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Abstract: Since commercial non-woven air filtering materials have unstable filtering efficiency and
poor moisture permeability for the abundant condensed aerosol particles in the highly humid atmo-
spheric environment, the PLLA/PAN composite fiber material with a hydrophobic and hydrophilic
gradient structure is designed and prepared by using electrode sputtering electro spinning technology.
By characterizing and testing the filtrating effect of SEM, XRD, FTIR, wettability, mechanical property,
N2 adsorption isotherm, and BET surface area, NaCl aerosol of PLLA fiber, PAN fiber, and PLLA/PAN
composite fiber membranes, the study found that the electrode sputtering electrospinning is fine,
the fiber mesh is dense, and fiber distribution is uniform when the diameter of the PAN fiber is
140–300 nm, and the PLLA fiber is 700–850 nm. In this case, PLLA/PAN composite fiber materials
gather the hydrophobicity of PLLA fiber and the hydrophilicity of PAN fiber; its electrostatic effect is
stable, its physical capturing performance is excellent, it can realize the step filtration of gas-solid
liquid multiphase flow to avoid the rapid increase of air resistance in a high-humidity environment,
and the filtrating efficiency η of NaCl aerosol particles with 0.3 µm reaches 99.98%, and the quality
factor QF 0.0968 Pa−1. The manufacturing of PLLA/PAN composite fiber material provides a new
method for designing and developing high-performance air filtration materials and a new technical
means for the large-scale production of high-performance, high-stability, and low-cost polylactic acid
nanofiber composites.

Keywords: the electrode sputters electrospinning technology; gradient structure; PLLA/PAN
composite fiber membrane; high humid atmospheric environment; ultrafine aerosol filtration; high
production efficiency

1. Introduction

Aerosol, with a variety of nearly spherical shapes, such as liquid droplets, sheets,
needles, and other irregular shapes, is the dispersal system formed by solid and liquid
particles stably suspended in a gas medium; the particle size of the most penetrating aerosol
(MPPS) is between 100 nm and 300 nm [1–3]. Aerosols can be divided into hydrophilic
and hydrophobic according to their hygroscopicity [4]. Hydrophilic aerosols include inor-
ganic salt aerosols (such as sulfate, nitrate, ammonium salt, and sea salt) and hygroscopic
organic aerosols; hydrophobic aerosols consist of black carbon, non-hygroscopic organic
aerosols, and dust. Aerosol filtration is mainly carried out by five filtrating mechanisms:
filtrating/screening, inertial deposition, diffusion, gravity effect, and electrostatic attraction,
which separate and capture solids and liquids in the gas [5–8]. For aerosol with a particle
size of 200~500 nm, when the particles contain covalent compounds, the filtering mecha-
nism is filtrating/screening, inertial deposition, and gravity deposition, and the electrostatic
effect plays an auxiliary role; when the aerosol contains ionic compounds, the filtering
mechanism is mainly run by electrostatic effect; when the particle diameter is less than
200 nm, Brownian diffusion plays a dominant role, and the filtering mechanism is mostly
run by diffusing deposition. The traditional air filter material, generally a single non-woven
fiber fabric with a hole diameter from 10 µm to dozens µm, can merely intercept µm level
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particles; for sub-micron condensed particles, electrostatic trapping is the most effective
method [9–11], but the number of electrostatic charges of non-woven materials after electret
treatment is easy to decay; especially under high temperature and humidity conditions, the
decay rate will accelerate [12–14]. Therefore, the usual non-woven air filtering materials
can no longer meet the requirements of the filtration industry; it is necessary to develop a
new filtering material with high efficiency, low resistance, and high stability.

