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Abstract: Since the discovery of high-temperature superconductors (HTSs), significant progress in
the fabrication of HTS films has been achieved. In this review, we intend to provide an overview of
recent progress in how and why superconductivity can be enhanced by introducing nanoscale vortex
pinning centers. The comprehensive control of morphology, dimension, orientation and concentration
of artificial pinning centers (APCs) and the principle of vortex pinning are the focus of this review.
According to the existing literature, HTSs with the best superconductivity can be obtained when
one-dimensional (1D) and three-dimensional (3D) nanoscale APCs are combined for vortex pinning.

Keywords: high-temperature superconducting films; vortex pinning; artificial pinning center;
nanoparticle; nanocolumn

1. Introduction

Superconductors are a class of materials with unique physical properties and high
application value. Within critical parameters, superconductors have two major properties,
namely: the zero-resistance effect and the Meissner effect. Tc (critical transition temper-
ature), Bc (critical magnetic field), and Jc (critical current density) are the main critical
parameters of superconductors. Currently, superconductors are classified into Type-I and
Type-II superconductors. For the Type-I superconductor, there is only one critical magnetic
field Bc. However, for the Type-II superconductor, there are two critical magnetic fields, the
lower Bc1 and upper Bc2. When Bc1 > B, the superconductor remains in the Meissner state,
completely expelling the magnetic flux from its interior. For Bc2 > B > Bc1, the magnetic
flux starts penetrating the sample in the form of discrete bundles termed “flux lines” and
the sample goes into the mixed state (or vortex state). When B > Bc2, the superconductor
comes into the normal state.

Usually, Type-II superconductors that exhibit superconducting states at ~30 K and
above are called high-temperature superconductors (HTSs). They are first discovered in
1986 by J. G. Bednorz and K. A. Müller in the Ba-La-Cu-O system [1]. YBa2Cu3O7-δ (YBCO)
is the first HTS to be found with Tc above the liquid nitrogen temperature (LN2, 77 K) [2],
and its discovery triggers a research boom in the field of superconductivity. Early research
on HTS focused on exploring superconductors with higher Tc, and scientists subsequently
discovered several systems such as Bi2Sr2Ca2Cu3O10+δ (BSCCO) [3], Tl2Ba2Ca2Cu3O10+δ
(TlBCCO) [4], HgBa2Ca2Cu3O8+δ (HgBCCO) [5], all with Tc~77 K and above. Since HTSs
allow the use of LN2 as a cooling source, which is readily available and relatively inexpen-
sive, they have a significant cost advantage over low-temperature superconductors (LTS)
for future large-scale practical applications [6,7]. Mahesh Paidpilli et al. summarized in
detail the various applications of HTSs in the high magnetic field in the United States at
present in their review [8]. D. Uglietti summarized relevant research and developments in
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commercial HTS materials applied in large solenoids, accelerator dipoles, and high-field
tokamaks [9]. In addition, other prominent applications of HTS including single-photon
detectors based on superconducting nanowires (SNSPDs) [10], superconducting quantum
interference devices (SQUIDs) [11–13] et al. have also been reported.

For HTS films, commonly used substrates include MgO, SrTiO3, LaAlO3, LaSrAlO4,
YSZ (Yttria-Stabilized Zirconia), sapphire (with Ag, CeO2, and MgO buffer layers), and
so on [14,15]. Due to the structural complexity, the phase composition of HTS films
can vary depending on the deposition methods and parameters (e.g., substrate types,
temperature, vacuum quality, accelerating voltage, etc.), resulting in different calcined
phases. In addition, individual elements may be present in the form of metal oxides
or compounds, and the generation of these additional phases increases the difficulty of
preparing HTS films [16–22].

Controlling the morphology, dimension, orientation, and concentration of artificial
pinning centers (APCs) has long been a desire of researchers and is crucial for the practical
application of HTS. In this review, we have presented the development of materials engi-
neering aspect that has been conducted over the last two decades to improve the current
carrying capability of HTS films by introducing nanoscale APCs.

2. Natural Vortex Pinning Centers

HTSs spontaneously generate various types of crystal defects, impurities, and other
non-ideal structures during the preparation process due to the complexity of structures.
The generation of these defects can have an active role in vortex pinning and become
spontaneous pinning centers. A schematic diagram of various spontaneous crystal defects
in HTS films is shown in Figure 1. The defects which are naturally generated during the
growth of HTS films can act as vortex pinning centers including point defects [23,24], voids,
misfit dislocation, precipitates, grain boundaries [25,26], antiphase boundaries [27], twin
boundaries [28,29], planar defects [30], and so on. Among them, grain boundary is one of
the most common crystal defects in HTS films. At boundaries, where misaligned grains
meet, atomic order is disrupted resulting in strain and dislocations, which provide pinning
to the vortices.

However, the pinning efficiency of these naturally occurring defects is not sufficient to
counter thermal fluctuations and maintain necessary Jc levels at high magnetic fields [31,32].
Therefore, the enhancement of Jc by introducing additional APCs into the superconducting
film matrix has become a valuable research topic.
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Figure 1. Schematic diagram of spontaneous vortex pinning centers of HTS films. Reprinted with
permission from Ref. [33]. Copyright 2018, IOP Publishing Ltd.

