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Abstract: In this study, ZnO nanoparticles were prepared by a hydrothermal method with varying
the reaction times, material ratios and reaction temperatures. The samples were characterized by
scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction
(XRD) and Fourier infrared spectroscopy (FTIR). It was shown that the material ratio significantly
affected the structure and morphology of the synthesized ZnO nanoparticles, and then the uneven
nano-octahedral structure, uniform nano-octahedral structure, nano-tubular structure, and nano-
sheet structure could be obtained successively. The synthesized ZnO nanoparticles as mordant were
used for the dyeing of silk fabrics with different natural dyes (tea polyphenols and hematoxylin).
Moreover, they could improve the dyeing properties and fastness (wash and light) on silk fabrics to a
certain extent.

Keywords: ZnO nanoparticles; morphology; dyeing properties; fastness; SEM and TEM images;
FTIR spectroscopy

1. Introduction

With the rapid development of nanomaterials, the research and development of nano-
materials has attracted extensive attention from researchers all over the world [1–5]. Nano
zinc oxide is favored for its unique physical and chemical properties worldwide [6]. Nano
zinc oxide has many advantages, including strong catalytic activity, a small size, a large
specific surface area, a lowered environmental impact, and being reusable [7]. Moreover,
compared with other metal oxide nanoparticles, ZnO nanoparticles are easy to prepare,
as the main advantages of nano zinc oxide are that it is a biocompatible and low-cost
material [8,9]. In recent years, nano zinc oxide has shown potential for applications in
biopharmaceuticals, optoelectronic devices, ceramic processing, rubber products, textile
printing and dyeing, sewage treatment and other industries [10–14]. Over the years, the
preparation of nanoparticles has been described using several methods, such as hydrother-
mal [15,16], microwave-assisted [17,18], sol–gel [19,20], self-assembling [21], and chemical
precipitation [22–25]. Based on the advantages of good uniformity of microcrystalline size
and significant cost efficiency of industrial production, the hydrothermal method is more
preferred by researchers [26,27]. Moreover, nanotechnology can help control particle size
to fit functions that can find more applications for its use. For example, nanoparticles are
considered excellent candidates as drug-delivery vehicles. In addition, ZnO nanoparticles
have also been reported to bring an improvement in the mechanical and antimicrobial
property of silk fibers, which can be used as potent surgical suture material [28].

In recent years, with improvements in living standards, green and safe back-to-nature
ways have become a pursuit for many people. A renewed international interest has arisen

Nanomaterials 2022, 12, 3953. https://doi.org/10.3390/nano12223953 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12223953
https://doi.org/10.3390/nano12223953
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-0322-9559
https://doi.org/10.3390/nano12223953
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12223953?type=check_update&version=2


Nanomaterials 2022, 12, 3953 2 of 11

in natural dyes as they are among the promising options for developing a greener textile
dyeing process [29,30]. Natural plant dyes applied to textile dyeing have been reported
to confer a variety of health benefits and functionalities on textiles, such as UV protection,
antibacterial activity, deodorization, anti-carcinogenicity, and anti-oxygenation [31–34].
However, due to the low affinity between the colorants and the fibers when natural dyes
are used in textile dyeing, they cannot be well fixed on the fibers, resulting in poor color
fastness of the dyed fabrics [35–37]. Metal salt as mordant in the traditional color fixing
process can improve the color fastness of dyed fabrics, but the use of metal salt pollutes
water quality and the environment, and the color of dyed fabrics changes greatly. Moreover,
a greater number of metal ions on the fabric can cause partial damage to the human body,
such as skin allergy and itching [38]. In contrast, reports regarding any negative effects of
nano zinc oxide on the dyeing properties and fastness of natural-dye dyed fabrics are rare.