The non-woven air filtering material is a fiber mesh or fiber mat with particular
strength and stability formed by various strengthening methods of non-oriented fibers,
whose filtering performance depends chiefly on the particular structure of the material itself.
The filtering performance of the traditional single-type fiber filtering material is difficult to
optimize synchronously and has a single function, gradually failing to meet the application
requirements; therefore, researchers have introduced composite technology into the process
of high-performance air filtering materials, that is, using different thickness fiber layers to
process composite filtering materials with a gradient structure. At present, the preparation
methods of non-woven air filtering materials consist of electrospun fiber composite, paper-
making, wet forming multilayer composite, melt-blown non-woven fabric composite, and
film-covered composite, etc. [15,16], among which electrospun fiber composite and paper-
making, wet forming, multilayer composite are the two basic preparation methods for non-
woven air filtering materials. Most aerosols under working conditions are a three-phase
coexistence of gas, liquid, and solid. The condensed aerosols are supposed to contain both
hydrophilic and hydrophobic particles. In this case, the easily functionalized electrospun
composite fibers can be effectively captured, but it is difficult to customize the functions of
the air-filtering materials formed by paper making. Hence, the advantages of electrospun
air filtering materials, such as high specific surface area, adjustable porosity, and easy
functionalization, have attracted much attention in air filtration applications. However,
traditional electrospinning equipment still uses single/multiple needle devices, whose
output can only reach 0.1~1 g/h, resulting in high production costs [17,18]. The reason is
that there are many uncontrollable factors in the electrospinning process [19,20], such as
(1) Taylor cone indentation inside the spinneret, which increases the jet’s Rayleigh instability,
axisymmetric instability, disturbance, and swing instability; (2) Since the electrospun jet
lasts for a short time, the polymer macromolecules do not have sufficient time for regular
arrangement, and the fiber crystallinity is low, leading to poor mechanical properties of
the fiber; (3) The spinning needle tube is easily blocked due to the condensation of the
polymer solution.

Many new electrospinning technologies, such as the needle-free electrospinning tech-
nology developed by Elmarco corporation [21], the rotating cone as the spinneret proposed
by Lu et al. [22], and the use of wire electrodes to replace the spinneret given by Forward,
K. M. [23], Indrani, B. et al. [24], have been developed in recent years to solve the problem
of large-scale electrospinning production. These methods and technologies all have the
common feature of stimulating multiple jets of polymer solution on the surface of a free
liquid to improve the production efficiency of nanofibers; commonly referred to as free sur-
face electrospinning, or needle-free electrospinning [25,26]; they are very conducive to the
substantial increase of material application performance and the expansion of application
fields. However, these studies all aim at the preparation and filtration performance of tradi-
tional single-fiber filter materials. The single function of fiber filtering materials makes it
challenging to cope with the complex application environment. Therefore, by mixing fibers
with different wetting characteristics, the preparation of fiber-mixed filter materials with
high efficiency and low resistance can be achieved, which provides theoretical guidance
and research basis for exploring new high-performance filtering materials.

In this study, since high humidity, condensed particles are easily formed between inor-
ganic salt aerosol particles, or between inorganic salt particles and other aerosol particles
in the atmospheric environment due to the large content of inorganic salt aerosols [27],
the electrode sputters electrospinning technology is used to prepare PLLA fiber and PAN
fiber successively in a two-step procedure on the substrate with thin micron fiber mesh
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functioning as the substrate. The composite fiber material has a fluffy stacking structure
and a hydrophobic and hydrophilic gradient function, which not only filters aerosols effi-
ciently but also enhances the driving force of air transmission; the filtrating efficiency of
the PLLA/PAN fiber membrane has been tested for 300 to 1000 nm NaCl aerosol particles.

2. Materials and Methods
2.1. Materials

Polylactic acid (PLLA), brand 190, is produced by Zhejiang Haizheng Co., Ltd.
(Taizhou, China); Polyacrylonitrile (PAN), powder, is produced by Shanghai Sibaiquan
Reagent Co., Ltd. (Shanghai, China); Dichloromethane (DCM), dimethylformamide (DMF)
and anhydrous ethanol, all of which are analytically pure, are by Chengdu Kelong Chemical
Co., Ltd.(Chengdu, China); the base material is (PE+PPT): 6–18 g/m2, filtering effect 70%,
moisture resistance ≤90% RH, initial resistance 20–28 Pa, and final resistance ≤80 Pa.

The preparation of PLLA spinning solution: a certain amount of solvent DCM is
measured to be put into a conical flask, and then some PLLA is slowly added in the stirred
conical flask, lastly, the magnetic stirrer is put in with the bottle cap tightly covered to
prevent water vapor from entering the conical flask, which is placed in a water bath pan at
45 ◦C for stirring. After continuous stirring and dissolution for 1 h, some mass percentage
of DMF is added, then continues to be stirred until the solution is clear, and then a specific
mass concentration of PLLA spinning solution is obtained. The mass ratio between DCM
and DMF is 16:1, and the concentration of PLLA spinning solution is 10%.