3. Artificial Pinning Centers (APCs)

To better pin the vortex at external magnetic fields, the HTS films must contain APCs
with desired morphology, dimension, orientation, and concentration. Nanoscale APCs with
lateral dimension approaching 2ξ (coherence length) on the order of a few nanometers in
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HTSs must be generated to suppress the dissipation of vortex motion. This has prompted
extensive efforts in the past few decades or so and exciting results have been obtained
in generating nanoscale APCs in HTS films. In this section, we introduced the research
progress of different types and dimensions APCs in detail, and summarized the impact on
superconducting performance.

3.1. Zero-Dimensional APCs (0D APCs)

The effect of ionic radii on the Tc of REBCO has been documented in previous
work [34]. It is well known that varied rare-earths have different ionic radii. The phe-
nomenon that Tc varies linearly with ionic radius of RE ions has been detected and was
attributed to strain-induced charge redistribution between the CuO2 planes and the charge
reservoir (CuO-chains). Several rare-earth elements, including Sm, Eu, and Nd, have been
doped in place of Y with various molar cationic ratios to enhance the vortex-pinning capa-
bilities of YBCO films [35]. The Y atom in Y-Ba-Cu-O has been totally replaced in certain
studies [35–38] by another rare-earth atom or a mixture of two or more rare-earth atoms,
which has improved vortex pinning. Several combinations, including (Gd0.8Er0.2) [37] and
(Nd1/3Gd1/3Eu1/3) [38], were published to determine whether the strain caused by lattice
mismatch increased when mixtures of rare-earth elements were used instead of a single
rare-earth element. Except for the situation when defects were random and unrelated,
the enhancement was not notable in any circumstances. There have been attempts to
substitute Tb, Ce, Pr, Nd, La, Co, Dy, and Eu at the Y site of YBCO and the RE site of
REBCO films [24,39–42]. The increased density of these substituent nanoprecipitates in
doped REBCO films compared to pristine REBCO film led to elevated Jc and Fp values
across a wide range of applied magnetic fields, which in turn led to stress field due to lattice
mismatch between the phases in the resulting REBCO films.

3.2. One-Dimensional APCs (1D APCs)

The idea of strain engineering has been applied to generate and control the morphology
and dimension of APCs embedded in HTS films. According to the elastic strain energy
model, the appropriate level of interfacial strain can act as a driving force for the self-
assembly of 1D vortex pinning, controlling the morphology [43,44], dimensionality [45,46],
orientation [47], and concentration [48]. Numerous studies have shown that 1D columnar
APCs grown along the c-axis of REBa2Cu3O7-δ films exhibit strong vortex pinning ability,
resulting in high Jc when the applied magnetic field is along the c-axis direction [43,48–50].

MacManus-Driscoll et al. [51] first reported the introduction of BaZrO3 secondary
phase into YBCO films using the PLD (Pulsed Laser Deposition) technique to enhance
the performance. It was found that BaZrO3 nanoparticles and nanocolumns produced
significant c-axis orientation-related enhancement of Jc despite its random distribution
in the YBCO matrix. Following the work of MacManus-Driscoll et al., 1D BaZrO3 APCs
have been intensively investigated. In the subsequent report by Yamada et al. [52], the
addition of YSZ (yttrium oxide stabilized zirconium oxide) to YBCO targets resulted in the
formation of columnar BaZrO3 nanostructures in YBCO films and would leave a YBCO film
matrix containing Ba defects. Self-assembly of vertical arrays of BaZrO3 phases is observed
in this composite film. The vertical alignment of these self-assembled BaZrO3 columnar
phases was hypothesized to be due to the preferential nucleation of impurity islands in the
strain field above the impurity particles [53]. Physical property measurements showed that
these self-assembled vertical BaZrO3 phase arrays resulted in strong pinning of vortices,
especially when the applied magnetic field was along the c-axis direction. Goyal et al. [54]
also reported enhanced pinning of BaZrO3/YBCO nanocomposite films along the c-axis
direction. The BaZrO3/YBCO interface is strongly strained due to the high lattice mismatch
of 7.7% between BaZrO3 and YBCO, which leads to the formation of a high defect density
semi-coherent BaZrO3/YBCO heterointerface [55,56]. This defect is considered the source
of the high pinning efficiency achieved at the 1D BaZrO3 magnetic flux pinning centers.
Gutiérrez J et al. [56] performed HAADF-STEM observations and theoretical calculations
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on the interface region, where there are a large number of interfacial mismatch dislocations,
as shown in Figure 2a–c. Another feature of the interface region is distortion, which denotes
the local atomic displacement due to the interface atomic bonding. The matrix portion in
the interface region is analyzed to discuss the superconductivity in the nanocomposites.
Figure 2d shows a dependence of the pDOS (partial Density of States) of Cu 3d in the
CuO2 plane on the interface position in the BaZrO3(2 layers)/YBCO(8 layers), which
indicates that the pDOS of YBCO varied significantly in three unit-cell thick regions from
the BaZrO3 columns.
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Reprinted with permission from Ref. [56]. Copyright 2017, American Chemical Society.

