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Abstract: Cavity-enhanced electro-optic comb generators (CEEOCGs) can provide optical frequency
combs with excellent stability and configurability. The existing methods for CEEOCGs spectrum
characterization, however, are based on approximations and have suffered from either iterative calcu-
lations or limited applicable conditions. In this paper, we show a spectrum characterization method
by accumulating the optical electrical field with respect to the count of the round-trip propagation
inside of CEEOCGs. The identity transformation and complete analysis of the intracavity phase delay
were conducted to eliminate approximations and be applicable to arbitrary conditions, respectively.
The calculation efficiency was improved by the noniterative matrix operations. Setting the maximum
propagation count as 1000, the spectrum of the center ±300 comb modes can be characterized with
merely the truncation error of floating-point numbers within 1.2 s. More importantly, the effects of
all CEEOCG parameters were comprehensively characterized for the first time. Accordingly, not
only the exact working condition of CEEOCG can be identified for further optimization, but also
the power of each comb mode can be predicted accurately and efficiently for applications in optical
communications and waveform synthesis.

Keywords: optical frequency comb; cavity resonators; electrooptic modulation

1. Introduction

Optical frequency comb (OFC) is composed of a series of equally spaced and phase
coherent frequency components [1,2]. Its unique property in the frequency and time
domains brings revolutionary development in the fields of precision spectroscopy [3–5],
optical communication [6,7], waveform synthesis [8–10], and precision metrology [11–13]
etc. Compared to the OFC generation schemes based on mode-locked lasers [14–16] and
micro-resonator lasers [17,18], the electro-optic modulators (EOMs)-based OFC generators
have some unique advantages [19,20]. OFCs with a high repetition rate up to tens of GHz
can be conveniently obtained with a robust and compact setup. Moreover, the central
frequency and the repetition rate of the generated OFC can be configured freely and
independently [21]. Such advantages make it a perfect multiwavelength laser source
for applications in the fields of optical communication and optical arbitrary waveform
generation [22].

Limited by the weak EOM interaction strength, the OFCs directly generated by a
single EOM suffer from the narrow span of the comb spectrum. The cascade of multiple
phase and amplitude EOMs can broaden the OFC spectrum up to tens of comb modes and
a few nm of spanning, but no more [23]. Highly nonlinear fiber can be applied to broaden
the comb spectrum as well [24]. However, the system structure and size must be increased
by adding optical amplification and pulse shaping units to excite the highly nonlinear effect.
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The shape and phase of the broadened comb spectrum is hard to predict or characterize as
well [22].

An alternative wide spectrum EOM comb generation method uses an optical resonator
to enhance the modulation process. This method was first proposed by T. Kobayashi et al.
in 1972 [25]. Since 1993, a series of great studies on this cavity-enhanced electro-optic
comb generator (CEEOCG) have been conducted by M. Kourogi, L. R. Brothers, A. S. Bell,
J. Ye, and U. Sterr et al. [26–34]. As a new type of comb source, the comb spectrum char-
acterization is the priority. In [26], M. Kourogi proposed the first CEEOCG spectrum
characterization method by iteratively accumulating the inter-mode power coupling. The
influence of material dispersion was investigated and compensated to achieve a broader
spectrum range as well [31,32]. As the number of the comb modes and iterative processes
are both theoretically infinite, however, even Kourogi himself admits that this calculation
is too complicated [26]. To simplify the process, only the ±15 adjacent comb modes were
iteratively calculated with matrix operations [30]. However, the iterative accumulation
principle of this spectrum characterization method significantly magnified the errors from
the limited comb modes and truncations during signal processing. The comb of a wider
spectrum from CEEOCG still cannot be characterized accurately [35,36]. To avoid the
complex iterative calculations, Kourogi proposed an exponential approximation method to
characterize the spectrum of CEEOCGs [26]. However, the abundant mathematical approxi-
mations severely limit the accuracy of the spectrum characterization. Therefore, the existing
CEEOCG spectrum characterization methods all suffer from insufficient accuracy due to
either the iterative error accumulation or the abundant mathematical approximations.

At the same time, our previous research has proved that the accurate identification
of the CEEOCG working condition is required for the fine adjustments of CEEOCG to
achieve its optimized performance [37]. However, the CEEOCG comb spectrum has
not been comprehensively characterized for the different working conditions of CEEOCG.
Consequently, the lack of an accurate and comprehensive spectrum characterization method
prohibits the wider application of CEEOCGs.

In this paper, we propose an accurate and comprehensive spectrum characterization
method for CEEOCGs by accumulating the optical electrical field with respect to the
count of the round-trip propagation inside of the CEEOCG cavity. Different from the
existing methods, the proposed method is free from the iterative calculation of the power
coupling among the generated comb modes. More importantly, there is no mathematical
approximation introduced in the derivation. The influence of the limited count of the
round-trip propagation was analyzed in detail and the accuracy of different methods
was compared. Based on the proposed method, the influence of all the parameters was
investigated independently and jointly. To our knowledge, it is the first comprehensive
analysis of CEEOCG based on a highly accurate spectrum characterization method.