The preparation of PAN electrospinning solution: a certain amount of solvent DMF is
added into a conical flask, then some PAN is slowly added in, lastly the magnetic stirrer is
put in with the bottle cap tightly covered to prevent water vapor from entering the conical
flask, which is then placed in a water bath pan for stirring; the water bath temperature is
set to 45 ◦C, and stirred continuously until the solution becomes clear and transparent. The
concentration ratio of the PAN spinning solution is 7%.

2.2. Design of Composite Fiber

The paper aims to prepare nanofiber materials that can filter aerosols in high-humidity
atmospheric environments; the materials can transfer water and capture aerosols efficiently.
To achieve efficient filtration, the pores and fiber thickness in the filtering material should
match the captured particle size and have a high specific surface area so that the aerosol
can be trapped in the nanofiber spatial structure. Hence, filtering materials with a gradient
structure are designed according to the following three standards: (1) Fiber materials
must be porous and have a high specific surface area; (2) Fiber materials have electrostatic
adsorption functions, effectively capturing ionic compounds in aerosols; (3) Composite
fiber materials should contain functional hydrophobic fibers to avoid a rapid increase of
air resistance in a high humidity environment and contain functional hydrophilic fibers to
improve the filtration efficiency of aqueous aerosols. The overall structure of the composite
fiber material takes on a hydrophobic and hydrophilic gradient to enhance the driving force
of air transmission. The filtration process of a gradient structure composite fiber membrane
is shown in the abstract graphic.

According to the above design standards, the PAN fiber is selected as a hydrophilic
component for the following reasons [28–31]: PAN has a high dielectric constant, and
more charges are easily generated on the surface of nanofibers under the electrostatic
spinning electric field which is conducive to the electrostatic effect of capturing aerosol
particles; there are a lot of amide and carboxyl groups in electrospun PAN molecules,
which are hydrophilic groups; the N atom on the branch chain of PAN structure has strong
electronegativity, which is facilitative to the rapid combination of fibers and positively
charged components in aerosols (metal hydroxide and metal oxide particles, such as
Fe(OH)3, Al(OH)3, Fe2O3, and ZrO2, etc.); the diameter range of electrospun PAN fiber
is about 200 nm, which easily achieves a fluffy structure, increasing the capturing time
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of aerosol particles; PAN has excellent solvent resistance, heat resistance, hydrophilicity,
mechanical stability, and environmental protection.

Therefore, the introduction of PLLA fiber as a hydrophobic component is for the
following reasons [32–34]: There are many ester groups in the PLLA molecule, which are
hydrophobic; the electrospun PLA fiber has low surface free energy, rough nanoporous
structure, and pore size of membrane from 100 nm to 10 mm, which has hydrophobic
properties; PLLA is a non-toxic and biodegradable polyester extracted from wheat, potato,
and corn; it has excellent biological characteristics and can inhibit the growth of many
fungi, yeasts, and bacteria.

2.3. Manufacture of Composite Fiber

Electrospinning adopts an electrode-sputtering electrospinning device produced by
Qingdao Junada Company, China, which consists of three parts: jet device, collecting device,
and high-voltage power supply. The injection device is comprised of a metal wire electrode
group and a liquid supply system, wherein the metal wire electrode group is made up
of a plurality of metal wire electrodes placed on the same horizontal plane in parallel,
and is connected to the positive pole of the high-voltage power supply; the liquid supply
system consists of a fluid supply kettle and a micro brush head placed in the infusion tank;
the micro brush head dips the metal wire electrode through continuous movement; the
receiving device, connected to the negative pole of the high-voltage power supply is a
roller collector, which is assembled on the injection device. The schematic diagram for
electrospinning is shown in Figure 1.
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Figure 1. Schematic of electrode sputtering electrospinning device.

The composite fiber material is prepared by a two-step procedure with the spinning
environment parameters: temperature, 27~32 ◦C; humidity, 40 ± 2%. The first step is to
electrospin a layer of PLLA fiber. The spinning process parameters of PLLA fiber are as
follows: the electrode moving width, 300 mm; the distance between the electrode and the
base cloth, 25 cm; the power supply voltage, 45~55 KV. The three electrodes brush liquid
simultaneously, the round-trip speed of which is 200 mm/min, and the unwinding rate is
250 mm/min. The second step is to deposit a layer of electrospun PAN fiber on the fiber
membrane prepared in the first step. The spinning process parameters of PAN fiber are
as follows: the electrode moving width, 300 mm; the distance between the electrode and
the substrate, 24 cm; the voltage, 36~42 KV; the brush speed, 150 mm/min; the unwinding
rate, 230 mm/min.

