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Abstract: In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthe-
sized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopro-
pionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong
bluish green fluorescence with an absolute quantum yield up to 32% and possessed ultrasensitive
pH stimuli-responsive performance in the range of 7.0–7.8. Based on the excellent properties of the
as-prepared nanowire arrays, we developed a facile, sensitive, and selective fluorescent method for
quantitative detection of urea and urease. The fabricated nanoprobe showed superior biosensing
response characteristics with good linearities in the range of 0–100 µM for urea concentration and
0–12 U/L for urease activity. In addition, this fluorescent probe afforded relatively high sensitivity
with the detection limit as low as 2.1 µM and 0.13 U/L for urea and urease, respectively. Urea in
human urine and urease in human serum were detected with satisfied results, exhibiting a promising
potential for biomedical application.

Keywords: gold nanowire arrays; self-assembly; enhanced fluorescence; assembly induced emission;
urea and urease

1. Introduction

Anomalous urea and urease levels are closely associated with the pathogenesis for
many clinical symptoms in kidney disorders and hepatic disease, such as nephritic syn-
drome, urolithiasis, liver failure, and hepatic encephalopathy [1,2]. Urea is a nitrogen-based
organic byproduct of protein metabolism that is formed in liver and excreted through the
kidney in urine. Urease is a nickel-containing enzyme for urea transformation. There-
fore, accurate monitoring and determination of urea and urease in human fluids are very
important in clinical diagnosis of renal and liver diseases. The normal level of the urea
was found to be about 2.5–7.5 mM and 155–388 mM in healthy human blood and urine,
respectively [3,4]. During the recent decades, electrochemical [5–9], colorimetric [10–12],
fluorescent [13–15], and surface-enhanced Raman scattering [16,17] approaches have been
established to qualitatively and/or quantitatively detect urea and urease concentrations.
Among them, fluorescence nanosensors were the most remarkable strategy due to their
short response time, high sensitivity, convenience, and rapid operation [18,19]. Urea is
commonly hydrolyzed in the presence of urease to produce carbon dioxide (CO2) and
alkaline ammonia (NH3), and the pH of solution increased. Therefore, the concentration
of urea or urease can be quantitatively monitored by the change of fluorescence of pH-
sensitive biosensors. Routinely, a diverse library of fluorescent pH-dependent functional
materials, such as fluorescence dyes [15,20], semiconductor quantum dots (QDs) [21–25],
carbon-based dots (CQDs) [26–28], and metal nanoclusters (NCs) [29–31], have been em-
ployed for specially constructing urea and urease biosensors, despite their pH response
behaviors are quite different.
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Considering lower sensitivity resulting from the wide pH-responsive range of organic
dyes, ligand stabilized colloidal QDs and CQDs, metal NCs displayed more pH-sensitive
properties (∆pH < 1) than other major nanoscale materials [30,31]. Therefore, metal NCs
have constantly attracted a great deal of interest and can be used as powerful tools for
pH measurement. However, the quite low fluorescence quantum yields (QY), which are
generally far less than 10%, from metal NCs as pH indicators are still not sufficiently high
enough to enhance their sensitivity in practical applications. For instance, N-acetyl-L-
cysteine-capped gold nanoclusters (Au NCs), with the ultrasensitive pH stimuli-responsive
performance in the range of 6.05–6.40, were used as a nanoprobe in monitoring chemical
and biochemical reactions associated with pH changes [31]. The linear ranges for urea and
urease were measured to be 0.055–0.55 mM and 2.2–55 U/L, respectively. Even though the
Au NCs used in this work were dramatically more sensitive to pH changing, the detection
linear ranges were just comparable to other reported fluorescent sensing methods because
the lower QY (1.2%) of Au NCs pose a major hurdle for detecting sensitivity of biosensor.

