-PPy/p-TiO2 substrate. The
Raman spectra were collected by immersing the substrate in R6G ethanol solution with
concentrations of 10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 mol/L, respectively. It can be
seen from Figure 4a that a weak signal can still be detected when the concentration is only
10−9 mol/L. This indicates that the Ag/b-PPy/p-TiO2 SERS substrate has high sensitivity
in Raman detection. Additionally, our Ag/b-PPy/p-TiO2 SERS substrate exhibited an im-
pressive SERS performance compared with various other similar reported SERS substrates
(Table 1). It can be found from Figure 4b that there is almost no difference in Raman spectra
of R6G (10−4 mol/L) at 20 random points of Ag/b-PPy/p-TiO2. The relative standard
deviation (RSD) is about 7%. This is because the Ag/b-PPy/p-TiO2 substrate has a highly
ordered structure, which will lead to excellent uniformity. The enhancement factor (EF)
is a typical parameter to evaluate the enhancement ability of a certain substrate, which
can be calculated by referring to the previous works by our research team [20,21]. Here, to
obtain EF, 10 µL of 10−7 mol/L R6G solution was dropped onto 1 cm2 of Ag/b-PPy/p-TiO2
substrate and Si wafer, respectively. As shown in Figure 4c, EF = 3.4 × 105 can be calculated
based on the peak intensity of 1368 cm−1 in the Raman spectra.

Table 1. Comparison of LOD with similar reported SERS substrate.

SERS Substrate Conditions Signal Molecule LOD Reference

TiO2/ZnO/Ag Immersion 4-mercaptobenzoic acid 10−9 mol/L [33]
FTO/Ag/ZIF-8 Immersion 4-mercaptobenzoic acid 10−9 mol/L [34]

graphene/Ag/TiO2 Dropping Rhodamine 6G 10−11 mol/L [35]
Ag/air/PPy - Rhodamine B 10−7 mol/L [36]

3D TiO2-Ag-GO Dropping Crystal violet 10−8 mol/L [37]
Ag/b-PPy/p-TiO2 Dropping Rhodamine 6G 10−9 mol/L this work
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3.3. Photocatalysis and Recyclability of the Ag/b-PPy/p-TiO2 SERS Substrate

The photocatalytic activity of the Ag/b-PPy/p-TiO2 SERS substrate was tested under
simulated solar irradiation. Figure 5a shows the influence of Ag/b-PPy/p-TiO2 SERS
substrate on the degradation of R6G with the change in absorption peak at different times.
The maximum absorption peak of 532 nm completely disappeared with the illumination
time expanding to 1.5 h. This indicates that R6G is completely degraded. It can be
found from Figure 5b that the Ag/b-PPy/p-TiO2 SERS substrate has the fastest catalytic
degradation rate and the best photocatalytic activity on R6G. This can ensure the self-
cleaning ability of the substrate, so as to realize its recyclability. The Raman signal of the
Ag/b-PPy/p-TiO2 substrate is tested after the adsorption of 10−4 mol/L R6G (detection
step). When the substrate is treated with the simulated solar irradiation for 2 h, the Raman
signal almost completely disappeared (self-cleaning step), as seen in Figure 5c. After four
cycles of detection/self-cleaning, the Raman signal intensity of the substrate is almost
unchanged, and the RSD with the Raman characteristic peak at 1368 cm−1 is 4.1%. These
results fully demonstrate the excellent recyclability of the bioinspired Ag/b-PPy/p-TiO2
SERS substrate.

The main factors affecting photocatalytic activity are the interfacial reaction efficiency,
the light utilization efficiency, and the photogenerated charge separation efficiency. The
3D structure with a rough surface facilitates effective liquid/phase catalysis. The multiple
bioinspired structure is conducive to effective light utilization. The selected materials for
fabricating the substrate conducive to the photogenerated charge separation. To further
investigate the reason for the excellent photocatalytic performance of Ag/b-PPy/p-TiO2,
linear sweep voltammograms (LSVs) and impedance characterization are performed, as
shown in Figure 6. Compared with other substrates, Ag/b-PPy/p-TiO2 has the highest
photocurrent density, as seen in Figure 6a. The reason is that the Schottky barrier formed be-
tween Ag NPs and PPy nanobowls makes the photogenerated electrons transfer more easily
than the metal NPs and promotes the photogenerated electron–hole separation [38,39].
Meanwhile, TiO2 and PPy in these multiple composite materials are an n-type and a p-
type semiconductor, respectively. The p–n heterojunction is formed at the interface of the
two materials, which can effectively inhibit the photogenerated electron–hole recombi-
nation [21,40]. Figure 6b shows that Ag/b-PPy/p-TiO2 has a smaller impedance radius.
This indicates that Ag/b-PPy/p-TiO2 can effectively promote the photogenerated charge
carriers transfer, which is more conducive to reducing the electron–hole recombination and
improving the photoelectric conversion efficiency.
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4. Conclusions

In summary, the micropyramid TiO2 with antireflection performance was fabricated
by soft imprinting, which is simple and easy to operate. After that, PPy nanobowls
obtained by self-assembly were covered on the surface of micropyramid TiO2, and then
Ag NPs were modified on the PPy nanobowls to form Ag/b-PPy/p-TiO2 SERS substrate.
Finally, the multiple bioinspired composite substrates with good antireflection activity, high
photoelectric conversion efficiency, and excellent photocatalysis efficiency were obtained.
Due to the high density of hot spots and the ordered structure, the Raman signals with high
intensity and high uniformity can be realized. At the same time, the excellent photocatalytic
performance enables the recyclability of the bioinspired Ag/b-PPy/p-TiO2 SERS substrate.
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