The preparation process of the single fiber material should follow a single step of
the composite fiber material preparation process. The two steps can also be expanded if
additional procedures are required to prepare multilayer composite fiber materials.
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2.4. Test

The morphologies of the fibers were tested by JSM-6700F (JEOL, Tokyo, Japan) scan-
ning electron microscope (SEM); the fiber diameter distribution was studied by the sta-
tistical analysis of 50 fibers randomly selected from SEM using Image-Pro-Plus software.
The surface chemical properties of the fiber were analyzed by MAX-2400 X-ray (RIGAKU,
Tokyo, Japan) diffractometer (XRD) and EQUINOX-55 (BRUKER, Rheinstetten, Germany)
Fourier transform infrared reflection (FTIR). The mechanical properties of the fiber mem-
brane were examined by the XQ-2 (Shanghai New Fiber Instrument Co., Ltd., Shanghai,
China) universal mechanical testing machine. For the tensile test, the gauge length and
width are 22 × 30 mm, and the tensile speed was 10 mm/min. At five different positions of
the sample fiber membrane, each tests the thickness and strength values five times, and then
calculates the average values. ASAP 2020 (Micromeritics Instrument Co., Ltd., Norcross,
GA, USA) Physical Adsorption Analyzer examined the micro-physical property of the fiber
membrane. The filtering effect of the fiber membrane was tested by the UTF003 (UTest
Intelligence Tech Co., Ltd., Suzhou, China) filtering-material performance test machine.
The fogging dust source was NaCl particles, the mass concentration of particulate matter
was 15–30 mg/m3, the temperature of the whole test device was 25 ± 5 ◦C, and the relative
humidity was 85–95%.

3. Results
3.1. Morphology of Fibers

The SEM images of PLLA fibers, PAN fibers, and PLLA/PAN composite fibers are
shown in Figure 2a–f; the average diameter of 50 fibers of the SEM of each sample is
calculated; the fiber diameter distribution is shown in Figure 2g; the prepared fibers all
present a 3D structure with random orientation, fine spinning, dense fiber mesh, and
uniform fiber distribution. As shown in Figure 2a,b, the surface of PLLA fiber is porous,
rough, and uniform. The diameter mainly shows a normal distribution at 700–850 nm; the
pores of the fiber membrane are large. As shown in Figure 2c,d, PAN fiber is smooth and
uniform, and the fiber diameter shows the normal distribution is mainly at 140–300 nm.
When the fiber diameter decreases, the distance between fibers decreases, and the pores
formed by fiber lapping also decrease, which dramatically impacts the slip effect, which
also helps reduce the air resistance of the fiber membrane. As shown in Figure 2e,f, the
diameter of composite PLLA/PAN composite fibers forms a bimodal distribution. PLLA
fibers are the 3D structural skeleton of the membrane, and PAN fibers penetrate the 3D
structure of the membrane with uniform distribution, indicating that the fiber membrane
has achieved a structural gradient. The fiber membrane morphology can be optimized by
adjusting the spinning time ratio of PLLA/PAN composite fibers.

In the PLLA/PAN composite fiber structure, PLLA fiber provides a stable structural
cavity for the composite material and sufficient filtering channels for the larger formed pore
structure, ensuring structural stability and mitigating filtering resistance during the filtering
process; meanwhile, it can effectively protect the system of PAN fiber and guarantee that
PAN fiber maintains stable filtrating performance. In addition, as a reinforcing phase for
the interception of small particles, PAN fiber can interfere with the movement track of
aerosols in the composite material, increasing the chance of collision between particles
and fibers, thus significantly improving the interception and capture of small particles by
fiber materials. The above data prove that the composite fiber membrane has achieved
a structural gradient, and its filtering behavior is a “Surface + Deep” mode, which is
conducive to strengthening the screening effect on particles and ensuring the high efficiency
and low resistance filtering performance of composite fiber on aerosols.
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3.2. Wettability of Fibers

The surface hydrophobicity of materials can be evaluated by the contact angle; the
contact angle diagram of PLLA fibers, PAN fibers, and PLLA/PAN composite fibers is
shown in Figure 3.
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Figure 3. Contact angle diagram of samples, (a) PAN, (b) PLLA, (c) PAN + PLLA.