Recently, various strategies have been developed to make weak-emitting metal NCs
with highly luminescent by controlling size, tailoring structure, metal doping, and chang-
ing capped ligand [32–34]. Inspired by the aggregation/assembly induced emission (AIE)
phenomenon, self-assembly of thiolate-capped metal NCs building blocks into desirable
hierarchical architectures has proved to be a promising strategy for developing metal mate-
rials with high fluorescent emission because the formation of compact ordered aggregations
could effectively restrict intramolecular vibration and rotation of the ligands to hinder the
nonradiative decay [33]. For example, Xie et al. described the self-assembly of thiolate-
protected Au NCs into highly ordered nanoribbons with conspicuously luminescence
enhancement due to the extensive intercluster aurophilic interactions. The as-assembled
nanoribbons could emit stable and red emission with a QY up to 6.2% [35]. Zhu’s group
developed a novel approach based on the self-assemblies of active Cu(I)SR complexes with
neutral gold atoms, leading to strong luminescence with a QY of 11.7 % [36]. Wang and
co-workers reported a pH-triggered AIE methodology to fabricate D-penicillamine (DPA)
coated Cu NCs by taking the advantage of noncovalent interactions of surface ligands
with QY as high as 16.6% [37]. Nonetheless, the QY of these metal NC-based architectures
remained relatively low compared to traditional fluorescence materials. Meanwhile, some
AIE-based aggregations were carried out in organic solvent [38–40] or use complex and
expensive capping ligands [36,41], limiting their applications in bioscience. Hence, fabri-
cation of economic NC-based self-assembly architectures with ultrabright luminescence,
superior biocompatibility, and stability will provide a versatile performance and satisfy the
urgent demands in biomedical imaging, drug delivery, and biosensors in aqueous solution.

Herein, we described a metal coordination assembly strategy to develop highly flu-
orescent gold nanoarrays, which were further used for sensitive detection of urea and
urease. Mercaptopropionic acid (MPA)-capped Au NCs could be mediated by Zn2+ ions
through metal ion-mediated self-assembly into well defined gold nanowires (Au NWs).
Fluorescence quantum yields (QY) was employed to evaluate the fluorescence efficiency
of as-assembled Au NWs. Due to the metal coordination-induced fluorescence, the fluo-
rescence of Au NWs displayed pH stimuli-responsive property, and the emission became
weak, or even disappeared, when the pH increased. Because of the generation of ammonia,
the pH of the urease enzymatic reaction solution could be quantitatively monitored with
the change of fluorescence intensity. Such Au NWs nanomaterials can be used for the
development of urea or urease biosensors. The linear relationships between fluorescence
intensity versus either urea or urease concentration were built-up for quantitative detection
of pending test samples. The pH-responsive range of Au NWs was within the range of
physiological environment, showing potential applications in biological and medical fields.
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2. Materials and Methods
2.1. Reagents and Instrumentation

All chemicals used were at least of analytical reagent grade and were used without
further purification. Urease, lysozyme (Lys), bovine serum albumin (BSA), and horseradish
peroxidase (HRP) were purchased from Sangon Biotech (Shanghai, China) Co., Ltd. Methio-
nine (Met), asparagine (Asn), alanine (Ala), glutamine (Gln), glycine (Gly), proline (Pro),
serine (Ser), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), threonine (Thr), valine (Val),
tryptophan (Trp), and lysine (Lys) were purchased from J&K Chemical LTD. HAuCl4·5H2O,
NaOH, Zn(Ac)2, NaCl, and KCl were obtained from Aladdin reagent (Shanghai) Co., Ltd.
Urea and 3-mercaptopropionic acid were purchased from Shanghai Macklin Biochemical
Technology Co. Ltd. The water used in all experiments had a resistivity greater than
18 MΩ cm−1.

