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Abstract: Under thermal environment and axial forces, the dynamic instability of functionally graded
graphene platelet (GPLs)-reinforced porous beams on an elastic foundation is investigated. Three
modes of porosity distributions and GPL patterns are considered. The governing equations are given
by the Hamilton principle. On the basis of the differential quadrature method (DQM), the governing
equations are changed into Mathieu–Hill equations, and the main unstable regions of the porous
composite beams are studied by the Bolotin method. Thermal buckling and thermo-mechanical
vibration problems are also studied. The effects of porosity coefficients and GPL weight fraction,
dispersion pattern, initial thermal loading, slenderness ratio, geometry and size, boundary conditions,
and foundation stiffness are discussed. The conclusions show that an elastic foundation has an
obvious enhancement effect on thermal buckling, free vibration, and dynamic instability, which
improves the stiffness of the beam.

Keywords: graphene nanocomposite; functionally graded porous beams; free vibration; thermal
buckling; dynamic instability; elastic foundation

1. Introduction

Many natural porous materials have been widely used for thousands of years. Com-
pared with continuous medium materials, porous materials have excellent impact resis-
tance, electrical conductivity, energy absorption, and thermal management properties [1–5].
Porous materials are often used in biological tissue, sound insulation materials, and new
photoelectric elements [6]. As a kind of porous material, metal foam has high strength and
stiffness [7]. At present, many scholars have probed into the mechanical behavior of porous
materials and the influence of various factors on the materials.

Nguyen et al. [8] investigated the bucking, bending, and vibration of functionally
graded porous (FGP) beams by the Ritz method. Akbaş [9–11] examined bucking and
vibration by the finite element method. By the differential transform method (DTM),
Ebrahimi and Mokhtari [12] presented the vibration of rotating FGP beams. Rjoub and
Hamad [13] reported on the vibration of FGP beams by the Transfer Matrix Method.
Wattanasakulpong and Chaikittiratana [14] found that a uniform distribution of porosities
has an obvious effect on natural frequencies. Chen et al. [15–17] studied the buckling
and bending of shear-deformable FGP beams by the Ritz method. Hoa et al. [18] studied
nonlinear buckling and post-buckling of cylindrical shells by the three-terms solution
and Galerkin’s method. Under various boundary conditions, Chan et al. [19] discussed
nonlinear buckling and post-buckling of imperfect FG porous sandwich cylindrical panels
by Galerkin’s method.

In order to meet the high efficiency of civil engineering structures and the high
precision development of aerospace engineering devices, beams need to be thinner and
thinner, and at the same time, it is necessary to improve the material strength of its structure
so as to increase the effective space and load. Nanomaterials have good mechanical,
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thermal, optical, and electrical properties [20], so carbon nanomaterials are often regarded
as nanofillers to heighten matrix materials’ properties. These include graphene platelets [21],
carbon nanotubes [22], and fullerenes. In 2004, British scientists were the first to peel
graphene sheets from graphite with an extremely high tensile, Young modulus, and surface
area [23]. On account of the porous structure of metal foam, the stiffness and strength are
weakened compared with that of dense metal. By filling the carbon nanomaterials into the
matrix materials, the properties of porous materials are able to be efficiently improved. At
present, there have been many studies on graphene-reinforced porous materials.

Many papers have been published on graphene-reinforced porous composite beams,
plates, and shells. Kitipornchai et al. [24,25] investigated the static and dynamic mechanical
behavior of graphene-reinforced FGP beams. Yas et al. [26,27] presented the buckling and vi-
bration of graphene-reinforced FGP beams in thermal environments. Yang et al. [28] studied
the buckling and vibration of graphene-reinforced FGP plates. Teng and Wang [29] ex-
plained the nonlinear forced vibration of simply supported graphene-reinforced FGP plates.
Dong et al. [30] researched the buckling of spinning graphene-reinforced FGP shells. By
Galerkin’s method, Zhou et al. [31] revealed the nonlinear buckling of graphene-reinforced
FGP cylindrical shells. Under impulsive loading, Yang et al. [32] studied nonlinear forced
vibration and the dynamic buckling of graphene-reinforced FGP arches.

Graphene-reinforced composite porous beams and plates are easily affected by the
thermal environment, resulting in a decrease in their structural stiffness. Therefore, it is of
great significance to study their thermal buckling, free vibration, and dynamic instability
for engineering practices. To the best of the authors’ knowledge, no relevant literature
has studied the dynamic instability of graphene-enhanced porous materials based on
elastic foundations, thermal environments, and axial forces. The present paper mainly
investigates the dynamic instability, thermal buckling, and free vibration of functionally
graded graphene platelet-reinforced porous beams on an elastic foundation under a thermal
environment and axial forces. Three modes of GPL patterns and porosity distributions
are considered. Based on the theory of the Timoshenko beam, the governing equation is
obtained by the Hamilton principle. On the basis of the differential quadrature method
(DQM), the governing equations are changed into Mathieu–Hill equations and the main
unstable regions of porous composite beams are studied by the Bolotin method. Moreover,
we also use the two-step perturbation method (TSPM) to calculate the thermal buckling
and free vibration. The effects of porosity coefficients and GPL’s weight fraction, initial
thermal loading, slenderness ratio, geometry and size, boundary conditions, foundation
stiffness, and dispersion pattern are discussed.

2. Model Construction

Under axial force Nx0 and uniform temperature change ∆T = T − T0, we consider a
FGP multilayer beam that rests on a two-parameter elastic foundation in an initial stress-free
state at the reference temperature T0.

As seen in Figure 1, L, b and h, respectively, represent the length, width, and thickness
of the beam, and kw and ks are the Winkler stiffness and shearing layer stiffness. Among
others, the thickness h is divided into n layers, each of which is4h = h/n.

Figure 1. FG porous multilayer beam resting on an elastic foundation.



Nanomaterials 2022, 12, 4098 3 of 20

Figure 2 considers three porosity distributions and GPL patterns. Because of disparate
dispersion patterns, GPL patterns can be divided as A, B, and C, and the GPLs volume
content VGPL is smoothly on the z-axis. According to different porosity distributions, VGPL’s
peak values can be denoted as sij(i, j = 1, 2, 3). Assuming three GPL patterns have the
same total amount of GPLs will result in s1i 6= s2i 6= s3i.