The contact angle of the PLLA fiber membrane is 103.27◦, greater than 90◦, which
means the electrospun PLLA fiber membrane is hydrophobic on the surface and belongs
to hydrophobic material; since PLLA contains many ester bonds, its hydrophilicity is
relatively poor, and the surface of the fiber is porous and rough, the PLLA fiber membrane
has good hydrophobicity. The contact angle of the PAN fiber membrane is 63.18◦, less than
90◦, which indicates that the electrospun PAN fiber membrane is hydrophilic on the surface
and belongs to hydrophilic material. The contact angle of the PLLA/PAN composite fiber
membrane is 73.49◦, which is hydrophilic.

The reason that the resistance of PAN fiber increases rapidly under high humidity is
because of the hydrophilic property of PAN fiber. When water vapor or tiny water droplets
in the air encounter hydrophilic PAN fibers, water will be adsorbed on the fibers and form
capillary water between the fibers, blocking the pores of the fibers, causing the air to pass
through the fibers unevenly, leading to a rapid increase in resistance. However, in the
3D structure of composite fibers, hydrophilic PAN fibers form a cross structure between
hydrophobic PLLA fibers; capillary water formed between PAN fibers can easily flow out
along PLLA fibers, reducing the risk of fiber pore plugging.
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3.3. Chemical Properties and Mechanical Property

The mechanical properties of electrospun polymer films depend chiefly on crystal
structure and morphology. A weak mechanical property is one of the drawbacks of
electrospun metastable crystalline polymer film, which can be solved by improving its
crystallization degree. The crystallization state of membranes can be analyzed qualitatively
by the XRD patterns of samples in Figure 4a.
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The crystallization of PLLA electrospun will generate two crystal forms: relatively
perfect and stable crystal forms α, and metastable crystal form with imperfect crystallization
α’. Here, The crystal peaks of PLLA fiber appear at 2θ = 14.9◦, 16.7◦, 19.1◦, and 22.4◦,
corresponding to (010), (110)/(200), (203), and (015) crystal plane indexes, respectively.
The maximum crystallization peak is at 2θ = 16.7◦, corresponding to the (110)/(200) plane.
The firm diffraction peaks between 2θ = 14.9◦, and 22.4◦ degrees are associated with the
semicrystalline PLLA diffractions. The firm diffraction peaks between 2θ = 14.9◦ and 22.4◦

degrees are associated with the semicrystalline PLLA diffractions [35–37].
The most substantial reflection, relatively sharp, is observed in PAN fiber between

2θ = 17◦ and 19◦, where the crystallization peak presents a broad steamed bread peak; it
indicates that the electrospun PAN fiber is mainly composed of amorphous components,
showing that the crystallization of PAN is delayed during electrospinning due to rapid
solidification at high elongation [38].

Finally, the crystallization peaks of PLLA/PAN composite fiber appear at 2θ = 14.1◦,
16.9◦, 18.6◦, and 21.7◦, and the positions of the crystallization peaks shift and become
sharper. The maximum crystallization peak is at 14.1◦, suggesting that the crystal form
is a stable α crystal form; the other main peak appears at 16.9◦; the crystallization peak
becomes sharper, and the crystallization strength increases. The crystallization peak at
2θ = 22.4◦ shifts to 21.7◦. These cases suggest that when PLLA fiber enters the high-voltage
electrostatic field for the second time, it is equivalently a process of annealing, which can
promote the crystallization of PLLA, making a stable α crystal structure of the composite
fiber more perfect.

The chemical structure evolution of PAN fiber, PLLA fiber, and PAN/PLLA composite
fiber is studied by FTIR spectrum, as shown in Figure 4b. In the infrared spectrum of
PAN fiber, the absorption peak intensities are near 2940 cm−1, 2248 cm−1, 1715 cm−1,
1460~1440 cm−1, 1270~1220 cm−1, representing the stretching vibration absorption peak of
methylene (–CH2), the stretching vibration absorption peak of cyano (–C≡N), the stretching
vibration absorption peak of carbonyl (–C=O), and the variable angle vibration of different
forms of methylene (–C–H), respectively. PAN dissolved from DMF solution often has a
peak at about 1715 cm-1, which is attributed to the vibration of the carbonyl (–C=O) bonds
formed in the hydrolyzed PAN fibers and the stretching vibration of the carbonyl bonds in
residual DMF solvent [29].
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In the infrared spectrum of PLLA fiber, the intensities of absorption peaks, near
2900~3000 cm−1, 2876 cm−1, 1755 cm−1, 1445 cm−1, 1355 cm−1, 1130 cm−1, and 1090 cm−1,
correspond to the stretching vibration absorption peak of methylene (–CH), the weak ab-
sorption peak of methylene (–CH2–), the stretching absorption peak of carbonyl (–C=O), the
bending vibration absorption peak of the methyl group (–CH3), and the vibration absorp-
tion peak of C–C bond, the bending vibration absorption peak of methylene methyl (=CH2),
and the stretching vibration absorption peak of ketone group (–C–O), respectively [39].