We prepared nano-ZnO with different morphologies by a hydrothermal method. The
prepared nano ZnO nanoparticles as mordant have been used to investigate the impact of
the dyeing properties and fastness (wash and light) on silk fabric dyeing with natural dyes
(tea polyphenols and hematoxylin). Overall, the introduction of new nanomaterials into
traditional dyeing and finishing processes was a small innovation. The following focus is to
figure out the mechanism of nanomaterials in functional textiles in order to better achieve
the desired results [39,40].

2. Materials and Methods
2.1. Materials and Methods

Sappanwood and tea-leaves were purchased from Shangyuantang Pharmacy in Nan-
jing City, Jiangsu Province, China. Double crepe silk fabric was purchased from WENSLI,
Hangzhou, China. All chemical reactants (zinc acetate, sodium hydroxide and ethanol)
were purchased from Sinopharm (Beijing, China) and used without any further purification
steps. Absorbance spectra of the staining solution before and after staining were performed
using an Agilent CARY 5000 Scan UV-Vis-NIR spectrophotometer (Germany). Morpho-
logical characteristics of the ZnO nanomaterials were observed by field emission scanning
electron microscopy (Hitachi Regulus 8100, Japan) and transmission electron microscopy
(TEM, FEI TALOS F200X 200 kV, Hillsboro, OR, USA). The compositional quality of the
synthesized materials was characterized by Fourier transform infrared spectroscopy (TEN-
SOR37, China) in the mid-infrared (400 to 4000 cm−1) range. Color strength (K/S) of the
dyed samples was tested by a Datacolor measuring and matching instrument (SF600X,
China). A sunlight fastness test of the dyed fabrics was performed using a sunlight fastness
meter (Q-SUN-B02, China). A soaping test of the dyed fabrics was performed using a
soaping machine (SW-24E, China). The crystal structure of the samples was analyzed by
X-ray diffraction in angle range (10–80◦) with a diffractometer (Rigaku Smartlab).

2.2. Colorant Extraction
2.2.1. Hematoxylin

To extract the hematoxylin colorant, sappanwood roots were first washed and dried
and then chopped and powdered. Then, we selected fermentation times (48 h), fermentation
solvents and extraction solvents (ethanol:water (3:7, v/v)) to extract plant dyestuff. The
extracting solution was filtered and concentrated in a rotary evaporator flask to 1/3 of the
original volume. The concentrated dye solution was freeze-dried under low temperature
to obtain hematoxylin.

2.2.2. Tea Polyphenols

Powdered tea was soaked in a 2 L mixture solution of alcohol and water in a beaker at
a volume ratio of 3:7 for 100 g. The excess alcohol and water were evaporated in a rotary
evaporator at 75 ◦C. The solution was collected in a rotary evaporator flask and dried in a
spray dryer at 170 ◦C for powder production. The dyed solution exhibited the absorbance
spectra of the two colorants as shown in Figure 1.
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Figure 1. The absorbance spectra of hematoxylin (a) and tea polyphenols (b).

2.3. Preparation

For hydrothermal growth, a 0.1 mol per liter of zinc acetate (Zn(CH3COO)2·2H2O)
and 1 mol per liter of sodium hydroxide (NaOH) combined solution was prepared in
volumetric flasks to be tested at different hydrothermal reaction times (6 h, 12 h), mate-
rial ratios of Zn2+ substance and OH− substance (Zn2+:OH− (2:1, mol/mol), Zn2+:OH−

(1:1, mol/mol), Zn2+:OH− (1:2, mol/mol), Zn2+:OH− (1:4, mol/mol)), and hydrothermal
reaction temperatures (100 ◦C, 130 ◦C). The preparation conditions for different samples of
ZnO nanoparticles are shown in (Table 1).

Table 1. Different reaction conditions of ZnO nanoparticles.