The force that resists the motion of vortices under the influence of Lorentz force is
called the pinning force, whose density is termed as pinning forced density (Fp). Re-
searchers applied the MOCVD (metal-organic chemical vapor deposition) technique to
demonstrate that the incorporation of BaZrO3 in relatively thick REBCO films (1~2 µm) re-
sults in excellent Jc properties [57–62]. One of the nanocomposite films reached the highest
recorded value of Fp, max~1.7 TN/m3 (at 4.2 K) with µ0Hirr (irreversibility field)~14.8 T (at
77 K), which is much higher than the µ0Hirr of NbTi superconductor at 4.2 K (~11 T) [57].
In the cross-sectional and planar TEM images (Figure 3) of the heavily doped (Gd, Y)BCO
films prepared by the MOCVD technique, self-assembled BaZrO3 nanocolumns with c-axis
orientation can be observed. The critical current performance is excellent in the heavily
doped films with Fp, max exceeding the value of 1 TN/m3 [59].
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AIP Publishing.

The search for new vortex pinning materials with smaller lattice mismatches with
HTSs is the most effective and likely solution to improve superconductivity. In ad-
dition to BaZrO3, 1D-nanostructured materials such as BaSnO3 [63–71], BaTiO3 [72],
BaHfO3 [63,73–75], YBa2(Nb/Ta)O6 [76–79] have also been successfully introduced into
YBCO films using the PLD technique. These 1D APCs provide different degrees of vortex
immobilization [63,68,73–75,77,78,80]. In all cases, the enhancement of Jc is more pro-
nounced when the applied magnetic field is higher. Mele P et al. [71] reported a record
Fp, max value of 28.3 GN/m3 for BaSnO3/YBCO nanocomposite films, reflecting the excel-
lent Jc performance at that time. In addition, the double-perovskite material, YBa2NbO6
(YBNO), was also investigated as 1D APCs and introduced into the superconducting ma-
trix [81]. In another study, Jha A. K. et al. [82] applied surface-modified target method
to introduce YBa2NbO6 columns into YBCO films by controlling the rotational speed of
the target to control the concentration of YBa2NbO6. YBa2NbO6 nanocolumns were ob-
served to effectively enhance the Jc performance of YBCO films. Furthermore, RE3TaO7
and REBa2TaO6 were also proved to significantly enhance the Jc performance of REBCO
films [83,84], and the results indicated that lattice mismatch is a suitable condition to
produce high pinning ability in the range of 5~12% [84].

Recently, BaHfO3(BHO) has sparked much interest among researchers as a very
promising secondary phase APC, whose nano-inclusions in the form of columnar or spher-
ical structures within the REBCO matrix significantly improve the Jc values of REBCO
films deposited on single crystals and metal strips [85–92]. Tobita et al. [85] firstly reported
that the BHO-doped GdBa2Cu3Oy(GdBCO) film was deposited by PLD on the IBAD-MgO
substrate. The most interesting feature of BHO nanocolumns addition was reported as Jc
is undepressed by increasing thickness of the film. By using the LTG (Low-Temperature
Growth) technique in PLD, BaHfO3/SmBCO films exhibit very high Fp, max (~28 GN/m3)
at 77 K when H is parallel to the c-axis [89]. Even on metal tapes, the BaHfO3/GdBCO
nanocomposite films exhibit a large Fp, max (~23.5 GN/m3) and a high irreversibility field
(µ0Hirr = 15.8 T) when H is parallel to the c-axis at 77 K [90]. In addition, BaHfO3 nanopar-
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ticles were also introduced into YBCO [91] and GdBCO [92] films using the CSD method,
which improved the Jc of the nanocomposite films.

It is worth noting, 1D APCs are usually introduced to HTS film by PLD or MOCVD.
However, the results in the preparation of BaZrO3/YBCO nanocomposite films by the CSD
(chemical solution deposition) method are completely different [93]. In the preparation
of HTS films by physical techniques represented by PLD, the nucleation of the supercon-
ducting matrix and the secondary phase is simultaneous, whereas in the preparation by
CSD, the nucleation does not occur at the same time, leading to a different final phase
morphology [94]. Gutiérrez, J. et al. [93] prepared BaZrO3/YBCO nanocomposite films
using the CSD method and corresponding TEM images are shown in Figure 4. It can be
noticed that non-columnar BaZrO3 spherical nanoparticles are produced in the matrix
and surrounded by many crystal defects. This indicates that the difference in preparation
methods can seriously affect the morphology of APCs. In contrast to the columnar BaZrO3
secondary phase, the formation of spherical BaZrO3 nanoparticles leads to thin films with
isotropic pinning properties [95,96].
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permission from Ref. [93]. Copyright 2007, Nature Portfolio.

3.3. Two-Dimensional APCs (2D APCs)

The deposition of multilayer or quasi-multilayer film structures has also been used
in HTS films to improve vortex pinning capabilities. For example, YBCO multilayer films
have been prepared using the PLD technique (intermediate layers include: Ag [97], Pd [98],
Y2O3 [99–101], BaZrO3 [102,103], SrRuO3 [104], SrTiO3 [105], LaCaMnO3 [106], YSZ [107],
Y-211 [108], PrBa2Cu3Ox [109] and transition metals Ir [110], Ti, Zr, Hf [111]). The formation
of BaMO3 (M = Ti, Zr, Hf, Ir) phases can be observed after the addition of transition metal
elements to YBCO films. Not only the Jc enhancement based on YBCO multilayers was
observed from the physical property test results, but also the irreversibility lines moved to
higher H-T regions [102].