2. The Existing Methods for the Spectrum Characterization of CEEOCGS

A CEEOCG consists of an EOM inside a spatial linear cavity or an integrated ring
cavity. As these two structures share the same essential principle, we mainly discuss the
former type in this paper. A schematic of a typical spatial linear cavity CEEOCG is shown
in Figure 1. When a single-wavelength seed laser is incident into the CEEOCG, it oscillates
inside the cavity and passes through the EOM multiple times. Driven by a radio-frequency
(RF) signal, the EOM introduces phase modulation sidebands to the seed laser. This effect
of sideband generation is greatly enhanced by the repetitive beam propagations through
the EOM and ensures OFC generation. As the comb modes come from the sidebands of the
EOM phase modulation, the repetition rate of the generated comb is determined by the
frequency of the EOM modulation signal.
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Figure 1. Schematic of the cavity-enhanced electro-optic comb generator (CEEOCG) with a spatial
linear cavity structure. EOM: electro-optic modulator.

To characterize the comb spectrum, the power coupling effect among the comb modes
was analyzed for the first time by M. Kourogi in [26]. As the total spectrum of the generated
comb is composed of all the modulation sidebands, the electrical field of the transmission
output from CEEOCG can be expressed as:

Et = ∑
k

Ek exp[j(2πv0 + kωm)t], (1)

where Ek is the electrical field amplitude of the k-th order sideband, ν0 is the frequency
of the incident seed laser and ωm is the angular frequency of the EOM phase modulation.
When the beam propagates inside of the linear cavity for a complete round-trip, the power
coupling among the sidebands can be expressed as:

E′k = t1Ekin + r1r2 exp(j2φk)
∞

∑
q=−∞

Jk−q(2β)Eq, (2)

where t1 is the electrical field amplitude transmission coefficient of the input mirror, Ekin
is the electrical field of the k-th order sideband contained in the input laser spectrum,
r1 and r2 stand for the electrical field amplitude reflection coefficient of the front input
and rear output cavity mirrors, respectively and φk is the round-trip phase delay of the
k-th order sideband. For a sideband of the q-th order, the power coupling efficiency is
described by the first kind Bessel function Jk−q(2β) of the (k−q)-th order, where β is the
phase modulation index of the EOM. As there are two processes of phase modulation in a
round-trip transmission inside of the linear cavity, the modulation index in Equation (2) is
doubled as 2β. For an integrated ring cavity with a single section of phase modulation, the
modulation index should be set as β [35,36].

It should be noticed that all the generated sidebands contribute to the k-th order
sideband after a round-trip propagation. Therefore, the accumulation of all the coupled
power from each sideband is required in Equation (2). At the same time, the power of the
other sidebands is simultaneously changed together with the k-th order. To analyze the
generated comb spectrum precisely, therefore, an iteration calculation of the inter-mode
power coupling has to be applied. In fact, even the proposer M. Kourogi himself admitted
that such an iteration calculation is too complicated [26].

In [30], an approximation calculation was made with less than±15 adjacent sidebands,
instead of all the sidebands ideally. The solution of a 1024 × 1024 sparse matrix equation
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was applied to describe the CEEOCG output spectrum. However, there are two problems
with this solution. On one hand, there are obvious errors between the simulation and the
experimental results for the higher order comb modes. On the other hand, the programming
and processing of such an algorithm are still very time consuming.

To achieve a rapid characterization of the CEEOCG comb spectrum, M. Kourogi
proposed another simplified exponential model in [26]. According to the transmission
function of a standard Fabry–Pérot cavity [36–38], the electrical field of the transmission
beam from a CEEOCG can be expressed as:

Et = Eine−j2πv0t (1− R)e−j(φF+β sin ωmt)

1− Re−j2(φF+β sin ωmt)
, (3)

where R stands for the equivalent power reflection coefficient of the CEEOCG cavity
mirrors. It can be calculated as R = r1 × r2. The item βsinωmt represents the phase
modulation in a single-pass inside the CEEOCG. φF stands for the residual phase delay in a
single-pass inside the CEEOCG. After the detailed derivation with a series of mathematical
approximations given in the Appendix A, the simplified model can be finally expressed as:

Itk = |Ein|2
(

1− R
2βR

)2
e−(

1−R
βR )|k|. (4)

Nowadays, the comb spectrum model in Equation (4) has become the most popular
method for the spectrum characterization of CEEOCGs, including the microring resonator-
based CEEOCGs [35,36]. However, the approximations during the derivation of this
simplified CEEOCG comb spectrum model cannot be fully met in reality. To compare with
our proposed method, we would summarize the important approximation steps as follows.

Firstly, it requires that ωmt approaches zero to achieve the equivalent infinitesimal
replacement of the sine item sinωmt as ωmt. For a commonly used phase modulator of 7~38
mm long and 9~40 GHz modulation frequency [28,39], however, the real value of ωmt is in
the range of 1.87π to 2.28π. The residual phase will bring obvious error to the model.

More importantly, the derivation of Equation (4) requires the residual phase delay
φF to approach zero all the time. Only in this case, the exponent item exp[–j(φF+βωmt)]
can be equivalently infinitesimal, replaced as 1–jβωmt. This requirement severely limits
the applicable field of the spectrum model. The real residual phase delay φF is effected by
the mismatch among the seed laser frequency, phase modulation frequency and the cavity
resonance. As another factor that cannot be ignored, the intracavity material dispersion
introduces an extra residual phase delay for the higher order comb modes as well.