UV-vis spectra were obtained with a Shimadzu 3100 UV-VIS-NIR Recording Spec-
trophotometer. Dynamic Light Scattering (DLS) experiments were carried out with Malvern
Instrument Zetasizer Nano ZS equipped with a He-Ne laser (633 nm, 4 mW) and an
avalanche photodiode detector. Fluorescence spectra and photoluminescence lifetimes
were performed on a PerkinElmer LS-55 fluorescence spectrometer and FLS 980 fluores-
cence spectrophotometer, respectively. Fourier transform infrared (FT-IR) spectra were
conducted between 600 and 4000 cm−1 using a Nicolet 7000 FT-IR (Nicolet Instruments,
Inc., Madison, WI, USA). The morphologies of Au NWs were measured by transmission
electron microscopy (TEM, Itachi HT-7700) and scanning electron microscopy (SEM, Zeiss
ultra plus and HITACHI S-4800).

2.2. Synthesis of Ultrabright Au NWs

The Au4(SC2H4COO−)4 nanoclusters (Au4 NCs) were synthesized based on a pre-
viously reported method [42]. Briefly, 71 µL of MPA (0.723 mmol) was mixed with 5 mL
HAuCl4 (4 mM) under stirring for 15 min. A precipitate was formed. NaOH (1 M) was
then dropped into the above mixture to bring the pH to 8–10. The precipitate was quickly
dissolved to prepare Au4 NCs.

Besides, the amount of NaOH may be changed to further obtain water-soluble, high
quantum yield Au NWs with the presence of zinc ions. After the addition of 0.75 mL zinc
acetate solution (0.1 M), the mixed solution was left undisturbed in the dark for 4 h at 50 ◦C.
The solution gradually changes to yellowish green after a few minutes. The obtained Au
NWs were stored in a refrigerator for further use.

2.3. Fluorescence Experiments

Firstly, the pH of Au NWs was adjusted to 7.0 using 0.5 M HCl before use. For the
assay of urea detection, 50 µL of urea with various concentrations were preincubated with
urease at room temperature for 3 h to hold the reaction completely. The total volume of the
catalytic system was 500 µL. Then, 50 µL Au NW was subsequently added to the reaction
solution. After that, the solution was diluted to 2.0 mL containing the final concentration
of 12 U/L urease and allowed to react for 15 min. Fluorescence measurement of urease
activity was performed by incubating 50 µL of urease with various concentrations and urea
for 3 h, followed by the addition of 50 µL Au NW and 1450 µL deionized water before
measurement. The detection of urea and urease was conducted in water. The fluorescence
emission spectra were recorded under 360 nm excitation wavelength.

2.4. Detection of Urea in Human Urine Sample and Urease in Serum

Human urine and serum samples were obtained from healthy volunteers with in-
formed consent. The human urines from the same adult male were respectively collected
from morning urine and after drinking about 2 L water. The biological samples were
pre-treated by ultrafiltration at 8000 rpm for 10 min to precipitate the proteins, and the
samples were diluted to 100 times before the urea and urease bioassay using the standard
addition experiments.
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3. Results
3.1. Optimization of Parameters in the Synthesis of Au NWs

In this work, MPA was selected as a protecting ligand, as well as a mild reductant.
The highly monodispersed and atomically precise Au4 NCs without luminescence were
prepared in the presence of excess MPA according to the previous report [42]. Upon
the addition of Zn2+ ions, the highly ordered Au nanowires with strong luminescence
were successfully obtained because Zn2+ could lead to the formation of superstructure by
coordination interaction between the carboxylate group of MPA and Zn2+ ions. In order to
obtain the Au NWs with excellent optical properties, the reaction conditions such as pH,
Zn-to-Au ratio, temperature, and reaction time were explored because of strong assembling
dependency on the synthesis conditions (Figure 1).
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(C) The change of fluorescence intensity at different temperature during synthesis of Au NWs.