K Develos-Bagarinao et al. [112,113] deposited relatively thick HTS films (~400–600 nm)
with significantly improved surface morphology and Jc using a multilayered structure
which alternated main layers of YBCO with intermediate DyBa2Cu3O7−δ (DyBCO) layers
on CeO2-buffered sapphire substrates by PLD. The DyBCO layer has a close lattice matching
with YBCO, providing a good starting template for the growth of high-quality YBCO
layers. Jc drastically increased up to a factor of 2 for YBCO/DyBCO multilayer films,
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compared to YBCO monolayer films in both the self-field and applied magnetic field. The
significant improvement in Jc is attributed to the improvement of surface smoothness and
enhanced flux pinning properties as revealed by the magnetic-field angular dependence of
Jc. Schematic illustration of the YBCO/DyBCO multilayers is presented in Figure 5a.
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Figure 5. (a) Schematic illustration of the YBCO/DyBCO multilayers. Reprinted with permission
from Ref. [113]. Copyright 2007, AIP Publishing. (b,c) Low and high magnification cross-section TEM
micrograph of YBCO + BZO/CeO2 multilayer. Reprinted with permission from Ref. [114]. Copyright
2007, IOP Publishing.

S Kang et al. [114] prepared multilayer structures comprising YBCO films with self-
assembled BZO nanodots with interlayers of CeO2 grown on rolling-assisted biaxially
textured substrates (RABiTSs) using PLD. Enhancement of pinning in the multilayers was
attributed to the presence of columnar defects comprised of self-assembled nanodots of
BZO as well as planar CuO-type stacking defects arising as a result of interfacial reactions in
the multilayers. The corresponding cross-section TEM micrograph of YBCO + BZO/CeO2
multilayer is shown in Figure 5b,c.

T. Haugan et al. [115] applied a different approach in PLD and succeeded in intro-
ducing the non-superconducting phase Y2BaCuO5 (Y211) into YBCO films in a controlled
manner. By using two different targets (YBCO and Y211) and alternately depositing a
YBCO film layer and a discontinuous Y211 film layer, a pancake-like array of precipitates
was formed in the obtained film matrix. In this case, either H is parallel to the c-axis or
the ab-plane, vortex pinning efficiency is improved significantly [116]. Moreover, recent
studies have also shown that these Y211 nanoparticles are not only effective in enhancing
Jc but also in reducing its anisotropy [117].

3.4. Three-Dimensional APCs (3D APCs)

To obtain better performance, the ideal materials need to be carefully selected when
introducing the secondary phase to the HTS matrix. In terms of pinning efficiency, the
spherical secondary phase needs to maintain the proper size and shape, and is required to
be uniformly distributed among the superconducting matrix, which is necessary. Therefore,
it is not an easy task to find a secondary phase material that will persist in ideal presence
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and distribution during superconductor synthesis as APCs. At present, many compounds
have been applied to investigate the possibility of becoming effective APCs.

3.4.1. Introduction of 3D APCs by Vapor Deposition Methods

Vapor deposition methods have been used to prepare spontaneously generated and
segregated spherical vortex pinning centers, including Y2O3 [118–123], Y211 [124,125],
BaIrO3, Ag, Au [126], and Gd2Ba4CuWOy compound. When HTS films are deposited using
techniques such as CVD or PVD, the relationship between the orientation of APCs and
superconducting matrix is often determined by the growth mechanism of both, leading to
a fixed overall orientation of APCs, since the secondary phase and the superconducting
matrix nucleated simultaneously [127].

S. K. Viswanathan et al. [123] prepared Y2O3/YBCO nanocomposite films by PLD,
which possessed high Jc up to five times than that of pure YBCO films in high magnetic
field. In addition, their results demonstrated that the size, interparticle spacing, and density
of Y2O3 nanoparticles could be tailored by varying the number of laser pulses in order to
determine the optimum size for effective immobilization of vortices. Paolo Mele et al. [128]
deposited 3D Y2O3-added YBCO films on SrTiO3-buffered MgO substrates by PLD using
surfaced-modified YBCO targets. The 5.44A% Y2O3-added sample presents a very high
value of pinning force (Fp,max~14.3 GN/m3), approaching the value obtained in YBCO
films with added 1D BaZrO3 nanorods, but with less depression in Tc. The corresponding
TEM analysis of the nanocomposite film is shown in Figure 6. Masashi Miura et al. [129]
applied the LTG-PLD technique to prepare “Sm1+xBa2-xCuOy+nanoparticle” films. Low Tc
3D nanoparticles are randomly dispersed in the superconducting matrix due to the local
compositional fluctuation, and significant improvement in the pinning properties has been
achieved. The SmBCO nanocomposite films obtained an extremely high Jc~0.1 MA/m2

(77 K, B//c, B = 8 T).
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3.4.2. Introduction of 3D APCs by Liquid Phase Deposition Methods

There are two routes for introducing 3D APCs by liquid phase chemical preparation: in
the first case, named “in situ”, a complex solution containing all elements is prepared to form
HTS films and dopants. By this way, APCs are spontaneously generated and segregated
during the HTS films growth. The second case, called “ex situ”, involves dispersing
preformed oxide nanoparticles (NPs) added to YBCO precursor solution to define and
strictly control NPs size, concentration and composition before the HTS film growth occurs.
In this way, it is possible to form point-like or spherical vortex pinning centers, which are
expected to be very effective at low temperatures and high-field regimes [130].