Sample Temperature/°C Reaction Time/h Material Ratios
(Zn2+:OH−/(mol/mol))

#1 100 6 2:1
#2 100 6 1:1
#3 100 6 1:2
#4 100 6 1:4
#5 130 6 2:1
#6 130 6 1:1
#7 130 6 1:2
#8 130 6 1:4
#9 100 12 2:1

#10 100 12 1:1
#11 100 12 1:2
#12 100 12 1:4
#13 130 12 2:1
#14 130 12 1:1
#15 130 12 1:2
#16 130 12 1:4

The reaction was placed on a thermostatic magnetic stirrer at a temperature of 50 ◦C
and a speed of 500 r/min. The sodium hydroxide solution was added dropwise to the
zinc acetate solution, and the reaction lasted for 30 min. The mixed reacted solutions
were transferred to the hydrothermal reactor, which was heated at the set temperature for
0.5 h and then cooled to room temperature at a rate of 10 ◦C·h−1. After the hydrothermal
reaction, the resulting product was filtered and rinsed thoroughly with deionized water to
remove the excess reactants from its surface. Finally, the samples were dried in an oven at a
constant temperature of 60 ◦C.
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2.4. Mordanting and Dyeing

The dyeing process was a simple water bath dyeing under continuous agitation with
an alcohol ratio of 1:50, and dye concentration (2% on weight the fabric). The dyeing
temperature was 80 ◦C with a holding time of 60 min, which started from 40 ◦C with an
increase in velocity of 2 ◦C/min. Holding at 80 ◦C for 30 min, 0.1 g/L mordant was added
and the fabrics continued to be dyed at 80 ◦C for 30 min. After the dyeing process was
completed, the fabrics were washed under running water and dried in a cool place at
room temperature.

2.5. Color Measurements

Dyed samples were analyzed by measuring the reflectance curve between 350 and
750 nm with the spectrophotometer with illuminant D65 at 10 degree observer. For each
sample, three measurements at three different sections were made, and the average values
were reported. Color strengths (K/S) of dyed samples were calculated using the Kubelka-
Munk equation:

K/S = (1 − R)2/2R (1)

where R is the observed reflectance, K is the absorption coefficient, and S is the light
scattering coefficient. In general, the greater the K/S value, the deeper the color on the
fabric [34,35].

2.6. Determination of Dye Exhaustion

Dye uptake was determined by measuring the absorbance (at the wavelength of
maximum absorbance, λmax ≈ 540 nm) of the dye bath solution before and after dyeing.
According to the Beer–Lambert law, when monochromatic light passes through the solution,
the absorbance D is proportional to the concentration C of the dye in the solution, so there is

% Dye exhaustion =
C0 − C

C0
× 100 =

mD0 − nD
mD0

× 100 (2)

where, C0 is the concentration of the dye in the original dye solution, C is the concentration
of the dye in the dyeing residue, D0 is the absorbance of the original dye solution diluted
m times, D is the absorbance of the dyeing residue diluted n times, m is the dilution factor
of the original dye solution when measuring the absorbance, and n is the dilution factor of
the dyeing residue when measuring the absorbance [31].

2.7. Fastness Properties

The wash and light fastness of dyed fabrics were tested in the light of ISO 105-C01,
ISO 105-B02, respectively.

3. Results
3.1. Structure and Morphology

The different morphologies of ZnO nanoparticles were prepared by the hydrothermal
method under different reaction conditions (reaction temperature, reaction time, material
ratio), and measured by scanning electron microscopy (SEM) as shown in Figure 2. The
SEM results of Figure 2 (#5–#8) show that when the hydrothermal reaction temperature
is 130 ◦C and the reaction time is 6 h, the Zn2+:OH− material ratio changes (2:1, 1:1, 1:2,
1:4), and then under these conditions, the uneven nano-octahedral structure, uniform nano-
octahedral structure, nano-tubular structure, and nano-sheet structure can be obtained
successively. This feature indicates that the morphology of ZnO nanoparticles gradually
becomes homogeneous as the OH− concentration increases. With a further increase in
OH− concentration, the surface of ZnO nanoparticles is etched on the original octahedral
structure, and the central position of ZnO particles is etched to form a nano-tubular struc-
ture. When the Zn2+:OH− material ratio is 1:4, the deposition of zinc oxide is significant
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due to the high concentration of OH−, and the longitudinal growth of nano-ZnO crystals is
inhibited and a nano-sheet structure is formed.
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Figure 2. SEM images of nano zinc oxide prepared under different reaction conditions (with different
reaction temperatures, reaction times and material ratios).