It was found that the pH had a great influence on the preparation of Au NWs due
to the reaction of gold precursor and ligand-containing thiol group in controlled pH
conditions. As shown in Figure 1A, the Au NWs prepared at pH 8.42 and 9.31 exhibited
higher fluorescence intensity. However, Au NWs tended to form precipitates under pH
8.5. Hence, pH 9.31 was the optimum condition for the synthesis of Au NWs. The molar
ratio of Zn-to-Au was another critical synthesis parameter. As shown in Figure 1B, a higher
Zn-to-Au ratio (>6:1) could produce large complex precipitate while reducing the molar
ratio (<3:1) formed product with less luminescence. At a Zn-to-Au ratio of 3.75:1, it was
found that the obtained Au NWs exhibited high fluorescence quantum yield and excellent
dispersion in water. Also, the photograph of Au NWs prepared at different Zn-to-Au ratio
was displayed in Figure S1. In addition, the influence of the temperature and reaction
time on fluorescence intensity was concurrently monitored. As shown in Figure 1C, weak
fluorescence was observed after the introducing of Zn2+ ions for a few minutes and then
increased gradually with time. It is also found that, not only the fluorescence intensity of Au
NWs was increased, but also the time for reaching the maximum intensity was shortened
when the temperature increased to 50 ◦C. At the temperature of 70 ◦C, the fluorescence
firstly increased, and then sharply decreased, until it disappeared. Consequently, the
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optimal synthesis temperature and time for Au NWs preparation were 50 ◦C and 4 h,
respectively.

3.2. Characterization and Properties of Au NWs

The morphology and structure of as-synthesized Au NWs were investigated by TEM
and SEM (shown in Figure 2A,B). The TEM images revealed that the Au NWs were com-
posed of uniform nanowires with a length of several hundred nanometers. Further, many
nanowires were almost arranged along the same direction and formed the nanowire bun-
dles. Consistent with the TEM result, SEM images also showed that the Au4 NCs actually
arranged themselves into regular line-like architectures. FT-IR was further used as an
effective tool to accurately interpret the self-assembly forces of Au NWs. As displayed
in Figure 2C, the covalent affinity of Au to the thiol group of MPA resulted in the disap-
pearance of the characteristic peak of thiol group at 2569 cm−1 on the Au NWs powder.
The antisymmetric vibration (1702 cm−1) and symmetric vibration (1403 cm−1) of the
carboxyl group changed to 1541 and 1388 cm−1 with the addition of Zn2+ ions, indicat-
ing the formation of a coordination bond between Zn2+ and carboxylate. Dynamic light
scattering (DLS) showed the increase in average size of Au NWs with time passed during
preparation process, and the overall size of Au NWs was approximately 50–200 nm after
sufficient reaction time (displayed in Figure 2D). As shown in Figure S2, Au NWs were
negatively charged with a surface zeta potential of ∼30 mV, implying that they might be
well-dispersed in water. Compared with Figure 1C, it could be found that the fluorescence
emission intensity was still increased when the Au NWs keep a similar size, which implied
that the transformation of Au NWs from discrete aggregates to highly oriented assemblies
is responsible for strong emission [39,43].

Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 13 
 

 

on fluorescence intensity was concurrently monitored. As shown in Figure 1C, weak flu-
orescence was observed after the introducing of Zn2+ ions for a few minutes and then in-
creased gradually with time. It is also found that, not only the fluorescence intensity of 
Au NWs was increased, but also the time for reaching the maximum intensity was short-
ened when the temperature increased to 50 °C. At the temperature of 70 °C, the fluores-
cence firstly increased, and then sharply decreased, until it disappeared. Consequently, 
the optimal synthesis temperature and time for Au NWs preparation were 50 °C and 4 h, 
respectively. 

3.2. Characterization and Properties of Au NWs 
The morphology and structure of as-synthesized Au NWs were investigated by TEM 