During the spontaneously generated and segregated chemical preparation of HTS
films, some of elements of APCs can react with precursors, superconducting substrates,
or other additives. Taking advantage of this feature, organic (trifluoroacetate [93,131],
ethoxide [132], acetylacetonate [131], acetates [133,134], naphthenate [135,136]) or inorganic
(nitrates [133,137], titanate [138]) salts corresponding to elements of APCs are added during
the synthesis stage of HTS films, and APCs are spontaneously generated and widely
distributed in HTS films during the sintering process.

The superconducting properties of HTS films with different types of APC and different
deposition methods are shown in Table 1.

Table 1. The types, dimension, preparation methods of APCs and corresponding thickness, Jc, Tc,
and Fp

max of YBCO nanocomposite films.

APC Film Method Dimension
Film

Thickness
(nm)

Jc
(MA/cm2) Tc (K) Fp

max

(GN m−3) References

HfO2 YBCO ex situ Ink-Jet
Printing 3D 450–500 3.1 (77 K, 0 T) — 6.8 (77 K, 0 T) [139]

Nanodiamond YBCO ex situ MOD 3D 75 4 (77 K, 0 T) 90.4 ± 0.2 — [130]
BaZrO3 YBCO ex situ MOD 3D 260 4.7 (77 K, 0 T) 91.3 4.1 (77 K, 1 T) [140]
SrZrO3 YBCO ex situ MOD 3D 290 2.7 (77 K, 0 T) 90.2 2.0 (77 K, 1 T) [140]
BaHfO3 YBCO ex situ MOD 3D 240 4.5 (77 K, 0 T) 90.7 5.9 (77 K, 1 T) [140]
BaTiO3 YBCO ex situ MOD 3D 300 4.6 (77 K, 0 T) 92.3 1.5 (77 K, 1 T) [140]
ZrO2 YBCO ex situ CSD 3D 180 5 (77 K, 0 T) 89.6 6 (77 K, 0 T) [141]

MnFe2O4 YBCO ex situ CSD 3D 150 ± 10 2 (5 K, 0 T) 76 — [142]
BaZrO3 YBCO in situ MOD 3D 200–270 2.2 (77 K, 1 T) 91 21 (77 K, 2 T) [93]

Ba2YTaO6 YBCO in situ CSD 3D 250 4–5 (77 K, 0 T) 89–90 6 (77 K, 1 T) [132]
Y2O3 YBCO in situ PLD 3D — 2.62 (44 K, 0 T) 89.26 7.8 (77 K, 2 T) [118]

Ba2LuNbO6 YBCO in situ PLD 1D 160 0.76 (77 K, 2 T) 89.5 17.5 (77 K, 1.5 T) [143]
BaHfO3 YBCO in situ PLD 1D 190 0.61 (77 K, 0 T) 89.0 15.9 (77 K, 3 T) [144]
BaSnO3 YBCO in situ PLD 1D 220 0.64 (77 K, 1 T) 89.6 13.4 (77 K, 2 T) [144]
BaSnO3 YBCO in situ PLD 1D 271–310 0.38 (77 K, 5 T) 88.6 28.3 (77 K, 2 T) [71]

Ba2YNbO6 YBCO in situ PLD 1D 500–1000 4.5 (75.6 K, 0 T) 92.0–92.5 32.3 (75.5 K, 0 T) [77]
Ba2Y(Nb/Ta)O6 YBCO in situ PLD 1D 250 1.18 (77 K, 2 T) 90.5–90.8 21.5 (77 K, 1.7 T) [78]
Ba2YNbO6 YBCO in situ PLD 1D 400 1.6 (77K, 0 T) 88–91 6 (77 K, 1.4 T) [145]
Ba2YTaO6 YBCO in situ PLD 1D 215–230 1.6 (77K, 0 T) — 9.1 (77 K, 3 T) [146]

Ba2Y(Nb/Ta)O6 YBCO in situ PLD 1D 215–230 3.2 (77 K, 1 T) — 11.5 (77 K, 4.4 T) [146]
Ba2YNbO6 YBCO in situ PLD 1D 200–800 4.1 (77 K, 0 T) 87.4–88.3 — [79]

BaZrO3 (YCa)BCO in situ PLD 1D 160–170 4.39 (77 K, 1 T) 87.5 98 (65 K, 0 T) [147]
Ba2YTaO6 +
Ba2YNbO6

YBCO In situ PLD 1D + 3D 150–230 7.5 (10 K, 0 T) 89.9 900 (10 K, 12 T) [148]

BaSnO3 +
Y2BaCuO5

YBCO In situ PLD 1D + 3D — 3.4 (77 K, 0 T) — 9.65 (77 K, 0 T)
44.7 (77 K, 0 T) [149]