Therefore, the existing simplified CEEOCG comb spectrum model can only be applied
to certain conditions with limited accuracy. Many more cases with parameters of larger
range variations cannot be simulated and characterized.

3. The Proposed Method for CEEOCG Spectrum Characterization

To derive an accurate and non-iterative method for the CEEOCG comb spectrum
characterization, the electrical field of the laser beam was carefully analyzed during its
propagation inside the CEEOCG cavity. According to Equation (3), the electrical field of the
transmission beam from CEEOCG can be expressed as:

Et = Ein(1− R)
∞

∑
n=0

Rne−j(2n+1)(φF+β sin ωmt), (5)

where n stands for the n-th round-trip propagation inside the CEEOCG cavity, i.e., the count
of the round-trip propagation. To simplify the exponential term in (5), the Jacobi–Anger
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identity was applied in the derivation [40]. Accordingly, the electrical field of the transmis-
sion beam from CEEOCG can be transformed as:

Et = Ein(1− R)
∞

∑
n=0

Rne−j(2n+1)φF
∞

∑
k=−∞

Jk[(2n + 1)β]e−jkωmt, (6)

where Jk(x) stands for the first kind Bessel function of the k-th order. Assuming Equation (6)
as a Fourier series, the transmitted electrical field of the k-th order sideband can be shown
as:

Etk = Ein(1− R)
∞
∑

n=0
Rn Jk[(2n + 1)β]e−j(2n+1)φF

= Ein(1− R)
∞
∑

n=0
Rn Jk(βn)e−jφFn ,

(7)

where βn = (2n + 1)β and φFn = (2n + 1)φF stand for the phase modulation index and the
residual phase delay of the n-th round-trip propagation inside of the CEEOCG cavity. It
should be noticed that the transmitted electrical field intensity of the k-th order sideband is
not related to the power coupling among sidebands in Equation (7). Instead, the irreversible
increase of the propagation count n makes Equation (7) a non-iterative equation. To
calculate the optical power intensity of the k-th order sideband, the electrical field of the
k-th order sideband is multiplied by its conjugate as:

Itk = E2
in(1− R)2{Jk(β)ejφF + RJk(3β)ej3φF +R2 Jk(5β)ej5φF + · · ·+ Rn Jk(βn)ejφFn

}
×
{

Jk(β)e−jφF + RJk(3β)e−j3φF +R2 Jk(5β)e−j5φF + · · ·+ Rn Jk(βn)e−jφFn
}

.
(8)

The multiplication of the infinite plural terms in (8) can be classified into two categories.
The first category contains all the multiplication of the same propagation count n. This
multiplication process eliminates the exponent terms completely. The result is a summation
of R2nJk

2(βn) for n from zero to infinity. For the second category, the cross multiplication
of different propagation count n should be calculated. To simplify the result, the products
of the same difference of n are gathered. Accordingly, all the imaginary terms of the sine
function are cancelled out. The result of cross multiplication for a certain propagation count
n, named Itkn2, can be expressed as:

Itkn2 = E2
in(1− R)2

[
2Rn cos 2nφF

n

∑
m=0

R2m Jk(βm)Jk(βm+n)

]
, (9)

where m stands for the difference of the cross multiplication terms, which can be varied
from zero to n. When we add up the results from both categories, the power intensity of
the k-th order sideband can be expressed as:

Itk = E2
in(1− R)2{J2

k (β) + R2 J2
k (3β) + R4 J2

k (5β) + · · ·+ R2n J2
k (βn)

+ 2R cos 2φF[Jk(β)Jk(3β) + R2 Jk(3β)Jk(5β)+ · · ·+R2n Jk(βn)Jk(βn+1)
]

+ 2R2 cos 4φF
[

Jk(β)Jk(5β) + R2 Jk(3β)Jk(7β) + · · ·+R2n Jk(βn)Jk(βn+2)
]

+ · ··
+ 2Rn cos 2nφF

[
Jk(β)Jk(βn) + R2 Jk(3β)Jk(βn+1) + · · ·+R2n Jk(βn)Jk(β2n)

]} (10)

Inspired by the definition of the Matrix multiplication and Hadamard product of
matrices, Equation (10) can be further simplified for computer simulation as follows:

Itk = E2
in(1− R)2

[(
ARn ◦ CJk(0∼n)

)
CT

Jk(0∼n)

+ 2R cos 2φF

(
ARn ◦ CJk(0∼n)

)
CT

Jk(1∼n+1)

+ 2R2 cos 4φF

(
ARn ◦ CJk(0∼n)

)
CT

Jk(2∼n+2)

+ · · ·+2Rn cos 2nφF

(
ARn ◦ CJk(0∼n)

)
CT

Jk(n∼2n)

]
,

(11)
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ARn =
[
1 R2 · · · R2n

]
, (12)

CJk(0∼n) = [Jk(β) Jk(3β) · · · Jk(βn)], (13)

CT
Jk(1∼n+1) = [Jk(3β) Jk(5β) · · · Jk(βn+1)]

T, (14)

CT
Jk(2∼n+2) = [Jk(5β) Jk(7β) · · · Jk(βn+2)]

T, (15)

CT
Jk(n∼2n) = [Jk(βn) Jk(βn+1) · · · Jk(β2n)]

T, (16)

where (ARn # CJk(0~n)) stands for the Hadamard product of the ARn and CJk(0~n) vectors,
which multiplies the two vectors element by element. The upper corner mark T is the
symbol of vector transposition.