and SEM (shown in Figure 2A,B). The TEM images revealed that the Au NWs were com-
posed of uniform nanowires with a length of several hundred nanometers. Further, many 
nanowires were almost arranged along the same direction and formed the nanowire bun-
dles. Consistent with the TEM result, SEM images also showed that the Au4 NCs actually 
arranged themselves into regular line-like architectures. FT-IR was further used as an ef-
fective tool to accurately interpret the self-assembly forces of Au NWs. As displayed in 
Figure 2C, the covalent affinity of Au to the thiol group of MPA resulted in the disappear-
ance of the characteristic peak of thiol group at 2569 cm−1 on the Au NWs powder. The 
antisymmetric vibration (1702 cm−1) and symmetric vibration (1403 cm−1) of the carboxyl 
group changed to 1541 and 1388 cm−1 with the addition of Zn2+ ions, indicating the for-
mation of a coordination bond between Zn2+ and carboxylate. Dynamic light scattering 
(DLS) showed the increase in average size of Au NWs with time passed during prepara-
tion process, and the overall size of Au NWs was approximately 50–200 nm after sufficient 
reaction time (displayed in Figure 2D). As shown in Figure S2, Au NWs were negatively 
charged with a surface zeta potential of ∼30 mV, implying that they might be well-dis-
persed in water. Compared with Figure 1C, it could be found that the fluorescence emis-
sion intensity was still increased when the Au NWs keep a similar size, which implied 
that the transformation of Au NWs from discrete aggregates to highly oriented assemblies 
is responsible for strong emission [39,43]. 

 
Figure 2. Characterization of the synthesized Au NWs. TEM (A) and SEM (B) image of Au NWs. 
FT-IR (C) of MPA and Au NWs. DLS (D) of Au NWs after introducing Zn2+ ions 0–1.5 h. 

Figure 2. Characterization of the synthesized Au NWs. TEM (A) and SEM (B) image of Au NWs.
FT-IR (C) of MPA and Au NWs. DLS (D) of Au NWs after introducing Zn2+ ions 0–1.5 h.

To better understand the optical properties of the as-prepared Au NWs, UV-vis absorp-
tion and fluorescence spectra characterizations were carried out (shown in Figure 3A,B).
The UV-vis absorption spectra displayed three broad peaks at around 209, 345, and 477 nm,
resulting from the discrete electronic structure of Au NWs. The inset of Figure 3A was
the variation of optical absorption of self-assemblages as a function of time. Remarkably,
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Au NWs exhibited bluish-green emission centered at ~485 nm with large Stokes shift and
wide excitation range, which is in accordance with the broad optical absorption. The half
peak width was about 25 nm, which represented the high optical purity of highly ordered
Au NWs. Moreover, the Au NWs exhibited excitation-independent fluorescence behav-
ior when different excitation wavelengths were applied, suggesting that the fluorescence
originated from homogeneously distributed emission sites. Taking the emission intensity
at 485 nm into account, we chose 360 nm as the excitation wavelength in the following
experiments. Photographs taken under visible light and UV light of Au4 NCs, Au NWs in
water, and Au NWs powder were displayed in Figure 3C. We then evaluated the absolute
QY of Au NWs fabricated under optimized conditions, the average absolute QY value
of three as-formed Au NWs in water was 26.3%, and the lifetime was determined to be
7.96 ns (shown in Table S1 and Figure S3). Compared with the previously work [35–41],
our synthesized Au NWs with regular self-assembled structure, high absolute QY, excellent
water solubility, and economic ligand broadened their application in bioscience.
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spectra at different excitation wavelengths and excitation spectrum of Au NWs. (C) Photographs
taken under visible light and UV light of Au4 NCs, Au NWs in water and Au NWs powder. (D) The
plot of the fluorescence intensity of Au NWs (excitation at 360 nm) recorded at 485 nm versus the
pH value.

Further, pH-dependent fluorescence measurements of Au NWs between 5.0 and 10.0
in 10 mM Tris-HCl buffer solution were carried out. As exhibited in Figure 3D, an increase
in fluorescence intensity of Au NWs was observed, with the pH changing in the acid
condition. With pH varying from 7.0 to 8.0 at the interval of 0.1-pH unit, the fluorescence
intensity was sharply decreased and changed in a linear fashion in the range from 7.0 to
7.8. And the fluorescence was almost entirely quenched at pH 8.0. These results indicated
that Au NWs was much sensitive to pH in a basic environment and could be used as
an indicator for monitoring pH-related bio-enzymatic reactions. Also, the stabilities of
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this fluorescent material were studied in this work. Figure S4 depicted that the Au NWs
exhibited good stability against continuous irradiation for 30 min, revealing the favorable
anti-photobleaching of Au NWs. Besides, the Au NWs remain excellently stable, with
a 13% and 30% increase in fluorescence intensity for one month, both at 4 ◦C and room
temperature, respectively (Figure S5). This high QY, together with the regular morphology
and superior stability of the self-assemblies, benefited the further application of Au NWs
in biosensing fields.