BaZrO3 +
BaCeO3

YBCO In situ PLD 1D + 3D 310–380 4.5 (77 K, 8 T) 87.7–88.9 — [150]

Compared with other methods, the introduction of APCs by in situ chemical methods
has significant advantages such as low complexity and low cost, but there are disadvan-
tages such as the uncertain orientation, non-uniform size, easy agglomeration, and easy
chemical reaction with the superconducting matrix. For example, in the preparation of
spontaneously segregated Ba2YTaO6 nanoparticles in YBCO films, there is the coalescence
of three nanoparticles, as shown in Figure 7. The aggregated randomly oriented nanoparti-
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cles expose less interfacial area to the epitaxial YBCO matrix, i.e., less incoherent interface
than three separate nanoparticles [151]. In this scenario, the nanoparticles are much less
efficient in terms of generating nanostrained areas in YBCO matrix and cannot significantly
improve Jc performance under external magnetic fields [151]. In addition, it should be
emphasized that the advantage of introducing 3D APCs (either by in situ or ex situ route) is
an enhanced pinning performance in magnetic fields, especially at temperatures lower than
77 K through the effect of randomly dispersed strongly correlated defects. In this case, the
angular dependence of Jc is isotropic and the strong c-axis correlated peak is absent [152].
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Figure 7. (a) Low and (b) high magnification Z-contrast image of BYTO nanoparticles embedded in
the YBCO matrix. Reprinted with permission from Ref. [151]. Copyright 2014, IOP Publishing.

Recently, V Rouco et al. [153] have shown that solution-derived YBCO nanocomposites
can reach extraordinary pinning forces at 77 K, thanks to the isotropic nanostrain introduced
by nanoparticles. The presence of random nanoparticles during the YBCO growth induces a
high density of stacking faults (double or triple CuO chain layers) in the film as a mechanism
to relax the incoherent interfaces. Very efficient artificially induced isotropic core pinning in
CSD nanocomposites is attributed to Cooper pair suppression in nanostrained regions sur-
rounding the stacking faults in the form of partial dislocations [33,131]. Llordés A et al. [131]
studied the behavior of chemically inert BaZrO3 spherical nanoparticles when used as
APCs and concluded that the introduction of BaZrO3 secondary phase leads to the genera-
tion of various defects in the YBCO matrix (as shown by the pink arrows in Figure 8a–d).
Numerous stacking faults and Y248 phases nucleated at the junction of YBCO and BaZrO3,
and the nanoscale strain resulting from these defect generation (as shown in Figure 8e–i)
suppressed the generation of Cooper pairs, thus improving the vortex pinning and ulti-
mately the superconductivity.

In addition to the common binary or ternary oxides, inert oxides from the same REBCO
system (RE = Sm, Gd, Eu, etc.) can also be used as vortex pinning centers. For example, in
YBCO system, the Y-2411-M phase (Y2Ba4CuMOx, M = Nb, Ta, Mo, W, Ru, Zr, Bi, and Ag)
is also a promising material. Similarly, inert phases with chalcogenide structures that are
stable at high temperatures, such as Ba2RETaO6, Ba2Y(Nb, Ta)O6, also have been reported
as APCs [84,154].
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Figure 8. (a,b) HAADF images of BaZrO3 nanoparticles in the YBCO matrix. (c,d) High-resolution
HAADF images of the region between two BaZrO3 nanoparticles. (e) HAADF image where the strain
maps are obtained. (f) Grid obtained by PPA (Peak Pairs Analysis) from the image shown in (e).
(g–i) Exx, Eyy and Exy maps, respectively. Reprinted with permission from Ref. [131]. Copyright
2012, Nature.

3.4.3. Substrate Decoration by 3D APCs

Modifying substrate surface by 3D APCs before depositing superconducting films was
one of the first methods to introduce APCs into HTS films. The modification of substrate
surface is accomplished by growing different types of nanoparticles such as metals [155–158]
or oxides [138,159–164] on substrates to create interfacial defects. Due to the presence
of these nanoparticles at the phase interface, the deposited YBCO crystalline surface is
distorted or flexed above the nanoparticles, producing low-angle grain boundaries or
dislocations that may extend over the entire film thickness.

PLD and MOD (Metal–Organic Decomposition) technique has been used for the
modification of substrates before growing YBCO films [165–168]. Patricia Abellan et al. [169]
elucidated the effect of a BaZrO3 nanoparticle template on the microstructure and Jc of
YBCO films. Figure 9a,b shows the AFM and TEM images of the nanostructured interface
of BaZrO3/LaAlO3; Figure 9c presents a schematic drawing of the 3D configuration of a
YBCO film grown on a nanostructured BaZrO3/LaAlO3 template; Figure 9d,e displays the
corresponding Jc measurement results.