In the infrared spectrum of the PLLA/PAN composite fiber, the position of the charac-
teristic absorption peak of the hybrid fiber remains unchanged within the corresponding
wave number, without red or blue shift, indicating that the extreme and structure have
not changed fundamentally during the secondary electrospinning process. However, the
intensity of the infrared characteristic absorption peak has increased. For instance, the
weak absorption peak of C–H stretching vibration at 2900~3000 cm−1 and 2876 cm−1

and the soft absorption peak of methylene (–CH2) are enhanced; the tensile absorption
peak of cyano (–C≡N) at 2248 cm−1 and the characteristic absorption peak of carbonyl
(–C=O) at 1755 cm−1 and 1715 cm−1 are superposed together to increase the amplitude,
strengthening the hydrophilicity of PAN fibers; there is a prominent absorption peak near
2900–3000 cm−1, the absorption band moves to 3292~3358 cm−1, and the height also be-
comes broader and more robust. Therefore, because methylene and carbonyl groups also
exist in the PAN structural formula, some characteristic peaks overlap with PLLA fiber
and the peak value increases, but no new bonds are formed, suggesting that PAN fiber
and PLLA fiber are a pure physical mixture, relatively independent, and do not generate
biochemical bond binding.

The tensile strain-stress tables of the electrospun nano-fibrous membrane are sum-
marized in Table S1. In the process of stretching, the mechanical properties of two kinds
of fibers are superior to that of a single fiber membrane due to the interaction of the self-
organization of both types of fibers at multiple scales. The strains of PLLA fiber, PAN fiber,
and PLLA/PAN composite fiber membranes are 20.52%, 56.17%, and 65.34%, respectively;
the stresses are 6.29 MPa, 9.34 MPa, and 11.76 MPa. The test result is based on the reasons
that the electrospun fibers are not cross-linked and fixed but interlaced, leading to the
weak mechanical properties of a single fiber membrane. In the PLLA/PAN composite fiber
membrane structure, the PLLA fiber acts as a solid 3D frame, and the thin PAN fiber fills
the 3D network structure, causing wrinkles and dense structures. In addition, PLLA fiber
achieves a secondary crystallization during the preparation of PAN fiber; as a result, its
mechanical properties are improved.

3.4. N2 Sorption Isotherm and BET Surface Area Analysis

N2 adsorption analysis is carried out on three kinds of fiber membranes as shown in
Figure 5. This physical characterization method can accurately analyze the microporous and
mesoporous structures with pore diameters less than 50 nm. It can be seen from Figure 5
that when P/P0 is small, the curve increases slowly; in the middle section of the curve,
there is an adsorption hysteresis loop, which corresponds to the capillary condensation of
the porous adsorption system, suggesting that the pores in these membranes are filled and
emptied. When P/P0 is large, the latter part of the curve bulges once more, implying a
sudden increase in adsorption capacity. These cases reflect that the three fiber membranes
are nonporous, or a single multilayer reversible adsorption process on the microporous
adsorbent. Under the IUPAC classification, the desorption isotherms of the three fiber
membranes should be recognized as typical type IV isotherm materials. It can be seen
from the table shown in Figure 5 that the BET surface areas of PLLA fiber, PAN fiber,
and PLLA/PAN composite fiber membranes are 26.94 m2/g, 11.43 m2/g, and 40.37 m2/g,
respectively, among which the BET surface area of PLLA/PAN fiber membranes is relatively
high, and the physical adsorption capacity is strong.
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Figure 6. SEM images of samples after filter test with NaCl aerosol, (a) PLLA fiber, (b) PAN fiber,
(c) PLLA/PAN composite fiber.