3.3. Design of the Fluorescence Sensing System

Since the fluorescence intensity of Au NWs was found to correlate with the basicity
of the environment, we speculated that a fluorescence signal-off nanoprobe based on the
nanowire arrays could be proposed for monitoring the concentration of urea and urease
(as shown in Scheme 1) because urea can be specifically hydrolyzed to carbon dioxide and
ammonia by urease catalyzed reaction, which can cause an obvious pH increase in the
aqueous reaction medium resulting from ammonia generation. Thus, the fluorescence of
pH-sensitive Au NWs was sharply quenched in the basic system. The fluorescence spectra
of Au NWs sensing system in the presence or absence of target analytes were shown in
Figure 4A. When the solution of Au NWs just mixed with urea or urease, respectively,
no noticeable Au NWs fluorescence signal changes were observed, which implied that
neither urea nor urease could effectively quench the fluorescence intensity of Au NWs.
However, the fluorescence of Au NWs was remarkably quenched in the presence of both
urea and urease due to the formation of ammonia. Thus, this fluorescent sensing platform
can be utilized for both urea and urease detection based on the change of fluorescence
emission intensity. Furthermore, we compared the influence of urea and ammonia on the
luminescence intensity of Au NWs. It could be seen from Figure 4B that the presence of
ammonia induced the quenching of Au NWs with a good linear relationship between F/F0
and ammonia concentrations in the range of 0–160 µM. However, just a little decrease of
the luminescence intensity was observed after the addition of 500 µM urea. The above
results indicated that the quenching reason was responsible for the presence of ammonia,
further verifying the feasibility of our designed strategy for urea and urease detection.

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

in fluorescence intensity of Au NWs was observed, with the pH changing in the acid con-
dition. With pH varying from 7.0 to 8.0 at the interval of 0.1-pH unit, the fluorescence 
intensity was sharply decreased and changed in a linear fashion in the range from 7.0 to 
7.8. And the fluorescence was almost entirely quenched at pH 8.0. These results indicated 
that Au NWs was much sensitive to pH in a basic environment and could be used as an 
indicator for monitoring pH-related bio-enzymatic reactions. Also, the stabilities of this 
fluorescent material were studied in this work. Figure S4 depicted that the Au NWs ex-
hibited good stability against continuous irradiation for 30 min, revealing the favorable 
anti-photobleaching of Au NWs. Besides, the Au NWs remain excellently stable, with a 
13% and 30% increase in fluorescence intensity for one month, both at 4 °C and room 
temperature, respectively (Figure S5). This high QY, together with the regular morphol-
ogy and superior stability of the self-assemblies, benefited the further application of Au 
NWs in biosensing fields. 

3.3. Design of the Fluorescence Sensing System 
Since the fluorescence intensity of Au NWs was found to correlate with the basicity 

of the environment, we speculated that a fluorescence signal-off nanoprobe based on the 
nanowire arrays could be proposed for monitoring the concentration of urea and urease 
(as shown in Scheme 1) because urea can be specifically hydrolyzed to carbon dioxide and 
ammonia by urease catalyzed reaction, which can cause an obvious pH increase in the 
aqueous reaction medium resulting from ammonia generation. Thus, the fluorescence of 
pH-sensitive Au NWs was sharply quenched in the basic system. The fluorescence spectra 
of Au NWs sensing system in the presence or absence of target analytes were shown in 
Figure 4A. When the solution of Au NWs just mixed with urea or urease, respectively, no 
noticeable Au NWs fluorescence signal changes were observed, which implied that nei-
ther urea nor urease could effectively quench the fluorescence intensity of Au NWs. How-
ever, the fluorescence of Au NWs was remarkably quenched in the presence of both urea 
and urease due to the formation of ammonia. Thus, this fluorescent sensing platform can 
be utilized for both urea and urease detection based on the change of fluorescence emis-
sion intensity. Furthermore, we compared the influence of urea and ammonia on the lu-
minescence intensity of Au NWs. It could be seen from Figure 4B that the presence of 
ammonia induced the quenching of Au NWs with a good linear relationship between F/F0 
and ammonia concentrations in the range of 0–160 μM. However, just a little decrease of 
the luminescence intensity was observed after the addition of 500 μM urea. The above 
results indicated that the quenching reason was responsible for the presence of ammonia, 
further verifying the feasibility of our designed strategy for urea and urease detection. 