E′1 and E′2 are denoted as the maximum and minimum elastic moduli of the non-
uniform porous beams without GPLs, respectively. In addition, E′ represents the elastic
moduli of the uniform porosity distribution beams.

(a) Porosity distribution 1

(b) Porosity distribution 2

(c) Porosity distribution 3

Figure 2. GPL patterns and porosity distributions.

The relationships of elastic moduli E(z), mass density ρ(z), and thermal expansion
coefficient α(z) of FGP beams for three porosity distributions are given by the following
formulas [25,33] 

E(z) = E1[1− e0λ(z)],
ρ(z) = ρ1[1− emλ(z)],
G(z) = E(z)/2[1 + ν(z)],
α(z) = α1

(1)

where

λ(z) =


cos(πβ) Porosity distribution 1
cos(πβ/2 + π/4) Porosity distribution 2
λ∗ Porosity distribution 3

(2)
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in which β = z/h. Further, E1, ρ1, and α1 are the maximum values of E(z), ρ(z), and α(z),
respectively. The porosity coefficient e0 is referred to as

e0 = 1− E′2
E′1

, (3)

Based on the Gaussian Random Field (GRF) scheme, the mechanical property of
closed-cell cellular solids is denoted by [34]

E(z)
E1

=

(
ρ(z)/ρ1 + 0.121

1.121

)2.3

, (0.15 <
ρ(z)
ρ1

< 1) (4)

Using Equation (4), the coefficient of mass density em is given by the following formula

em =
1.121(1− 2.3

√
1− e0λ(z))

λ(z)
, (5)

Similarly, using the closed-cell GRF scheme, Poisson’s ratio ν(z) is defined as [35]

ν(z) = 0.221p′ + ν1(0.342p′2 − 1.21p′ + 1), (6)

where ν1 is Poisson’s ratio of pure non-porous matrix materials and

p′ = 1− ρ(z)
ρ1

= 1.121(1− 2.3
√

1− e0λ(z)), (7)

Due to the total masses being the same for the three porosity distributions, λ∗ in
Equation (2) can be defined as

λ∗ =
1
e0
− 1

e0

(
M/ρ1h + 0.121

1.121

)2.3
, (8)

in which M represents all porosity distributions, as shown in the following equation

M =
∫ h/2

−h/2
ρ1(1− p′)dz, (9)

According to the distribution patterns, the volume fraction of GPLs VGPL is denoted by

VGPL =


si1[1− cos(πβ(z))] GPL pattern A
si2[1− cos(πβ(z)/2 + π/4)] GPL pattern B
si3 GPL pattern C

(10)

in which i = 1, 2, 3.
The relationship between the weight fraction of GPLs ΛGPL and the volume fraction

of GPLs VGPL is given by

ΛGPL

ΛGPL +
ρGPL
ρM
− ρGPL

ρM
ΛGPL

∫ h/2

−h/2
[1− emλ(z)]dz =

∫ h/2

−h/2
VGPL[1− emλ(z)]dz (11)

Based on Halpin–Tsai micromechanics model [36–39], the elastic moduli E1 of the
nanocomposites is defined as

E1 =
3
8

(
1 + ξGPL

L ηGPL
L VGPL

1− ηGPL
L VGPL

)
EM +

5
8

(
1 + ξGPL

W ηGPL
W VGPL

1− ηGPL
W VGPL

)
EM (12)
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where

ξGPL
L = 2

aGPL
tGPL

, ξGPL
W = 2

bGPL
tGPL

ηGPL
L =

(EGPL/Em)− 1
(EGPL/EM) + ξGPL

L
,

ηGPL
W =

(EGPL/Em)− 1
(EGPL/EM) + ξGPL

W
.

(13)

where aGPL, bGPL, and tGPL are the average length, width, and thickness of GPLs. EM and
EGPL represent the elastic moduli of the metal and GPLs.

By the following mixture rule, the mass density ρ1, Poisson’s ratio υ1, and thermal
expansion coefficient α1 of the metal matrix reinforced by GPLs can be obtained as

ρ1 = ρGPLVGPL + ρMVM,

υ1 = υGPLVGPL + υMVM,

α1 = αGPLVGPL + αMVM.

(14)

in which ρM, υM, αM, and VM = 1− VGPL are the mass density, Poisson’s ratio, thermal
expansion coefficient, and volume fraction of the metals. Furthermore, ρGPL, υGPL, αGPL,
and VGPL are the corresponding properties of GPLs.

3. Formulations
3.1. Equations of Governing

Based on the Timoshenko beam theory, the displacement components are expressed as{
U(x, z, t) = U(x, t) + z Ψ(x, t),
W(x, z, t) = W(x, t).

(15)

in which U and W are the displacements of the x and z-axes, Ψ is expressed as the normal
transverse rotation of the y-axis, and t represents time. On the basis of the linear stress-
displacement relationships {

εxx = ∂U
∂x + z ∂Ψ

∂x ,
γxz =

∂W
∂x + Ψ.

(16)

The linear stress-strain constitutive relationships are as follows{
σxx = Q11(z)[εxx − α(z)∆T],
σxz = Q55(z)γxz.

(17)

where elastic elements Q11(z) and Q55(z) are denoted by{
Q11(z) =

E(z)
1−υ2(z) ,

Q55(z) = G(z).
(18)

Using Hamilton’s principle, the considered problems can be expressed as∫ t

0
δ(T + V −Π)dt = 0 (19)
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in which

δT =
∫ L

0

∫ h/2

−h/2
ρ(z)

(∂U
∂t

)2

+

(
∂W
∂t

)2
dzdx,

δV =
∫ L

0

[
(Nx0 + NT

x )

(
∂W
∂x

)2
]

dx,

δΠ =
∫ L

0

∫ h/2

−h/2
(σxxεxx + σxzεxz)dzdx +

∫ L

0

[
kwW2 + ks

(
∂W
∂x

)2
]

dx.

(20)

δ stands for the variational symbol, T is the kinetic energy of the beam, V is made up of the
axial force Nx0 and thermally axial force NT

x due to uniform temperature change ∆T, and II
consists of the strain energy of the beam and the elastic potential energy of the foundation.