The SEM images in Figure 2 (#1–#4 and #5–#8) show the morphology of ZnO nanopar-
ticles grown at different hydrothermal temperatures (100 ◦C and 130 ◦C). It can be seen
that the surfaces of nano-ZnO crystals grown at 100 ◦C are rough and irregular, while the
surfaces of nano-ZnO crystals grown at 130 ◦C are smooth and regular.

The SEM images in Figure 2 (#5–#8 and #13–#16) are the morphology of nano-ZnO crys-
tals grown at different hydrothermal times (6 h and 12 h). With the increase in hydrothermal
time, the morphology of nano-ZnO crystals becomes irregular and the nano-surface be-
comes rough.

The SEM images in Figure 2 (#9–#12 and #13–#16) show the morphology of nano-ZnO
crystals grown at different hydrothermal temperatures (100 ◦C and 130 ◦C). With the
increase in hydrothermal temperature, the size of nanoparticles further increases and the
nano-surface becomes smooth.

Further studies on the morphology and structure of the as-synthesized ZnO particles
were investigated by TEM (Figure 3). Samples (#5–#8) were selected to test which ones
agreed with the SEM results. Moreover, it could be observed that the diameter of the ZnO
particles was approximately 500–1500 nm.
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3.2. X-ray Diffraction (XRD) and FTIR Analysis for the ZnO Nanoparticles

Figure 4a showed the observed XRD patterns of the synthesized ZnO nanoparticles
with identified obtained peaks such as (100), (002), (101), (102), (110), (103), (200) and (112)
are related to the hexagonal (wurtzite) structure of ZnO. The corresponding XRD peaks of
samples 5 and 6 were stronger and sharper, indicating that the samples crystallized well
and the average size of particles was bigger than 7and 8 [41,42].
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Figure 4. The XRD patterns (a) and FTIR spectra (b) for ZnO-NPs.

Figure 4b showed the FTIR spectrum of samples 5–8, which was acquired in the range
of 400–4000 cm−1, The different concentrations of adsorbed water molecules and hydroxyl
groups in the sample can be demonstrated by the band strength corresponding to the
tensile vibration of the O-H group (3000–3620 cm−1). The stretching modes of vibrations in
asymmetric and symmetric C=O bonds are observed at 1560 and 1410 cm−1, respectively.
The band at 450 cm−1 is correlated to ZnO [15].

3.3. Color Strength of Dyed Fabric with Hematoxylin and Tea Polyphenols

Figure 5 shows the color strength (K/S) of the silk fabrics dyed with hematoxylin
and tea polyphenols under the action of different morphology nano-zinc oxide mordants
at wavelengths of 350–750 nm. Compared with the unmordanted fabric, the color of the
mordant-treated samples became more intense, resulting in greater K/S values. It can
be clearly seen that the color strength of nano-ZnO is more intense and the K/S value is
greater than that of the original ZnO sample fabric dyed with hematoxylin, and the original
color of the dye on the fabric can be well maintained.
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action of different morphology nano-zinc oxide mordants at wavelengths of 350–750 nm.

3.4. Dye Exhaustion

The rates of dye exhaustion of hematoxylin and tea polyphenols on silk fabric under
the action of different morphology nano-zinc oxide mordants are shown in Figure 6. The
addition of mordant greatly increased the dye exhaustion. It was found that the nano-zinc
oxide mordants were more helpful in increasing dye exhaustion, followed by ordinary zinc
oxide and unmordanted silk fabrics. Compared with ordinary zinc oxide, the rates of dye
exhaustion of dyed fabrics with nano zinc oxide are obviously improved. Through the SEM
images of nano zinc oxide, it can be concluded that the different rates of dye exhaustion
were caused by the morphology of nano zinc oxide, which may be due to the surface
area increase effect of the synthesized ZnO nanoparticles. In addition, the rates of dye
exhaustion of hematoxylin and tea polyphenols are very different for the more hydroxyl
groups of tea polyphenols’ structure anchoring onto ZnO nanoparticles.
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the action of different morphology nano-zinc oxide mordants.