Matsumoto et al. [170] reported the introduction of Y2O3 nanoparticles at the phase
interface between the substrate and film. Physical property tests showed that when H is
parallel to c-axis there was a significant enhancement in Jc properties, indicating that the
introduction of Y2O3 nanoparticles resulted in enhanced vortex pinning. In another report
by Aytug et al. [156], the enhancement of Jc was observed by treating SrTiO3 substrates with
Ir nanoparticles. The authors noted that YBCO planes growing on top of Ir nanoparticles
were curved and produced random pinning. In general, random pinning is generated
due to the uniform distribution of point defects within the entire film volume. In this
case, the film thickness is 100 ~ 200 nm and the strain field running through the entire
film thickness surrounds the entire periphery of the Ir nanoparticles. The difference in the
pinning mechanism between Y2O3 and Ir nanoparticles can be explained by their reaction
with the YBCO film through the chemical reaction with the YBCO phase. When Ir is
present at the SrTiO3/YBCO interface, these Ir nanoparticles may have partially reacted
chemically with YBCO, and the resulting volume change may provide an alternative way to
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relieve strain, thus reducing the driving force for dislocation formation and weakening the
associated magnetic flux pinning ability. However, the Y2O3 nanoparticles are chemically
inert with YBCO, and thus they are intact at the substrate and film phase interface. A.
Crisan et al. [155,171] deposited Ag nanodots on SrTiO3 substrates by PLD prior to the
growth of (Cu, Tl)BaSrCa2Cu3Oy films. The results show that the Ag nanodots increased
the Jc more than one order of magnitude than that without nanodots. M. Ionescu et al. [172]
also applied Ag nanodots to decorate the YSZ substrate. Under magnetic fields, Jc was three
times higher for the YBCO film grown on the modified YSZ surface than the virgin surface.
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Figure 9. (a,b) AFM and TEM images of BaZrO3 nanoparticles. (c) Schematic drawing of the 3D
configuration of the YBCO film grown on a nanostructured BaZrO3/LaAlO3 template. (d) Jc vs. H
applied along the c-axis (θ = 0◦) and 77 K for a standard film (open symbols) and a nanostructured one
(closed symbols). (Inset) the respective pinning forces determined from Jc(H). (e) Angular dependence
of Jc at 77 K and 7 T for a standard film and a nanostructured film. Reproduced with permission
from [169]. Copyright 2011, Elsevier.

3.5. Hybrid 1D + 3D APCs

The 1D columnar APCs perform very well in enhancing Jc, but one of the shortcomings
is that the performance of Jc degrades more with the change of direction of applied external
magnetic fields. In addition, at higher temperatures, due to thermal excitation, the vortex
tends to form a double kink structure, and even if they contain crystal defects in the
c-axis direction, the unpinned vortices can still move due to the Lorentz force, resulting
in degraded performance. To solve this problem, combinations of APCs with different
dimensions have been developed. It has been shown that the simultaneous formation of
1D and 3D APCs can effectively compensate for the lack of performance of 1D columnar
APCs only, adapting to applied magnetic fields with different applied directions [173].

Mele et al. [152] reported the combined application of two different types of pinning
centers to successfully introduce both BaZrO3 columns and Y2O3 nanoparticles into YBCO
films using the PLD technique. Although Jc increased only slightly in the intermediate
angular region, the significant decrease of Jc with angle in c-axis direction was significantly
improved compared to YBCO films with only BaZrO3 nanocolumns added. Similar results
were obtained in a related study by Ding F. Z et al. [174]. Subsequently, combinations of
columns with nanoparticles of different materials were also reported to enhance the Jc
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performance of YBCO films, sufficiently reducing the anisotropy of Jc [65,77,149,175]. For
example, BaSnO3 columns and Y2O3 nanoparticles were tried in combination, which
significantly enhanced Jc and reduced the anisotropy of Jc [64,175]. TEM studies of
YBCO + 3%BaSnO3 and YBCO + 3%BaSnO3 + Y2O3 nanocomposite films showed that only
columnar nanostructures were formed in YBCO + BaSnO3 films, while YBCO + BaSnO3 + Y2O3
thin films formed both columnar and spherical nanostructures.

In 2016, F. Rizzo et al. [146] deposited YBCO films with pinning additions of 5 at. %
Ba2YTaO6 (BYTO) by PLD technique. Excellent vortex pinning at 77 K was obtained with re-
markably high irreversibility fields greater than 10 T, representing the highest ever achieved
values in YBCO films. Lately, in 2020, G Celentano et al. [148] deposited YBCO films with
pinning additions of 2.5% Ba2YTaO6 + 2.5% Ba2YNbO6 (BYNTO) double-perovskite sec-
ondary phases by PLD technique in an extended film growth rate, R = 0.02–1.8 nm s−1.
This microstructure results in very efficient vortex pinning at 77 K, leading to a remarkable
improvement in Jc behavior, with Fp max ~ 13.5 GN m−3 and Hirr ~ 11 T. The corresponding
TEM images are shown in Figure 10.
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Figure 10. TEM images of YBCO-BYNTO films deposited at a growth rate of 0.02 nm s−1. (a) Cross-
section view. Left panel: HAADF overview showing the BYNTO straight columns; right panel:
high-resolution HAADF image of BYNTO nanocolumn decorated by Y2O3 nanoparticle. (b) Cross
section view: HAADF image of the mapped area together with elemental Y, Ba, Cu, Ta, and Nb EDX
maps. (c) Plan view. Left and central panels: HAADF and LAADF images. Interphase dislocations
causing local strain can be visualized by GPA maps (right panel). Reprinted with permission from
Ref. [148]. Copyright 2020, IOP Publishing.