The governing equations are given by applying Equation (20) to Hamilton’s principle
in Equation (19), integrating through the beam thickness

0 =
∫ t

0

∫ L

0

[(
∂Nx

∂x
− I1

∂2U
∂t2 − I2

∂2Ψ
∂t2

)
δU
]

dxdt +
∫ t

0

∫ L

0

[(
∂Qx

∂x
− kwW + ks

∂2W
∂x2 − (Nx0 + NT

x )
∂2W
∂x2 − I1

∂2W
∂t2

)
δW
]

dxdt

+
∫ t

0

∫ L

0

[(
∂Mx

∂x
−Qx − I2

∂2U
∂t2 − I3

∂2Ψ
∂t2

)
δΨ
]

dxdt−
∫ t

0

[
(NxδU)|L0 + (MxδΨ)|L0 −

(
Qx − Nx0

∂W
∂x
− NT

x
∂W
∂x

+ ks
∂W
∂x

)
δW|L0

]
dt

(21)

Letting coefficients δU, δW, and δΨ from Equation (21) go to zero separately,

∂Nx

∂x
= I1

∂2U
∂t2 + I2

∂2Ψ
∂t2 ,

∂Qx

∂x
− kwW + ks

∂2W
∂x2 − (Nx0 + NT

x )
∂2W
∂x2 = I1

∂2W
∂t2 ,

∂Mx

∂x
−Qx = I2

∂2U
∂t2 + I3

∂2Ψ
∂t2 .

(22)

the force and moment are referred to
Nx
Mx
Qx

 =
∫ h/2

−h/2


σxx
zσxx
σxz

dz (23)

Applying Equations (17) and (18) to Equation (23),

Nx = A11
∂U
∂x

+ B11
∂Ψ
∂x
− NT

x ,

Mx = B11
∂U
∂x

+ D11
∂Ψ
∂x
−MT

x ,

Qx = κA55

(
∂W
∂x

+ Ψ
)

.

(24)

where κ = 5/6 denotes the shear correction factor. The stiffness components, inertia terms,
and thermally induced force and moment are defined as
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(A11, B11, D11) =
∫ h/2

−h/2
Q11(z)(1, z, z2)dz =

h
n

n

∑
i=1

E1(hβi)[1− e0λ(hβi)]

1− ν2(hβi)
(1, hβi, (hβi)

2),

A55 =
∫ h/2

−h/2
Q55(z)dz =

h
n

n

∑
i=1

κ
E1(hβi)[1− e0λ(hβi)]

2[1 + ν(hβi)]
,

(I1, I2, I3) =
∫ h/2

−h/2
ρ(z)(1, z, z2)dz =

h
n

n

∑
i=1

ρ1(hβi)[1− emλ(hβi)](1, hβi, (hβi)
2),

(NT
x , MT

x ) =
∫ h/2

−h/2
Q11(z)α∆T(1, z)dz =

h
n

n

∑
i=1

E1(hβi)[1− e0λ(hβi)]

1− ν2(hβi)
α(hβi)∆T(1, hβi).

(25)

in which βi =
1
2 + 1

2n −
i
n (i = 1, 2, 3, . . . , n).

The governing equations and related boundary conditions are expressed through
Equations (22)–(25)

A11
∂2U
∂x2 + B11

∂2Ψ
∂x2 = I1

∂2U
∂t2 + I2

∂2Ψ
∂t2 ,

κA55

(
∂2W
∂x2 +

∂Ψ
∂x

)
− kwW + ks

∂2W
∂x2 − (Nx0 + NT

x )
∂2W
∂x2 = I1

∂2W
∂t2 ,

B11
∂2U
∂x2 + D11

∂2Ψ
∂x2 − κA55

(
∂W
∂x

+ Ψ
)
= I2

∂2U
∂t2 + I3

∂2Ψ
∂t2 .

(26)

Clamped(C) : U = W = Ψ = 0,

Hinged(H) : U = W = Mx = 0.
(27)

By introducing dimensionless quantities

ξ =
x
L

, (u, w) =
(U, W)

h
, η =

L
h

, ψ = Ψ, (P, PT , MT) = (Nx0, NT
x , MT

x /h)/A110,

(I1, I2, I3) =

(
I1

I10
,

I2

I10h
,

I3

I10h2

)
, (a11, a55, b11, d11) =

(
A11

A110
,

A55

A110
,

B11

A110h
,

D11

A110h2

)
,

Kw =
kwL2

A110
, Ks =

ks

A110
, ω = ΩL

√
I10

A110
, τ =

t
L

√
A110

I10
.

(28)

in which A110 and I10 are the value of A11 and I1 of the pure metal beams without any
pores and nanofillers.

Then Equations (26) and (27) are rewritten into the following dimensionless form

a11
∂2u
∂ξ2 + b11

∂2ψ

∂ξ2 = I1
∂2u
∂τ2 + I2

∂2ψ

∂τ2 ,

κa55

(
∂2w
∂ξ2 + η

∂ψ

∂ξ

)
− Kww + Ks

∂2w
∂ξ2 − (P + PT)

∂2w
∂ξ2 = I1

∂2w
∂τ2 ,

b11
∂2u
∂ξ2 + d11

∂2ψ

∂ξ2 − κηa55

(
∂w
∂ξ

+ ηψ

)
= I2

∂2u
∂τ2 + I3

∂2ψ

∂τ2 .

(29)

Clamped(C) : u = w = ψ = 0,

Hinged(H) : u = w = b11
∂u
∂ξ

+ d11
∂ψ

∂ξ
−MT = 0.

(30)

3.2. Solution Method

Based on the DQM rule, the displacement components u, w, and ψ, and the rth-order
partial derivative is estimated in the following form [40,41]
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(u, w, ψ) =
N

∑
m=1

lm(ξ)(um, wm, ψm),

∂j

∂ξ j (u, w, ψ) =
N

∑
m=1

c(j)
im (um, wm, ψm), i = 1, . . . , N, j = 1, . . . , N − 1.