 
Scheme 1. Fluorescence signal-off nanoprobe based on Au NWs for urea and urease detection. 

The mechanism of pH-induced fluorescence quenching of Au NWs was described as 
follow. It is due to the disassembly of nanostructure of Au NWs or the formation of 
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The mechanism of pH-induced fluorescence quenching of Au NWs was described
as follow. It is due to the disassembly of nanostructure of Au NWs or the formation
of ground state complex without luminescence under alkaline conditions that caused
the fluorescence quenching. The size of Au NWs (displayed in Figure 4C) decreased
slightly until Au NWs solution become colorless and non-fluorescent with the increasing
concentrations of ammonia, illustrating fluorescence decrease and not the disassembly of
Au NWs. From Figure 4D, we could see that the fluorescence lifetimes of Au NWs and
Au NW /ammonia system were not changed in aqueous solution. Furthermore, UV-via
spectra of Au NWs in Figure 4E were evidently changed with varying concentration of
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ammonia. The lifetimes and UV-via spectra results prove that the main quenching is static
in our proposed sensing system.
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lifetime, and (E) UV-vis absorption of Au NWs with different amount of ammonia.

3.4. Urea or Urease Detection

The quantitative determination of urea and urease was evaluated under the optimum
parameters. Figure 5A displayed that the fluorescence spectra of the Au NW/urease system
towards urea with different concentrations. When the concentration of the enzyme urease
was fixed at 12.0 U/L, the luminescence intensity of the sensing system was progressively
decreased along with the urea concentration, increasing from 0–200 µM due to the enzy-
matic reaction causing a change in pH value. The fluorescence quenching degree F/F0
(where F and F0 were fluorescence intensity of the sensing system in the presence and
absence of urea, respectively) showed good linearity against urea concentrations in the
range of 0–100 µM (shown in Figure 5B). The LOD at a signal-to-noise (S/N) of 3 was
2.1 µM. For urease detection, 500 µM urea was used in the urease activity measurement.
Figure 5C displayed the fluorescence spectra of the Au NW/urea system with and without
urease. It can be clearly observed that the fluorescence intensity decreased proportionally
with the concentration of urease ranging from 0 to 12 U/L. As plotted in Figure 5D, a good
linear correlation could be obtained between the fluorescence signal ratio F/F0 (F0 and F
were the luminescence intensity in the absence and presence of urease, respectively) and
the concentrations of urease in the range of 0–12 U/L, and the detection limits of urease
were estimated to be as low as 0.13 U/L. Compared with the previous reported urea and
urease sensing methods in linear range and detection limit (Tables S2 and S3), it could be
seen that our method shows excellent detection limit and linear range, which endowed our
method with the ability of low urea and urease activity analysis and the advantage of less
sample consumption.
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Figure 5. (A) Fluorescence emission spectra of Au NWs sensing system upon adding various
concentrations of urea at 12 U/L urease (from top to bottom: 0, 5, 10, 25, 50, 75, 100, 125, 150, 175,
and 200 µM, respectively), The inset of (A) showed the corresponding photographs and relationship
between the fluorescence intensity ratio F/F0 and varied levels of urea. (B) Linear correlation between
F/F0 and urea concentrations. (C) Fluorescence emission spectra of Au NWs sensing system upon
adding various concentrations of urease at 500 µM urea (from top to bottom: 0, 0.2, 1, 2, 4, 6, 8,
10, 12, 15 and 20 U/L, respectively). The inset of (C) showed the corresponding photographs and
relationship between the fluorescence intensity ratio F/F0 and varied levels of urease. (D) Linear
correlation between F/F0 and urease activities.