As the residual phase delay of a single-pass inside of the CEEOCG, φF varies with
the working condition of CEEOCG in real time. It consists of the mismatch phase delay
φα between the seed laser frequency and cavity resonance, the mismatch phase delay
φ∆f between the cavity resonance and phase modulation, and the phase delay φD from
the intracavity material dispersion. Ignoring the phase delay of 2nπ from even times of
interface reflections, the residual phase delay of single-pass φF can be expressed as:

φF = φα + φ∆ f + φD

= πδv
vFSR

+ kπ∆ fm
vFSR

+ GVDLc(2πk fm)2

2 ,
(17)

where νFSR is the free spectral range (FSR) of the CEEOCG cavity, δν is the frequency
difference between the seed laser and the adjacent cavity resonance, fm stands for the
frequency of phase modulation, ωm = 2πfm. ∆fm is the mismatch between the phase
modulation frequency and the cavity FSR, and GVD and Lc stand for the group velocity
dispersion and the length of the EOM crystal. According to Equation (17), the phase delay
φα, φ∆f and φD are all non-zero frequency dependent parameters in practical applications.

The complete proposed method for CEEOCG spectrum characterization is composed
of Equations (11)–(17). It should be noted that there is no more iterative calculation in this
method. Once the parameters are determined, the comb spectrum of the CEEOCG can
be calculated with a straight process. To characterize the CEEOCG comb spectrum with
higher time efficiency, the vectors of ARn and CJk(0~2n) can be generated with the preset
parameters and stored in advance. In this case, the calculation of (11)–(17) requires the
summation of matrix multiplication and element-by-element multiplication only. All the
processes can be easily and rapidly realized by the existing matrix computation software.

More importantly, it should be noted that there is no more mathematical approxi-
mation during the above derivation process. The proposed method for CEEOCG comb
spectrum characterization is based on the accumulation of the Bessel function results with
the phase modulation index βn of the round-trip propagation count n. Thus, the simulation
accuracy of the proposed method is, in principle, determined by the maximum round-trip
propagation count nmax only. However, it should be noted that the truncation error of
the floating-point numbers will influence the simulation accuracy as well, even for our
non-iterative method. According to the ISO/IEC international standard 60559-2020 for
floating-point arithmetic (i.e., IEEE standard 754-2019) [41], the minimum distance between
two adjacent double-precision numbers is 2−52, i.e., approximately 2.220446 × 10−16. For
the quadruple and even octuple precision floating point numbers, the truncation error is
down to 2−112 and 2−237, respectively. For the newly accumulated term ∆Itk of (10) with
the increasing of the round-trip propagation count from nmax to nmax + 1, the attenuation
property of the Bessel function ensures the decrease of ∆Itk to below this truncation error
when nmax is large enough. Hence, the convergence of the proposed method can be proved
as well.

To analyze the influence of nmax on the accuracy of the proposed method quantitatively,
the spectrum of the center ±300 modes was simulated with nmax = 100, 300, 1000 and 3000.
The power reflection coefficient R and phase modulation index β were set to be 96% and
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0.7 rad, respectively. When the residual phase delay φF = 0, the simulated spectrum is
shown in Figure 2a, where the simulated curves of nmax = 300, 1000 and 3000 seem to
be overlapped with each other. To ensure that nmax is applicable for a more general case
of non-zero φF, the mismatch phase delay φα was set to its lower limit of −0.7 rad. The
mismatch frequency ∆fm and cavity FSR νFSR were assumed to be 2 MHz and 9.2 GHz,
respectively. Considering the GVD and length of LiNbO3 EOM as 350.74 fs2/mm [42] and
10 mm, the spectrum simulation is shown in Figure 2b with the modulation frequency f m of
9.2 GHz. In this case, the curve of nmax = 300 separates with the curves of nmax = 1000 and
3000. Therefore, nmax =1000 is large enough to simulate the center ±300 combs of a fixed
CEEOCG in the working conditions above. To prevent redundant computations without
improving the simulation accuracy, nmax was set as 1000 for the following simulations of
the CEEOCG spectrum with the power reflection coefficient R and phase modulation index
β being 96% and 0.7 rad, respectively.
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Figure 2. Simulated comb spectrums of the center ±300 combs with different maximum round-trip
propagation count nmax of 100, 300, 1000 and 3000. (a) Simulation with residual phase delay φF = 0,
(b) Simulation with φF = −0.7 + 5.46 × 10−3k + 5.86 × 10−6k2 rad, corresponding to the mismatch
phase delay φα = −0.7 rad, the mismatch frequency ∆f m = 2 MHz, the cavity FSR νFSR = 9.2 GHz,
the modulation frequency f m = 9.2 GHz, the GVD and length of LiNbO3 EOM being 350.74 fs2/mm
and 10 mm, respectively.