(31)

in which (um, wm, ψm) are the values of (u, w, ψ), and lm(ξ) is the Lagrange interpolating
polynomial; c(j)

im is the weighting coefficient of the jth-order derivative [42]. N is the total
number of grid points along the ξ-axis. The distribution of the ξ-axis is defined by a cosine
pattern

ξi =
1
2

[
1− cos

(
i− 1
N − 1

π

)]
, i = 1, 2, . . . , N. (32)

By taking Equations (31) and (32) into Equations (29) and (30), the governing equations
and boundary conditions are written as

a11

N

∑
m=1

C(2)
im um + b11

N

∑
m=1

C(2)
im ψm = I1üi + I2ψ̈i,

κa55

(
N

∑
m=1

C(2)
im wm + η

N

∑
m=1

C(1)
im ψm

)
− Kwwi + Ks

N

∑
m=1

C(2)
im wm − (P + PT)

N

∑
m=1

C(2)
im wm = I1ẅi,

b11

N

∑
m=1

C(2)
im um + d11

N

∑
m=1

C(2)
im ψm − κηa55

(
N

∑
m=1

C(1)
im wm + ηψi

)
= I2üi + I3ψ̈i.

(33)

u1 = w1 = ψ1 = 0,

uN = wN = ψN = 0.
(34)

clamped at both ends of ξ = 0, 1.

u1 = w1 = b11

N

∑
m=1

C(1)
1m um + d11

N

∑
m=1

C(1)
1m ψm − ηMT∣∣

ξ=ξ1
= 0,

uN = wN = b11

N

∑
m=1

C(1)
Nmum + d11

N

∑
m=1

C(1)
Nmψm − ηMT∣∣

ξ=ξN
= 0.

(35)

hinged at both ends of ξ = 0, 1, where C(1)
im and C(2)

im represent the first- and second-order
weighting coefficients.

By combining the discretized governing equation, Equation (33), and boundary con-
ditions, Equations (34) and (35), a series of dimensionless algebraic formulas has been
obtained as

Md̈ +
(
KL − ∆TKT − PKp

)
d = 0 (36)

where d = {{u1, u2, . . . , uN}, {w1, w2, . . . , wN}, {ψ1, ψ2, . . . , ψN}}T is the unknown coeffi-
cient vector, KL and M represent the stiffness matrix and the mass matrix, and KT and Kp
represent the geometric stiffness matrix.

For the beam under a time-varying axial excitation, the dimensionless axial force P is
defined as

P = Ps + Pd cos θτ (37)

in which Ps and Pd represent the static and dynamic force components. By putting
Equation (37) into Equation (36), we have

Md̈ +
[
KL − ∆TKT − (Ps + Pd cos θτ)Kp

]
d = 0 (38)
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Under axial force and initial thermal loading, Equation (38) is a Mathieu–Hill-type
equation, which is used to solve the problems of dynamic instability of the FGP beams.
The boundary of the unstable region is obtained by Bolotin’s method [43]. According
to the previous study, the solution with period 2 Tθ (Tθ = 2π/θ) has a larger principal
unstable region than the solution with period Tθ , which is closer to the practical engineering
significance. The solution to Equation (38) with period 2 Tθ uses the trigonometric form

d =
∞

∑
k=1,3,..

ak sin(
kθτ

2
) + bk cos(

kθτ

2
) (39)

where ak and bk are arbitrary constant vectors. Bolotin verified that the first-order ap-
proximation of k = 1 accurately describes the boundary of the unstable region [43], so
a homogeneous linear system of equations represented by a1 and b1 can be obtained by
Bolotin’s method [

KL − ∆TKT − (Ps −
Pd
2
)Kp −

θ2

4
M
]

a1 = 0,[
KL − ∆TKT − (Ps +

Pd
2
)Kp −

θ2

4
M
]

b1 = 0.
(40)

For a given axial force, Equation (40) gives two critical excitation frequencies. The
two curves in the figure of θ and Pd are used to describe the principle unstable regions.
When Pd = 0, it represents the origin of the principle unstable region, and θ represents the
doubled fundamental frequency of the beam.

As for the thermal buckling problem, we form the equation by neglecting the inertia
terms and making Ps = Pd = 0 from Equation (38). Thus the critical buckling temperature
rise can be obtained by solving the minimum positive eigenvalue of Equation (38)

(KL − ∆TKT)d = 0 (41)

Like thermal buckling, by setting Pd = 0 and letting d = d∗eiωt, the free frequency of
the beam makes from the following formula(

KL − ∆TKT − PsKp −ω2M
)

d∗ = 0 (42)

4. Discussion

The effects of various factors on thermal buckling, thermo-mechanical vibration, and
dynamic instability of FGP beams are discussed. Copper is often chosen as a matrix
material, the material parameters of which are EM = 130 GPa, ρM = 8960 kg/m3, vM = 0.34,
and αM = 17 ×10−6 K−1. The material and size parameters of GPLs as reinforced materials
are wGPL = 1.5 µm, lGPL = 2.5 µm, tGPL = 1.5 nm, EGPL = 1.01 TPa, ρGPL = 1062.5 kg/m3,
vGPL = 0.186, and αGPL = −3.75 ×10−6 K−1 [22,44–46].

4.1. Validation and Convergence Study

First, validation analysis is conducted. We adopt the degenerate forms of Kw = 0,
Ks = 0, and ∆T = 0 to compare and validate with references [25,47]. Tables 1 and 2
compare the fundamental frequency and critical buckling load with the calculation results
in reference [25]. Figure 3 verifies the dynamic instability of Wu et al. [47]. In general, our
results are consistent with the existing results.
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Table 1. The dimensionless fundamental frequency of C-C beams (porosity 1, GPL A, L/h = 20).

ΛGPL n e0 = 0 e0 = 0.2 e0 = 0.4 e0 = 0.6

Ref. [25] Present Ref. [25] Present Ref. [25] Present Ref. [25] Present

1 wt.% 2 0.3376 0.3376 0.3217 0.3217 0.3042 0.3042 0.2845 0.2845
6 0.4390 0.4390 0.4336 0.4336 0.4289 0.4289 0.4259 0.4259

10 0.4464 0.4464 0.4421 0.4421 0.4388 0.4388 0.4372 0.4372
14 0.4484 0.4484 0.4444 0.4444 0.4415 0.4415 0.4403 0.4403
18 0.4492 0.4492 0.4454 0.4454 0.4426 0.4426 0.4416 0.4416

10,000 0.4505 0.4505 0.4468 0.4468 0.4442 0.4442 0.4436 0.4436

0 wt.% 14 0.3159 0.3159 0.3134 0.3134 0.3121 0.3121 0.3128 0.3128
10,000 0.3167 0.3167 0.3144 0.3144 0.3132 0.3132 0.3142 0.3142

Table 2. The dimensionless critical buckling load of C-C beams (porosity 1, GPL A, L/h = 20).