Other combinations of different types of columns and nanoparticles have also been
introduced into YBCO films, such as BaSnO3 columns and Y211 nanoparticles [149], BaZrO3
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columns and BaCeO3 nanoparticles [150], BaHfO3 columns and Y2O3 nanoparticles [176],
all of which induced excellent Jc performance.

3.6. Ferromagnetic APCs

In the study of vortex pinning in HTS films, the choice of APCs has generally been
made for insulating nonmagnetic metal or oxide. However, there have been successful
attempts to introduce ferromagnetic APCs into YBCO films. Therefore, we listed ferromag-
netic APC as a separate section to discuss.

Before depositing YBCO films, J. Wang and C.F. Tsai et al. prepared the Fe2O3 film
on HTS films as a cover layer [177,178]. The measurements showed a significant en-
hancement of Jc for samples consisting of the Fe2O3 overlayer. Moreover, ferromagnetic
nano-inclusions such as YFe3O4 [179] (YFO) and CoFe2O4 [180] (CFO) were also success-
fully applied to enhance the vortex pinning properties of YBCO films. By introducing
ferromagnetic CoFe2O4 nanoinclusions, both magnetic and defect pinning can be incorpo-
rated into YBCO films to achieve stronger pinning effects under higher applied magnetic
field regimes, as shown in Figure 11. The results suggest that the CFO nanoparticle cap
is an ideal approach to introduce ordered vortex pinning centers in YBCO films, which
shows enhanced superconducting properties (as shown in Figure 11g–i) both at self-field
and under high applied field regimes without degrading YBCO’s intrinsic properties.
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Figure 11. (a) HRTEM image of the CoFe2O4/YBCO heterointerface. (b,c) FFT diffraction of YBCO
and CoFe2O4 phases. (d) IFFT of YBCO/CoFe2O4 interface. (e) TEM image with the corresponding
SAED. (f) HRTEM image of YBCO(001)/YBCO(010) interface with corresponding FFT diffraction.
Jc vs. H measured at (g) 65 K, (h) 40 K, and (i) 5 K. Reprinted with permission from Ref. [180].
Copyright 2013, IEEE-Inst Electrical Electronics Engineers Inc.
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At sufficiently low concentrations, Fe incorporation into the YBCO matrix can effec-
tively form vortex pinning; with increasing Fe concentration, the so-called “poisoning
effect” can be observed [181]. The enhanced vortex pinning properties of YBCO films
containing ferromagnetic nano-inclusions were discussed using a Lorentz force reduc-
tion mechanism, which is effective for the low applied magnetic field region (~1 T) [182].
Ferromagnetic La0.7Sr0.3MnO3 (LSMO) was deposited on top of SrTiO3 substrates using
a PLD approach, followed by the deposition of YBCO films. The physical test results
showed that modified samples exhibit stronger Jc performance than unmodified samples,
which is due to the presence of LSMO nanoparticles at the YBCO/SrTiO3 interface that
creates structural defects such as penetration dislocations, which lead to vortex pinning
in the c-axis direction in YBCO films. Additionally, the Jc enhancement of YBCO films
with modified substrates can also be understood by the Lorentz force reduction pinning
mechanism [182]. Jijie Huang et al. [183] incorporated vertically aligned nanocomposite
(VAN) (La0.7Sr0.3MnO3)0.5(CeO2)0.5 and pure La0.7Sr0.3MnO3 layers into YBCO films as
bilayer stacks for vortex pinning enhancement. The films showed high epitaxial quality,
demonstrated by XRD and TEM studies. The Tc of the bilayers is about 90 K, which is close
to that of pure YBCO films, while both the self-field Jc

sf and in-field Jc
in-field are largely

enhanced. Among all samples, the film with VAN caplayer showed the highest Jc values in
all field ranges. This study demonstrated an effective way towards the tunable pinning
effect for YBCO coated conductors by both defect and magnetic pinning.

4. Summary and Outlook

The large-scale application of HTSs in energy, transportation, information, space ex-
ploration and other fields will bring huge economic benefits. At present, the application of
superconductivity is not only in the conceptual stage, but also has been fully proved to be
feasible. The emergence of new driving forces, such as the performance, reliability, prac-
ticability, cost performance, and competitiveness of existing technologies, is the research
focus of future large-scale superconducting practical application technology.

This paper focuses on the types of APCs in HTS films, the methods of introducing, and
the principles of performance enhancement. Although the general idea of vortex pinning
is simple, the theory behind the successful exploitation of magnetic flux pinning center
behavior still proves to be very challenging. Depending on the deposition techniques and
the intended applications of the product, different dimensions, morphologies, orientations
and concentrations of APCs need to be studied. Combining the current state of research,
it seems that for HTS films, the best overall approach is a combination of 1D (columnar
secondary phase and defects) and 3D (nanoparticles). This combination provides high
performance while allowing a slightly larger margin of error, considering that the orien-
tation of the 1D pinning center is only a contribution to the total pinning in the REBCO
layer. Moreover, the difficulty of the current research is that the vortex pinning theory of
superconductivity lags behind the experimental progress and cannot completely explain
and guide the next research on superconductivity preparation and application work at the
theoretical level.
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