To compare the existing approximation models based on the exponential function and
the power coupling among ±15 adjacent sidebands with the proposed model, simulated
spectrums and their deviations with the same parameters above are shown in Figure 3a,b,
respectively. For the center ±300 modes, the overall comb spectrums of all three models in
Figure 3a show an approximately linear power decay with the increasing of comb mode
k. To compare the efficiency, the simulation time of the proposed model and the power
coupling model were characterized by the matrix computation software as 1.2 s and 72.9 s,
respectively. The detailed deviations are shown in Figure 3b with the proposed model as
a reference. For the exponential approximation model, a linear error up to 1.6 dB can be
observed for the higher order comb modes. Meanwhile, there is an extra 0.4 dB error for
the ±1st comb modes. In contrast, the error of the power coupling model is nearly zero
for the comb modes within the ±100-th order. With the further increasing of comb mode
k, however, there is a rapid nonlinear raising of deviation up to 4 dB. We attribute this
nonlinear error to the incomplete analysis of the power coupling model and the iterated
accumulation of the floating-point truncation error. In summary, the exponential model
shows a linear error but can only be applied when φF = 0. The power coupling model can
be applied with arbitrary φF value but is not suitable for the analysis of CEEOCGs with
abundant comb modes.
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4. Comprehensive Spectrum Characterization of CEEOCG with Different Parameters

Based on the proposed CEEOCG comb spectrum model above, the influence from
the parameters of CEEOCG can be thoroughly characterized, e.g., the power reflection
coefficient of cavity mirror R, phase modulation index β and phase delay φF. As the phase
delay φF consists of the dispersion phase delay φD and the mismatch phase delay φα and
φ∆f , their independent and combined impact on the CEEOCG comb spectrum will be
revealed in this section.

4.1. The Influence of Cavity Mirror Power Reflection Efficiency R and Phase Modulation Index β

As shown in Figure 4a, the power distribution of the generated comb spectrum was
simulated with a power reflection efficiency R of 90%, 93%, 96%, 99% and 99.5%, respectively.
In this simulation, the phase modulation index β and phase delay φF are assumed to be
0.7 rad and 0, respectively. According to the discussion above, the maximum propagation
count nmax was set to be 1000 to simulate the center ±300 comb modes. With the increase of
the power reflection efficiency R from 90% to 99.5%, the slope of power decay decreased from
0.653 to 0.006 dB per comb mode. Accordingly, the simulation curve became flatter. This
simulation result fits the principle of the CEEOCG very well. The increasing of R introduces
more power oscillation inside the cavity. Consequently, more power is distributed from the
center to the higher order modes with the enhanced phase modulation.
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Figure 4. (a) Simulated comb spectrum of the center ±300 combs with different power reflection
coefficient R and (b) different phase modulation index β. The maximum propagation count nmax and
phase delay φF are assumed to be 1000 and 0, respectively.

When the generated comb spectrum was simulated with phase modulation index β
of 0.3 rad, 0.5 rad, 0.7 rad, 1.2 rad and 2.5 rad, similar curves are shown in Figure 4b. In
this simulation, the power reflection efficiency R and phase delay φF were assumed to be
96% and 0, respectively. The increasing of phase modulation index β from 0.3 rad to 2.5 rad
leads to the decreasing of the power decay slope from 0.591 to 0.093 dB per comb mode.
It corresponds to a flattening of the simulation curve and a broadening of the spectrum
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bandwidth. This phenomenon can be explained with an enhanced sideband generation
capability during a single pass through the phase modulator. For the simulations with a
much lower value of R or β, the sideband generation effect in a round-trip propagation
through the phase modulator is much weaker. Thus, a larger propagation count nmax is
required to simulate the accurate power of higher order comb modes.

4.2. The Independent Influence of the Mismatch Phase Delay φα, Mismatch Phase Delay φ∆f and
Dispersion Phase Delay φD

To reveal the influence of the mismatch phase delay φα, mismatch phase delay φ∆f
and dispersion phase delay φD independently, three simulations were performed with
the same power reflection efficiency R of 96%, phase modulation index β of 0.7 rad and
maximum propagation count nmax of 1000. Assuming the mismatch phase delay φ∆f and
dispersion phase delay φD to be zero, the CEEOCG comb spectrums with mismatch phase
delay φα of 0, ±0.8β and ±β are shown in Figure 5a. In this situation, the symmetrical
curves for different β of the same absolute value but opposite sign overlap with each other.
With the increasing comb mode order, a linear power decay in the log scale can be observed.
The linear slopes are 0.193, 0.421 and 0.806 dB per comb mode for φα = 0, ±0.8β and ±β,
respectively. The increasing of the mismatch phase delay φα causes a concentration of the
optical power to the center combs and there is a significate decrease in the CEEOCG comb
bandwidth. This simulation result fits well with the previous reports in [33,34]. As shown
in Figure 5b, the transmission rate of the CEEOCG varies with the mismatch phase delay
φα according to the theoretical analysis in [33,34]. The operation point of φα = 0 enables a
maximum power coupling from the incident laser mode to the higher order comb modes,
which causes a minimum total transmission power. On the contrary, the operation point
of φα = ±β keeps most of the power in the lower order comb modes and achieves the
maximum transmission power.
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Figure 5. (a) Simulated comb spectrum of the center ±300 combs with different mismatch phase
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and (d) different dispersion phase delay φD.