ΛGPL n e0 = 0 e0 = 0.2 e0 = 0.4 e0 = 0.6

Ref. [25] Present Ref. [25] Present Ref. [25] Present Ref. [25] Present

1 wt.% 2 0.008550 0.008550 0.007218 0.007219 0.005917 0.005918 0.004647 0.004647
6 0.014323 0.014324 0.013057 0.013058 0.011784 0.011784 0.010486 0.010486

10 0.014798 0.014798 0.013572 0.013573 0.012333 0.012334 0.011063 0.011063
14 0.014929 0.014929 0.013714 0.013715 0.012486 0.012486 0.011224 0.011224
18 0.014982 0.014983 0.013773 0.013774 0.012549 0.012549 0.011290 0.011290

10,000 0.015065 0.015066 0.013863 0.013864 0.012645 0.012646 0.011392 0.011392

0 wt.% 14 0.007946 0.007947 0.007316 0.007316 0.006693 0.006693 0.006076 0.006076
10,000 0.007986 0.007986 0.007362 0.007362 0.006745 0.006746 0.006135 0.006135

Figure 3. Comparison of the dynamic instability.

Figure 4a,b separately show the convergence results of the critical buckling tempera-
ture rise and the dimensionless natural frequency under various conditions. When N = 9,
their values gradually approach a certain amount. Tables 3 and 4 present the effect of the
porosity coefficient e0 and the total number of layers n on the critical buckling temperature
rise and dimensionless natural frequency by DQM and the two-step perturbation method
(TSPM). It turns out that the error between them is within 0.1%, and the accuracy and
efficiency of the calculation results are verified again. Suppose n = 1000 is a continuous
beam; it is found that a relative difference between n = 14 and n = 1000 is less than 1.5%.
Considering the manufacturing process and manufacturing costs, n = 14 and N = 9 are
used in the following calculation. In addition, when n = 14 and N = 9, the results show the
natural frequency and critical buckling temperature rise are both increasing as e0 increases.
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Table 3. The critical buckling temperature rise of H-H beams (porosity 1, GPL A, L/h = 20,
Kw = Ks = 0).

ΛGPL n e0 = 0 e0 = 0.2 e0 = 0.4 e0 = 0.6

DQM TSPM Error DQM TSPM Error DQM TSPM Error DQM TSPM Error

1 wt.% 2 97.7638 97.7646 0.0008% 97.5424 97.5433 0.0009% 97.2608 97.2616 0.0008% 96.8839 96.8847 0.0008%
6 162.4627 162.4641 0.0009% 170.1854 170.1868 0.0008% 179.9406 179.9421 0.0008% 192.7597 192.7613 0.0008%

10 167.7434 167.7448 0.0008% 176.4998 176.5012 0.0008% 187.5116 187.5131 0.0008% 201.8757 201.8774 0.0008%
14 169.1999 169.2013 0.0008% 178.2459 178.2474 0.0008% 189.6084 189.6100 0.0008% 204.4014 204.4031 0.0008%
18 169.7995 169.8009 0.0008% 178.9652 178.9667 0.0008% 190.4726 190.4742 0.0008% 205.4423 205.4440 0.0008%

1000 170.7175 170.7189 0.0008% 180.0671 180.0686 0.0008% 191.7968 191.7984 0.0008% 207.0375 207.0392 0.0008%

0 wt.% 14 119.4444 119.4454 0.0008% 127.2565 127.2576 0.0009% 137.5587 137.5598 0.0008% 151.8699 151.8712 0.0008%
1000 120.0523 120.0533 0.0008% 128.0345 128.0356 0.0009% 138.5566 138.5578 0.0009% 153.1614 153.1627 0.0008%

Table 4. The dimensionless fundamental frequency of H-H beams (porosity 1, GPL A, L/h = 20,
Kw = Ks = 0, ∆T = 50 K).

ΛGPL n e0 = 0 e0 = 0.2 e0 = 0.4 e0 = 0.6

DQM TSPM Error DQM TSPM Error DQM TSPM Error DQM TSPM Error

1 wt.% 2 0.1053 0.1051 0.1899% 0.1002 0.1000 0.1996% 0.0946 0.0944 0.2114% 0.0882 0.0881 0.1134%
6 0.1639 0.1636 0.1830% 0.1636 0.1633 0.1834% 0.1638 0.1635 0.1832% 0.1649 0.1645 0.2426%
10 0.1679 0.1676 0.1787% 0.1682 0.1678 0.2378% 0.1690 0.1686 0.2367% 0.1707 0.1704 0.1757%
14 0.1690 0.1687 0.1775% 0.1694 0.1691 0.1771% 0.1704 0.1700 0.2347% 0.1723 0.1720 0.1741%
18 0.1695 0.1691 0.2360% 0.1699 0.1696 0.1766% 0.1710 0.1706 0.2339% 0.1730 0.1726 0.2312%

1000 0.1702 0.1698 0.2350% 0.1707 0.1703 0.2343% 0.1718 0.1715 0.1746% 0.1740 0.1736 0.2299%

0 wt.% 14 0.1078 0.1076 0.1855% 0.1094 0.1092 0.1828% 0.1117 0.1114 0.2686% 0.1151 0.1148 0.2606%
1000 0.1083 0.1081 0.1847% 0.1100 0.1097 0.2727% 0.1123 0.1121 0.1781% 0.1158 0.1156 0.1727%

(a)

(b)

Figure 4. Determine polynomial item number (N). (a) Determine polynomial item number (N) of the
critical buckling temperature rise. (b) Determine polynomial item number (N) of the dimensionless
fundamental frequency.
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4.2. Thermal Buckling

Figure 5 examines the effect of the foundation’s stiffness in critical buckling tempera-
ture rise. Where (Kw, Ks) = (0, 0) stands for no foundation, (Kw, Ks) = (0.1, 0) stands for
Winkler foundation, and (Kw, Ks) = (0.1, 0.02) stands for Pasternak foundation. As ob-
served, the critical buckling temperature increases as the foundation stiffness increases. The
shearing layer stiffness Ks contributes to more enhancement than the Winkler foundation
stiffness Kw.