3.5. Selectivity and Application in Real Samples

For a newly proposed nanoprobe, highly selective performance has been considered
to be one of the greatest challenges for urea and urease detection in the complex sample
analysis. The selectivity of the nanowire bundles with the same concentration of urea
(500 µM) and urease (8 U/L) was implemented by adding potential interfering species,
including metal ions and biological molecules. As depicted in Figure 6, negligible change
on the fluorescence signal output of the sensing system was observed after exposure to the
interfering compounds, confirming the excellent selectivity of the Au NW-based fluorescent
probe toward urea and urease over other interfering species.

With excellent sensitivity and selectivity of this method, the proposed sensing system
was used to determine the amount of urea and urease in human urine and serum samples,
respectively. As Tables 1 and 2 list, the obtained values of urea in human urines were
calculated to be 203.7 and 137.9 mM by the proposed method. These results were close to
223.9 and 146.8 mM, which were measured by the urea-diacetylmonoxime reaction. The
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average recoveries of urea in urine and urease in serum reached 95.8–106.5% with a relative
standard deviation (RSD) of less than 5%, which was acceptable for quantitative assays
performed in biological media. All these data indicated this proposed fluorescent method
has great potential applicability in the detection of urease activity and its catalytic substrate
urea in biological samples.
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Table 1. Determination of urea in human urine samples.

Sample Added (µM) Found (µM) Recovery (%) RSD (n = 3, %)

Urine 1 0.00 22.41
20.00 42.80 102.0 0.9
40.00 60.71 95.8 2.4

Urine 2 0.00 24.14
20.00 45.43 106.5 1.5
40.00 65.33 103.0 1.6

Table 2. Determination of urease in human serum samples.

Sample Added (U/L) Found (U/L) Recovery (%) RSD (n = 3, %)

Serum 1 0 0.00
2.00 2.02 101.0 1.5
4.00 6.01 100.0 1.1

Serum 2 0.00 0.00
2.00 2.10 105.0 2.0
4.00 5.92 98.7 2.4

4. Conclusions

In summary, novel water-soluble Au NWs with high quantum yield were successfully
synthesized by an improved one-step heating method due to the coordination of Zn2+ ion
with the carboxylate group in the gold-thiolate complexes. This Au NW emitted bluish-
green fluorescence at 485 nm with a high absolute QY up to 32%. It was worth noting
that the Au NWs possessed ultrasensitive pH-responsive property in the range of 7.0–7.8.
Taking advantage of the nanowire performance, we constructed a simple sensing platform
for urea and urease detection. Benefiting from the pH-sensitivity of Au NWs, our proposed
fluorescent method showed sensitive detection of urea and urease with high selectivity and
good linearities in the range of 0–100 µM and 0–12 U/L for urea and urease, respectively.
The average recoveries of urea in urine and urease in serum were obtained from 95.8% to
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106.5%, and the results of urea in primary urine was close to the urea-diacetylmonoxime
method. Coupled with their optical properties, we believe that the Au NWs would be a
promising candidate for applications in biological, medical, and pharmaceutical fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12224023/s1. Figure S1: Photograph of Au NWs prepared at different Zn-to-Au ratio,
Figure S2: Zeta potential of Au NWs in water, Figure S3: The lifetime of Au NWs, Figure S4:
Stability of Au NWs under irradiation, Figure S5: The changes in fluorescence intensity of Au
NWs for 1 month at 4 ◦C and room temperature, Table S1: Absolute quantum yield of Au NWs in
aqueous solution, Table S2: Comparison of the proposed method with reported urea-determination
methods, and Table S3: Comparison of the proposed method with reported urease-detection methods.
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