3.5. Fastness Properties

The fastness (wash and light) of the silk fabrics dyed with hematoxylin under dif-
ferent mordants are shown in (Table 2). It was found that all the dyed fabrics had poor
wash and light fastness. Because the molecular structure of hematoxylin dye itself has
multiple hydroxyl groups, it has good water solubility, thus leading to the decrease in
wash fastness. Under the light condition, the conjugated system of dye itself is damaged
by photo-oxidation and fades. The light fastness of fabrics dyed with nano zinc oxide as
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mordant are grade 1–2, while that of unmordant fabrics is only grade 1. The wash fastness
of fabrics dyed with ZnO nanomaterials as mordant were mostly grade 1–2, among which
the washing color fastness of sample 9 was grade 2, while the wash color fastness of fabric
dyed with ordinary ZnO mordants was only grade 1.

Table 2. Color fastness of silk fabrics dyed with hematoxylin under the action of different mordants.

Substrate Mordant Light Fastness Wash Fastness (Color Change)

Silk

- 1 1–2
ZnO 1–2 1

#1 1–2 1–2
#2 1–2 1–2
#3 1–2 1–2
#4 1–2 1–2
#5 1–2 1–2
#6 1–2 1–2
#7 1–2 1–2
#8 1–2 1
#9 1–2 2

#10 1–2 1–2
#11 1–2 1
#12 1–2 1–2
#13 1–2 1–2
#14 1–2 1–2
#15 1–2 1
#16 1–2 1

The fastness (wash and light) of silk fabrics dyed with tea polyphenols under the
action of different mordants are shown in (Table 3). The results showed that the light
fastness of the fabrics dyed with nano zinc oxide as mordant could reach grade 3, while
that of the traditional metal mordant was grade 2–3. The wash fastness of dyed fabrics
with nano zinc oxide as mordant were above grade 3–4, among which the wash fastness of
dyed fabrics with samples #1, #2, #10 and #12 as mordant could reach grade 4–5, the wash
fastness of dyed fabrics with samples #3, #13, #14 and #16 as mordant were grade 4, while
the color fastness of dyed samples with ordinary zinc oxide as mordant was grade 3.

Table 3. Color fastness of silk fabrics dyed with tea polyphenols under the action of different mordants.

Substrate Mordant Light Fastness Wash Fastness (Color Change)

Silk

- 2–3 3–4
ZnO 2–3 3

#1 3 4–5
#2 3 4–5
#3 3 4
#4 3 3
#5 3 3–4
#6 3 3–4
#7 3 3–4
#8 3 3–4
#9 3 3

#10 3 4–5
#11 3 3–4
#12 3 4–5
#13 3 4
#14 3 4
#15 3 3–4
#16 3 4
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4. Conclusions

In summary, ZnO nanoparticles were prepared by a simple hydrothermal method. We
may draw a conclusion that the surface area increases their effect and the biocompatibility
of ZnO nanoparticles as mordant was noteworthy. They can improve the dyeing properties
and fastness (wash and light) of hematoxylin and tea polyphenols on silk fabric to a certain
extent. In addition, the color of dyed fabrics with ZnO nanoparticles as mordant could
be maintained very well compared with the metal mordants. Therefore, this method can
be an effective way to enhance the dyeing fastness of natural dyes. However, the K/S of
the silk fabrics dyed with hematoxylin and tea polyphenols under the action of different
morphology nano-zinc oxide mordants showed no significant improvement compared
with ordinary ZnO mordant.
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