Figure 5. Effect of foundation stiffness for critical buckling temperature rise.

Figure 6a,b show the critical buckling temperature rise and its percentage increment
at GPL weight fraction ΛGPL. The results identify that symmetric GPL A with porosity
1 provides the best reinforcement, which takes the largest critical buckling temperature rise
of the nine models. In addition, GPL C plays no role in the critical buckling temperature
rise for the three porosity distributions.

(a)

(b)

Figure 6. Effect of GPL weight fraction ΛGPL on critical buckling temperature rise and its percentage.
(a) Effect of GPL weight fraction ΛGPL on critical buckling temperature rise. (b) Effect of GPL weight
fraction ΛGPL on the percentage of critical buckling temperature rise.
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Table 5 illustrates the effect of boundary conditions and slenderness ratio L/h on
critical buckling temperature rise. As expected, the C-C beam with a smaller slenderness
ratio has a maximum critical buckling temperature rise. With the increment of L/h, the
result shows a downward trend.

Table 5. Effect of boundary conditions and slenderness ratio L/h on critical buckling temperature
rise. (Porosity 1, GPL A, e0 = 0.5, ΛGPL = 1.0 wt.%, Kw = Ks = 0).

BC L/h = 10 L/h = 15 L/h = 20 L/h = 25 L/h = 30

C-C 2730.8457 1316.1778 762.8928 495.2309 346.6018
C-H 1487.9949 693.6980 397.0135 256.1591 178.6797
H-H 762.8528 346.5832 196.4819 126.2065 87.8172

Figure 7 depicts the effect of geometry and size aGPL/bGPL and bGPL/tGPL on the
critical buckling temperature rise. Larger aGPL/bGPL and bGPL/tGPL efficiently enhance
the critical buckling temperature rise. Moreover, when bGPL/tGPL reaches 103, the critical
buckling temperature rise reaches a certain level, it will no longer increase any more, and
as aGPL/bGPL increases, the change in critical buckling temperature rise becomes less and
less obvious.

Figure 7. Effect of aGPL/bGPL and bGPL/tGPL of GPL nanofillers on the critical buckling tempera-
ture rise.

4.3. Thermo-Mechanical Vibration

Figure 8 presents the effect of GPL weight fractions ΛGPL and normalized static axial
force Ps/Pcr on the dimensionless fundamental frequency. The positive and negative values
of Ps/Pcr indicate the compressive force and tensile forces. Pcr represents the critical buck-
ling load at ∆T = 0 K. As observed, increasing ΛGPL leads to better mechanical behavior.

Table 6 examines the effect of a normalized static axial force Ps/Pcr on the dimen-
sionless fundamental frequency under porosity distributions and GPL patterns. Due to
compression forces compressing the beam, the free vibration frequency decreases when the
compression force increases. Like thermal buckling, GPL A with porosity 1 has the highest
free-vibration frequency.
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Figure 8. Effect of GPL weight fractions ΛGPL and normalized static axial force Ps/Pcr on the
dimensionless fundamental frequency.

Table 6. Effect of normalized static axial force Ps/Pcr on the dimensionless fundamental frequency
under porosity distributions and GPL patterns (e0 = 0.5 , ΛGPL = 1.0 wt.% , C-C, L/h = 20, ∆T = 0 K,
Kw = Ks = 0).

Multilayer Beam 1A 2A 3A 1B 2B 3B 1C 2C 3C

Ps/Pcr = 0.00 0.4264 0.3863 0.3863 0.3748 0.3318 0.3389 0.3829 0.3452 0.3441
Ps/Pcr = 0.25 0.3668 0.3314 0.3314 0.3213 0.2830 0.2896 0.3283 0.2949 0.2941
Ps/Pcr = 0.50 0.2939 0.2641 0.2641 0.2556 0.2227 0.2287 0.2613 0.2329 0.2323

The effects of normalized static axial force Ps/Pcr on the dimensionless fundamental
frequency under initial thermal loading ∆T are shown in Figure 9. With the increment of
initial thermal loading, the overall trend is downward. The changes in the dimensionless
fundamental frequency were more apparent at larger values of Ps/Pcr.

Figure 9. Effect of normalized static axial force Ps/Pcr on the dimensionless fundamental frequency
under initial thermal loading ∆T.

Figure 10 reveals the effects of normalized static axial force Ps/Pcr on the dimensionless
fundamental frequency under various foundation stiffness. The dimensionless fundamental
frequency increases as the foundation stiffness increases. Compared with compressive
force, tensile force enhances the dimensionless fundamental frequency, which strengthens
the stiffness of the beam.
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Figure 10. Effect of normalized static axial force Ps/Pcr on the dimensionless fundamental frequency
under various foundation stiffness.

4.4. Dynamic Instability

Figure 11 illustrates the effect of porosity distributions and GPL patterns on dynamic
instability. Like thermal buckling and thermo-mechanical vibration, GPL A with porosity 1
has the largest origin and the narrowest unstable region among the nine models. Then, it is
the best-enhanced model because the beam has a smaller pore distribution and more GPL
in the top and bottom layers, which is where the normal bending stress is highest.

Figure 11. Effect of porosity distributions and GPL patterns on dynamic instability.

Figure 12 depicts the effect of GPL weight fractions ΛGPL on dynamic instability. It is
found that the origin becomes larger and the unstable region becomes narrower with the
increment of ΛGPL, which indicates that the addition of GPL nanofillers effectively raises
the stiffness of the beam.

Figure 12. Effect of GPL weight fractions ΛGPL on dynamic instability.
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Figure 13 investigates the effect of the porosity coefficient e0 on dynamic instability.
As observed, the increment in e0, which means that the beam has larger pores and a denser
distribution of pores, causes a reduction in beam stiffness, the origin becomes lower, and
the unstable region becomes wider.

The effect of static axial compressive force Ps/Pcr and initial thermal loading ∆T on
dynamic instability are shown in Figures 14 and 15. Due to the change in Ps/Pcr and ∆T,
the beam produces compression force, thus reducing the beam stiffness. As Ps/Pcr and ∆T
decrease, the origin increases and the unstable region narrows. Ps/Pcr is able to achieve
better structural stiffness, even more significantly than ∆T at the dynamic instability.