In Figure 5c, the influence of the mismatch phase delay φ∆f is simulated by assuming
that the mismatch phase delay φα and dispersion phase delay φD are zero. According to
Equation (17), the mismatch phase delay φ∆f is determined by the order of comb mode
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k, the mismatch frequency between cavity resonance and modulation frequency ∆fm and
the FSR of CEEOCG cavity νFSR. When the FSR of CEEOCG cavity νFSR is assumed to
be 9.2 GHz, the influence of the mismatch phase delay φ∆f is simulated with a mismatch
frequency ∆fm of 0, ±1 MHz and ±2 MHz. As the phase delay φ∆f is proportional to
the order of comb mode k, the decay of power is accelerated with the increasing of the
comb mode order. The total power inside of the CEEOCG cavity does not vary with the
mismatch phase delay φ∆f . Therefore, the curves for the comb modes within ±50 orders
are overlapped in Figure 5c. With a zero dispersion phase delay φD, the symmetrical curves
of the same absolute value of φ∆f are consistent with each other as well.

In Figure 5d, the CEEOCG comb spectrums with different values of dispersion phase
delay φD are simulated by assuming the mismatch phase delay φα and φ∆f are zero.
According to Equation (17), the dispersion phase delay φD is mainly caused by the phase
modulator. When the wavelength of the incident laser is 826.2 nm, the GVD value of the
LiNbO3 material can be found as 350.74 fs2/mm from [39]. Assuming the lengths of EOM
crystal Lc to be 0, 10 mm, 20 mm and 40 mm, the comb spectrum is simulated and shown
as the black solid line, the blue dash line, the magenta dash-dot line and the red dot line
in Figure 5d, respectively. The mode spacing is assumed to be 9.2 GHz. The dispersion
phase delay φD is proportional to the square of the comb mode order k. Accordingly, the
accelerated slope of power decay for the curves increases with the mismatch phase delay
φD, as shown in Figure 5d. As the change of dispersion phase delay φD will not influence
the total power inside of the CEEOCG cavity, the spectrum overlap of the comb modes
within ±100 orders can be explained.

From the analysis above, it is clear that the non-zero mismatch phase delay φα, φ∆f
and dispersion phase delay φD cause anarrowing of the comb spectrum. However, the
corresponding comb spectrums are still symmetrical under the independent influence
of all three phase delays. With the increasing of comb mode order k, only the slope of
power decay for the mismatch phase delay φα is linear in the dB scale. For both the
mismatch phase delay φ∆f and dispersion phase delay φD, the power decay is accelerated.
Meanwhile, only the mismatch phase delay φα will change the total transmission rate of
the CEEOCG. For lower order comb modes, the variations of the mismatch phase delay
φ∆f and dispersion phase delay φD are not notable.

4.3. The Influence of the Mismatch Phase Delay φα and φ∆f with a Constant Dispersion Phase
Delay φD

The analysis above focuses on the independent influence of each phase delay. In a
practical application of the CEEOCG, however, the dispersion phase delay φD is usually a
constant non-zero value. In contrast, the phase delays φα and φ∆f are always variable owing
to the mismatch among the incident laser frequency, the cavity resonance frequency and the
phase modulation frequency. Thus, the investigation of the influence of the mismatch phase
delays φα and φ∆f with a constant value of dispersion phase delay φD is of significance. The
following spectrum characterizations are made with the same power reflection efficiency R
of 96%, phase modulation index β of 0.7 rad and maximum propagation count nmax of 1000.

Assuming the applied EOM is a 10 mm LiNbO3 crystal with a GVD of 350.74 fs2/mm [39],
the dispersion phase delay φD can be calculated with Equation (17) as 5.86 × 10−6k2 rad
when the phase modulation frequency is 9.2 GHz. Assuming the mismatch phase delay
φ∆f is zero, the comb spectrums of the mismatch phase delay φα = 0, ±0.8β and ±β
were simulated and are shown in Figure 6a. If we compare it to Figure 5a, there are two
significant differences. Firstly, the curves of the same absolute value of mismatch phase
delay φα are separated with different shapes. If we take the cases of φα = ±β as examples,
there is only a slight difference that can be observed for the center comb modes within
the ±30 order. With the increase of the mode order k, the spectrum decays rapidly for
φα = β. For the phase delay φα of −β, however, a spectrum broadening effect is shown for
the combs from ±50 up to over ±300 orders. The newly generated comb modes exist as
two low-energy wings of the spectrum. Thus, this phenomenon could be applied for the
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broadening of the CEEOCG spectrum with nearly no extra cost. The same situation could
be found for the cases of φα = ±0.8β as well. Secondly, the power decay of the curves is
no more linear in the dB scale. The reason is that the introduction of the dispersion phase
delay relates the total phase delay to the order of the comb mode. Of course, the symmetry
of the curves in Figure 6a is kept the same as in Figure 5a. Besides, the concentration of
optical power to lower order comb modes can be found for a larger absolute value of phase
delay φα as well.
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mismatch phase delay φ∆f . of 0, ±0.8β and ±βMHz.