Filter tests are conducted on PLLA fiber, PAN fiber, and PLLA/PAN composite fiber
membrane samples. The detailed data of average filter efficiency and pressure drop are
calculated, as summarized in Table 1. When the aerosol particle size is 1 µm, the filtrating
efficiency is almost 100%, seen in Table 1. In addition, when the size of aerosol particles is
≤0.3 µm with a pressure drop at 90~130 Pa, the filtrating effect is excellent. Previous reports
show that the elements of high efficiency and high-quality [QF = −ln (1 − η)/∆P, among
which η and ∆P refer to filtration efficiency and pressure drop] is crucial for better filtrating
performance. According to 0.3 µm aerosol particle filtrating efficiency, the QF of three
samples is calculated, as summarized in Table 1. Based on the previous analysis of fiber
diameter and BET surface area, PLLA/PAN composite fiber membrane has a remarkable
filtering effect with a filtering efficiency of 99.98% and a quality factor of 0.0968 Pa−1. The
QF and filtration efficiencies of the result are higher than the QF (0.034 ± 0.002 Pa−1) and the
filtration efficiencies (95.97 ± 0.62%) of the membrane of PAN with cellulose nanocrystals
reported by by Rachel Passos de Oliveira Santos et al. in February 2022 [40].
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In this case, the gradient structure of this composite fiber membrane ensures high
surface adsorption and fluffy stacking structure, increasing the travel time of aerosols
between the 3D network gaps of the fiber, making the deposition behavior more adequate,
and improving the filtering efficiency of aerosols; besides, at the interface between various
coarse and fine fibers in the gradient structure, the porosity and permeability change
continuously and rapidly, which is conducive to the formation of air pressure difference,
making the convection flow in the fiber no longer symmetrical, promoting the increase of
the velocity gradient of air convection, and then producing the inertial stress slip effect,
which is helpful to reduce the air resistance of the fiber membrane. Therefore, PLLA/PAN
composite fiber membrane shows lower air resistance.

After the NaCl aerosol filtrating test, three samples were tested by SEM to compare the
deposition behavior of NaCl aerosol particles in the three materials, as shown in Figure 6.
In Figure 6, no particles are deposited on the surface of PLLA fiber. More particles are
deposited on the surface of PAN fiber and PLLA/PAN composite fiber, among which the
aerosol particles deposited on PAN fiber are larger. It fully confirms that the PLLA fiber,
with good hydrophobicity, does not electrostatically absorb NaCl aerosol particles; rather,
the aerosol particles are deposited on the fiber by filtrating/screening, inertial deposition,
diffusion, gravity effect, etc., and there is no residue on the fiber after cleaning; then,
the PAN fiber membrane has excellent electrostatic adsorption capacity. In addition to
physical deposition, aerosol particles can be adsorbed on the fiber by electrostatic effect, and
there are many residues on the fiber after cleaning. Through the combination of physical
filtration and chemical filtrating mechanisms, the PLLA/PAN composite fiber material
with a hydrophobic and hydrophilic gradient structure can quickly transfer water, making
the step filtration of the gas-solid-liquid multiphase flow occur, and avoiding the rapid
increase of air resistance in high humidity environment.

4. Conclusions

In this work, PLLA/PAN composite fiber with a hydrophobic and hydrophilic gradient
structure was designed and prepared by electrospinning with electrode sputtering. Through
characterizing and performing tests of PLLA fiber, PAN fiber, PLLA/PAN composite fiber
membranes, and NaCl aerosol filtrating tests, the conclusions can be drawn as follows:
The electrode sputter electrospinning is fine, the fiber mesh is dense, fiber distribution
is uniform, and spinning efficiency is high. PLLA/PAN composite fiber material has
the hydrophobicity of PLLA fiber and the hydrophilicity of PAN fiber; its electrostatic
effect is stable, its hydrophobicity good, its physical capture performance is excellent,
the filtrating effect of NaCl aerosol the best, and the production efficiency is high. The
filtrating efficiency η of NaCl aerosol particles with 0.3 µm reaches 99.98%, and the quality
factor QF is 0.0968 Pa−1 at the relative humidity of 85–95%. By enhancing the mechanical
properties of the filter material and improving the functionality of the membrane with a
gradient structure, the working environment can be expanded, being widely used in the
life and production of air filtration, including automobile exhaust, room cleaning, ultra-low
penetration air filters, and respiratory protection equipments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano12224087/s1. Table S1: Stress−strain curves of fibrous membrane.
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to the published version of the manuscript.
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