Figure 13. Effect of the porosity coefficient e0 on dynamic instability.

Figure 14. Effect of static axial compressive force Ps/Pcr on dynamic instability.

Figure 15. Effect of initial thermal loading ∆T on dynamic instability.

The effect of the slenderness ratio L/h, foundation stiffness, and boundary conditions
on dynamic instability is demonstrated in Figures 16–18. The results depict that the C-C
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beam with a smaller slenderness ratio on a Pasternak elastic foundation has a bigger origin
and narrower unstable region, and the slenderness ratio and foundation stiffness have
more obvious effects than the boundary conditions.

Figure 16. Effect of the slenderness ratio L/h on dynamic instability.

Figure 17. Effect of the foundation stiffness on dynamic instability.

Figure 18. Effect of the boundary conditions on dynamic instability.

Figure 19 examines the effect of the geometry and size aGPL/bGPL and bGPL/tGPL on
dynamic instability. For a given bGPL/tGPL = 102, as aGPL/bGPL increases, the change in
the unstable region is insignificant, and the effect is tiny. For a given aGPL/bGPL = 4, the
change in bGPL/tGPL from 10 to 102 has an obvious effect on the dynamic instability, but the
effect of bGPL/tGPL over 102 is negligible. The results show that when the GPL contains less
than a single graphene layer, it is better to reinforce the stiffness of the beam and enhance
the mechanical behavior.
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(a) Effect of aGPL/bGPL on dynamic instability (b) Effect of bGPL/tGPL on dynamic instability

Figure 19. Effect of aGPL/bGPL and bGPL/tGPL on dynamic instability.

5. Conclusions

The effect of GPL nanofillers on FGP composite beams under thermal environments,
thermal buckling, thermo-mechanical vibration, and dynamic instability are investigated.
Among them, weight fraction, normalized static axial force, porosity coefficient, dispersion
pattern, boundary conditions, initial thermal loading, geometry and size, foundation
stiffness, and slenderness ratio are studied. The following conclusions are obtained:

• Porosity 1 reinforced by GPL A of the beam has the biggest value of critical buckling,
temperature rise, dimensionless fundamental frequency, and the origin of dynamic
instability. The non-uniform, symmetric porosity distribution and GPL pattern have
the strongest enhancement.

• The porosity coefficient has an important influence on thermal buckling, thermo-
mechanical vibration, and dynamic instability. When the porosity coefficient grows,
the origin of the dynamic instability shows a decreasing trend, but the dimensionless
fundamental frequency and critical buckling temperature rise both increase.

• The addition of GPL nanofillers can enhance the beam stiffness significantly, and the
mechanical performance is enhanced with ΛGPL increases.

• The values of thermo-mechanical vibration and dynamic instability decrease with
normalized static axial force and initial thermal loading increase.

• Winkler and Pasternak foundations both strengthen the stiffness of the beam. It
is noted that shearing layer stiffness has a better enhancement effect than Winkler
foundation stiffness.
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11. Akbaş, Ş.D. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity. Int. J. Appl. Mech. 2017, 9,

556–569. [CrossRef]
12. Farzad, E.; Mohadese, M. Transverse vibration analysis of rotating porous beam with functionally graded microstructure using

the differential transform method. J. Braz. Soc. Mech. Sci. Eng. 2015, 37, 1435–1444.
13. Yousef, S.A.R.; Azhar, G.H. Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the

transfer matrix method. KSCE J. Civ. Eng. 2017, 21, 792–806.
14. Nuttawit, W.; Arisara, C. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory:

Chebyshev collocation method. Meccanica 2015, 50, 1331–1342.
15. Chen, D.; Yang, J.; Kitipornchai, S. Elastic buckling and static bending of shear deformable functionally graded porous beam.

Compos. Struct. 2015, 133, 54–61. [CrossRef]
16. Chen, D.; Yang, J.; Kitipornchai, S. Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech.

Sci. 2016, 108, 14–22. [CrossRef]
17. Chen, D.; Kitipornchai, S.; Yang, J. Nonlinear free vibration of shear deformable sandwich beam with a functionally graded

porous core. Thin-Walled Struct. 2016, 107, 39–48. [CrossRef]
18. Hoa, L.K.; Hoan, P.V.; Hoai, B.T.T.; Chan, D.Q. Nonlinear Buckling and Postbuckling of ES-FG Porous Cylindrical Shells Under

External Pressure. In Modern Mechanics and Applications; Springer: Singapore, 2022; pp. 743–754.
19. Chan, D.Q.; Hoan, P.V.; Trung, N.T.; Hoa, L.K.; Huan, D.T. Nonlinear buckling and post-buckling of imperfect FG porous

sandwich cylindrical panels subjected to axial loading under various boundary conditions. Acta Mech. 2021, 232, 1163–1179.
[CrossRef]

20. Li, Z.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Carbon-based functional nanomaterials: Preparation, properties and applications.
Compos. Sci. Technol. 2019, 179, 10–40. [CrossRef]

21. Gong, L.; Young, R.J.; Kinloch, I.A.; Riaz, I.; Jalil, R.; Novoselov, K.S. Optimizing the reinforcement of polymer-based nanocom-
posites by graphene. ACS Nano 2012, 6, 2086–2095. [CrossRef]

22. Sumio, I. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
23. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect

in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [CrossRef] [PubMed]
24. Chen, D.; Yang, J.; Kitipornchai, S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous

nanocomposite beams. Compos. Sci. Technol. 2017, 142, 235–245. [CrossRef]
25. Sritawat, K.; Da, C.; Jie, Y. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene

platelets. Mater. Des. 2017, 116, 656–665.
26. Yas, M.; Rahimi, S. Thermal buckling analysis of porous functionally graded nanocomposite beams reinforced by graphene

platelets using Generalized differential quadrature method. Aerosp. Sci. Technol. 2020, 107, 106261. [CrossRef]
27. Yas, M.; Rahimi, S. Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets.