As shown in Figure 6b, the influence of the mismatch phase delay φ∆f with the same
dispersion phase delay φD and zero phase delay φα was simulated. In these cases, the
difference between Figures 5c and 6b can be summarized into two respects. Firstly, the
symmetry of the curves themselves is broken by the mismatch phase delay φ∆f with the
help of the dispersion phase delay. The positive mismatch of ∆fm leads to a left shifting of
the simulation curve and vice versa, e.g., the blue dash line and the magenta triangle line
in Figure 6b correspond to ∆fm = 1 MHz and −1 MHz, respectively. The reason for this
phenomenon is that the existence of the dispersion phase delay compensates for the positive
mismatch of ∆fm for the negative order of comb modes. At the same time, this effect makes
the power of positive order modes decay faster. Of course, a constant dispersion phase delay
can only compensate for the mismatch phase delay φ∆f to a limited extent. Thus, the power
decreasing of the negative order modes for the curve of ∆fm = 2 MHz is no more linear
as in the case of ∆fm = 1 MHz, although the power decreasing rate of the negative order
modes is always lower than the positive order modes. Secondly, the simulation curves of
the same absolute value but opposite sign are symmetrical to each other. This phenomenon
further proves that the change of curve shape from Figure 5c to Figure 6b is caused by a
constant dispersion phase delay. At the same time, a reverse of the above phenomenon can
be expected with an EOM crystal of negative GVD value.

A more comprehensive spectrum characterization should consider the variation of
the mismatch phase delay φα and φ∆f with a constant dispersion phase delay φD. By
assuming the dispersion phase delay φD of 10 mm EOM being 5.86 × 10−6k2 rad, the EOM
modulation frequency and the FSR of CEEOCG cavity both being 9.2 GHz, the simulation
results of the comb spectrum are shown in Figure 7. In Figure 7a, the mismatch frequency
∆fm is set as the y-axis with scales of 0 MHz, ±1 MHz and ±2 MHz. The curves for
different mismatch phase delays φα of 0, ±0.5β and ±β are presented with a black solid
line (φα = 0), a red dash line (φα = 0.5β), a blue dash-dot line (φα = −0.5β), a magenta
dash-dot-dot line (φα = β) and a green short dash line (φα = −β), respectively. Different
from the analysis in Section 4.2, the mismatch phase delay φα is changed from ±0.8β to
±0.5β for a better separation of the curves in Figure 7. In each slice of the joint analysis
in Figure 7a, the distribution of each comb spectrum corresponds to the variation of φα

in sequence. For the slice of ∆fm = −2 MHz, the simulated curves are φα = −β, −0.5β, 0,
0.5β, and β successively from left to right. The CEEOCG comb spectrum is not symmetrical
for a certain non-zero mismatch frequency ∆fm. For the mismatch frequencies ∆fm of the
same absolute value but opposite sign, however, a horizontal inversion of the simulated
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CEEOCG comb spectrums can be found. With the increase of the absolute value of ∆fm, the
power decay of higher order comb modes is significantly enhanced. When the normalized
power is less than −180 dB, some jitters can be found. We attribute this phenomenon to the
floating-point truncation error during the simulation. For the unexpected extra spectrum
in the modes over the ±250-th order, the cause of formation is still not clear. More work
will be conducted on this in the future.
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Figure 7. Simulated comb spectrum of the center ±300 combs with different mismatch phase delays
φα and φ∆f with the constant dispersion phase delay φD of 5.86 × 10−6k2 rad. (a) The mismatch
frequency ∆fm is set as the y-axis. (b) The mismatch phase delay φα is set as the y-axis.

In Figure 7b, the mismatch phase delay φα is set as the y-axis with scales of 0, ±0.5β
and ±β. The curves for different mismatch frequencies ∆fm of 0 MHz, ±1 MHz and
±2 MHz are presented with a black solid line (∆fm = 0 MHz), a red dash line (∆fm = 1 MHz),
a blue dash-dot line (∆fm = −1 MHz), a magenta dash-dot-dot line (∆fm = 2 MHz) and a
green short dash line (∆fm = −2 MHz), respectively. Due to the spectrum-narrowing effect
of the mismatch frequency ∆fm, the distribution of CEEOCG spectrums in each slice of the
same mismatch phase delay φα is not sequential with the increasing of ∆fm. However, the
horizontal mirror effect of the simulated spectrums from opposite mismatch frequencies
∆fm is retained.

The simulation results above are not only a verification of the proposed CEEOCG comb
spectrum characterization method. They can be further applied to identify the working
condition of CEEOCGs. In our previous work [37], the pre-adjustment of a CEEOCG is very
time consuming in order to match the incident laser frequency, the cavity resonance and the
EOM modulation frequency at the same time. It was quite a hard process as the generated
comb is very unstable. One has to be very experienced to be able to identify the working
condition of the CEEOCG. Then, the further fine tuning can be implemented properly. With
the proposed method and the simulation results, it will not be a problem anymore. Based
on the experimental setup established in Physikalisch-Technische Bundesanstalt [37], four
CEEOCG comb spectrums were obtained and are shown in Figure 8. During the adjustment
of the CEEOCG optical structure, these imperfect comb spectrums are present occasionally.
With the dispersion phase delay φD calculated as 5.86 × 10−6k2 rad, the outer profile of
the CEEOCG comb spectrums in Figure 8 is fitted with the simulation curves in Figure 7.
The positive and negative polarity of the mismatch phase delay φα and frequency ∆fm can
be first identified. Then, the very well-matched simulation curves can be obtained, with
φα and ∆fm being −0.98β and −110 MHz for Figure 8a, 0.45β and 43 MHz for Figure 8b,
−0.7β and 50 MHz for Figure 8c, β and −40 MHz for Figure 8d, respectively. By fine tuning
the CEEOCG cavity length and the incident laser frequency according to the working
condition identification above, the CEEOCG can be optimized to the ideal locking point
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in [37]. Therefore, the implementation of CEEOCG can be highly simplified with the help
of the proposed comb spectrum characterization method.
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with the proposed method. (a) φα = −0.98β and ∆fm = −110 MHz, (b) φα = 0.45β and ∆fm = 43 MHz,
(c) φα = −0.7β and ∆fm = 50 MHz, (d) φα = β and ∆fm = −40 MHz.