Appl. Math. Mech. Engl. Ed. 2020, 41, 1209–1226. [CrossRef]
28. Yang, J.; Chen, D.; Kitipornchai, S. Buckling and free vibration analyses of functionally graded graphene reinforced porous

nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 2018, 193, 281–294. [CrossRef]
29. Teng, M.W.; Wang, Y.Q. Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates

reinforced with graphene platelets. Thin-Walled Struct. 2021, 164, 107799. [CrossRef]
30. Dong, Y.H.; He, L.W.; Wang, L.; Li, Y.H.; Yang, J. Buckling of spinning functionally graded graphene reinforced porous

nanocomposite cylindrical shells: An analytical study. Aerosp. Sci. Technol. 2018, 82–83, 466–478. [CrossRef]
31. Zhou, Z.; Ni, Y.; Tong, Z.; Zhu, S.; Sun, J.; Xu, X. Accurate nonlinear buckling analysis of functionally graded porous graphene

platelet reinforced composite cylindrical shells. Int. J. Mech. Sci. 2019, 151, 537–550. [CrossRef]
32. Yang, Z.; Wu, H.; Yang, J.; Liu, A.; Safaei, B.; Lv, J.; Fu, J. Nonlinear forced vibration and dynamic buckling of FG graphene-

reinforced porous arches under impulsive loading. Thin-Walled Struct. 2022, 181, 110059. [CrossRef]
33. Lakes, R.S. Cellular solid structures with unbounded thermal expansion. J. Mater. Sci. Lett. 2004, 15, 475–477. [CrossRef]

http://dx.doi.org/10.1179/026708311X13135950699290
http://dx.doi.org/10.1007/s10483-020-2620-8
http://dx.doi.org/10.1016/j.msea.2005.05.089
http://dx.doi.org/10.1016/j.compstruct.2021.115095
http://dx.doi.org/10.1016/j.compstruct.2017.12.013
http://dx.doi.org/10.1142/S1758825117500764
http://dx.doi.org/10.1016/j.compstruct.2015.07.052
http://dx.doi.org/10.1016/j.ijmecsci.2016.01.025
http://dx.doi.org/10.1016/j.tws.2016.05.025
http://dx.doi.org/10.1007/s00707-020-02882-6
http://dx.doi.org/10.1016/j.compscitech.2019.04.028
http://dx.doi.org/10.1021/nn203917d
http://dx.doi.org/10.1126/science.1102896
http://www.ncbi.nlm.nih.gov/pubmed/15499015
http://dx.doi.org/10.1016/j.compscitech.2017.02.008
http://dx.doi.org/10.1016/j.ast.2020.106261
http://dx.doi.org/10.1007/s10483-020-2634-6
http://dx.doi.org/10.1016/j.compstruct.2018.03.090
http://dx.doi.org/10.1016/j.tws.2021.107799
http://dx.doi.org/10.1016/j.ast.2018.09.037
http://dx.doi.org/10.1016/j.ijmecsci.2018.12.012
http://dx.doi.org/10.1016/j.tws.2022.110059
http://dx.doi.org/10.1007/BF00275406


Nanomaterials 2022, 12, 4098 20 of 20

34. Roberts, A.P.; Garboczi, E.J. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Mater. 2001, 49,
189–197. [CrossRef]

35. Roberts, A.P.; Garboczi, E.J. Computation of the Linear Elastic Properties of Random Porous Materials with a Wide Variety of
Microstructure. Proc. Math. Phys. Eng. Sci. 2002, 458, 1033–1054. [CrossRef]

36. Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low
graphene content. ACS Nano 2009, 3, 3884–3890. [CrossRef] [PubMed]

37. Shokrieh, M.; Esmkhani, M.; Shokrieh, Z.; Zhao, Z. Stiffness prediction of graphene nanoplatelet/epoxy nanocomposites by a
combined molecular dynamics - micromechanics method. Comput. Mater. Sci. 2014, 92, 444–450. [CrossRef]

38. Affdl, J.C.H.; Kardos, J.L. The Halpin-Tsai equations: A review. Polym. Eng. Sci. 1976, 16, 344–352. [CrossRef]
39. Guzmán De Villoria, R.; Miravete, A. Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater.

2007, 55, 3025–3031. [CrossRef]
40. Shu, C. Differential Quadrature and Its Application in Engineering; Springer Science and Business Media: London, UK, 2012.
41. Wu, H.; Kitipornchai, S.; Yang, J. Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric

imperfections. Smart Mater. Struct. 2016, 25, 95022–95035. [CrossRef]
42. Bert, C.W.; Wang, X.W.; Striz, A.G. Differential quadrature for static and free vibration analyses of anisotropic plates. Int. J. Solids

Struct. 1993, 30, 1737–1744. [CrossRef]
43. Bolotin, V. The Dynamic Stability of Elastic Systems; Holden-Day: San Francisco, CA, USA, 1962.
44. Tjong, S.C. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon

nanotubes and graphene nanosheets. Mater. Sci. Eng. Rep. 2013, 74, 281–350. [CrossRef]
45. Bakshi, S.; Lahiri, D.; Agarwal, A. Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 2010, 50,

41–64. [CrossRef]
46. Jagannadham, K. Thermal Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with

Exfoliated Graphene Platelets. Metall. Mater. Trans. Process. Metall. Mater. Process. Sci. 2011, 43, 316–324. [CrossRef]
47. Wu, H.; Yang, J.; Kitipornchai, S. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in

thermal environment. Compos. Struct. 2017, 162, 244–254. [CrossRef]

http://dx.doi.org/10.1016/S1359-6454(00)00314-1
http://dx.doi.org/10.1098/rspa.2001.0900
http://dx.doi.org/10.1021/nn9010472
http://www.ncbi.nlm.nih.gov/pubmed/19957928
http://dx.doi.org/10.1016/j.commatsci.2014.06.002
http://dx.doi.org/10.1002/pen.760160512
http://dx.doi.org/10.1016/j.actamat.2007.01.007
http://dx.doi.org/10.1088/0964-1726/25/9/095022
http://dx.doi.org/10.1016/0020-7683(93)90230-5
http://dx.doi.org/10.1016/j.mser.2013.08.001
http://dx.doi.org/10.1179/095066009X12572530170543
http://dx.doi.org/10.1007/s11663-011-9597-z
http://dx.doi.org/10.1016/j.compstruct.2016.12.001

	Introduction
	Model Construction
	Formulations
	Equations of Governing
	Solution Method

	Discussion
	Validation and Convergence Study
	Thermal Buckling
	Thermo-Mechanical Vibration
	 Dynamic Instability

	Conclusions
	References