5. Conclusions

In summary, we proposed an accurate and comprehensive comb spectrum characteri-
zation method for CEEOCGs. The optical electrical field with respect to the count of the
round-trip propagation inside of CEEOCGs was accumulated. The content of the residual
phase delay calculation equation in the proposed method ensures its applicability to the
arbitrary working conditions of CEEOCGs. The simplification of the proposed method was
accomplished without any mathematical approximation by using the Jacobi–Anger identity
and Euler’s formula. With a maximum propagation count larger than 1000, the simulation
error for the center ±300 comb modes comes from the truncation error of floating-point
numbers only. Comparison results proved the error of the existing exponential approxi-
mation and the power coupling model to be linear and accelerated, increasing with the
order of comb modes, respectively. Moreover, the proposed method can be efficiently
computed with the Matrix multiplication and Hadamard product of matrices. By avoiding
the iterative calculation of the power coupling among the generated comb modes, the
simulation time can be reduced from 72.9 s down to 1.2 s.

To reveal the influence of the parameters of a CEEOCG, a series of simulations based on
the proposed method were conducted with the key parameters of CEEOCGs independently
and jointly. The independent introduction of different non-zero mismatch and dispersion
phase delays all led to an obvious narrowing of the comb spectrums. With the increase of
the comb mode order, however, the speed of the symmetrical power decay is different for
each type of residual phase delay. More realistic simulations were conducted by analyzing
the two types of mismatch phase delays jointly with a constant dispersion phase delay.
Hence, the exact power of each comb mode can be predicted accurately and efficiently. To
the best of our knowledge, this is the first comprehensive characterization of all the key
parameters of CEEOCGs.
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The simulations and analyses above were not only a verification of the proposed
CEEOCG comb spectrum characterization method. They can be further applied to identify
the working condition of CEEOCGs. Four arbitrarily selected comb spectrums from an
unstabilized CEEOCG were fitted with the proposed method. A high consistency can
be found between the test data and the simulated fitting results, further proving the
applicability and accuracy of the proposed method. With the help of fitting parameters
for such a working condition identification, the CEEOCG can be further fine-adjusted or
even optimally redesigned. Accordingly, the CEEOCGs with either a spatial linear cavity
or an integrated ring cavity can service the applications in optical communications and
waveform synthesis with a better performance.
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Appendix A

In this appendix, the approximations during the derivation of the commonly applied
exponential model is shown. This derivation based on the electrical field of the trans-
mission beam from CEEOCG in Equation (3). According to the equivalent infinitesimal
replacements of the exponent and sine items, exp(−x) and sin y are equivalent to 1 − x
and y, respectively, when the variables x and y approach zero. To meet the condition for
replacement in (3), the following analysis assumes that the residual phase delay φF and
modulation phase delay ωmt both approaches to zero. In this case, the electrical field of the
transmission beam from CEEOCG can be approximated as

Et ≈ Ein
(1− R)(1− jβωmt)
1− R(1− j2βωmt)

. (A1)

According to [43], Equation (A1) can be transformed to further analyze the electrical
field of the transmitted comb as

Et = Ein

−
(

1−R
2βR

)
−
(

1−R
2βR

)
+ jωmt

+ Ein

j
(

1−R
2βR

)
βωmt

−
(

1−R
2βR

)
+ jωmt

. (A2)

If the power reflection coefficient R approaches 1, the first term of Equation (A2) Et1
can be approximated with a Fourier series as

Et1 = Ein

−
(

1−R
2βR

)
−
(

1−R
2βR

)
+ jωmt

≈ Ein

∞

∑
k=0

(
1− R
2βR

)
e−(

1−R
2βR )kejkωmt. (A3)



Nanomaterials 2022, 12, 3907 15 of 16

Therefore, we can find the electrical field intensity of the k-th order sideband from the
first term of Equation (A2) as

Etk1 = Ein

(
1− R
2βR

)
e−(

1−R
2βR )k. (A4)

At the same time, the factor ωmt in the second term of (A2) can be obtained with the
following property of Fourier series.

ωmtg(ωmt)↔ j
dGk(k)

dk
. (A5)

Consequently, the electrical field intensity of the k-th order sideband from the second
term of Equation (A2) Etk2 can be expressed as

Etk2 = Einβ

(
1− R
2βR

)2
e−(

1−R
2βR )k. (A6)

As the power reflection coefficient R approaches 1 and the phase modulation index β
is limited by the EOM to several rad, the intensity of the k-th order sideband in Equation
(A6) is far smaller than the intensity in Equation (A4) and can be neglected. Considering
the symmetrical power distribution of the positive and negative order of sidebands, the
optical power intensity of the k-th order sideband can be finally approximated as

Itk = |Ein|2
(

1− R
2βR

)2
e−(

1−R
βR )|k| ≈ |Ein|2

(
π

2βF

)2
e
−π
βF |k|, (A7)

where F is the finesse of the CEEOCG cavity. For R approaches 1, F ≈ πR/(1 − R).
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