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Abstract: Glioblastoma brain tumors represent an aggressive form of gliomas that is hallmarked
by being extremely invasive and aggressive due to intra and inter-tumoral heterogeneity. This
complex tumor microenvironment makes even the newer advancements in glioblastoma treatment
less effective long term. In developing newer treatment technologies against glioblastoma, one
should tailor the treatment to the tumor microenvironment, thus allowing for a more robust and
sustained anti-glioblastoma effect. Here, we present a novel gold nanoparticle therapy explicitly
designed for bioactivity against glioblastoma representing U87MG cell lines. We employ standard
conjugation techniques to create oligonucleotide-coated gold nanoparticles exhibiting strong anti-
glioblastoma behavior and optimize their design to maximize bioactivity against glioblastoma.
Resulting nanotherapies are therapy specific and show upwards of 75% inhibition in metabolic and
proliferative activity with stark effects on cellular morphology. Ultimately, these gold nanotherapies
are a good base for designing more multi-targeted approaches to fighting against glioblastoma.
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1. Introduction

Glioblastomas (GBMs) are the most frequent primary brain tumors in adults accounting
for approximately 57.3% of diagnosed brain gliomas [1]. Diagnoses have a median prognosis
of 13.5 months [2] and a five-year survival rate of 22, 9, or 6% based on age ranges of 20–44,
45–54, and 55–64, respectively [3–9]. Management and outcome of GBM-affected patients have
remained consistent for almost 40 years [2,10], with surgery being an essential component
of GBM treatment; however, complete resection is not always available [11,12]. The most
promising treatment of GBM is a combination therapy of radio and chemotherapies (such as
temozolomide) [13–15]. Still, radio or chemotherapies have potential toxicity to the surround-
ing normal brain [12,15–19]. These therapies may contribute to hematological complications,
cause fatigue, and are implicated in an increased rate of infections among patients [12,16–18].
Due to its aggressive nature, clinicians suggest that the development of new GBM treatments
should utilize rational combinations of therapies aiming for the inhibition of angiogenesis,
the induction of apoptosis, or the inhibition of several signal transduction pathways [13].
Fortunately, advances in understanding genetic mechanisms behind GBM formation and
survival have allowed for the possible generation of such therapies.

New oligonucleotide-based therapies have been determined to be bioactive against
GBM in vitro [20–27]. Among these is AS1411, a synthetic 26-nucleotide phosphodi-
ester oligodeoxynucleotide with the sequence 5′-GGTGGTGGTGGTTGTGGTGGTGGTGG.
AS1411 obtains its bioactivity as a cancer therapy, most likely due to its unique quadruplex
structure when in solution [28]. AS1411 acts as an aptamer that binds nucleolin, a protein
found on the surface and in malignant cells’ cytoplasm but absent from most normal cells’
surface and cytoplasm. Nucleolin is over-expressed in GBM and is a key regulator of
proliferation and survival of GBM and thus is considered a great target for generating new
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therapies [29–31]. AS1411’s nucleolin targeting ability has been proven safe and non-toxic
through phase I and II clinical trials [24,32–34]. Moreso, AS1411 has been used in gold
nanoparticle systems to increase its bioactivity in many cancers and diseases [34–37].

Colloidal gold has been used for more than a thousand years for medicinal purposes [4].
Gold nanoparticles have been used more recently (since 1971) since Faulk and Taylor [38]
first described antibody conjugation to gold. Since then, multiple biomolecules have been
used to functionalize gold nanoparticle surfaces for genomics, biosensors, bioimaging, and
targeted delivery of drugs, DNA, and antigens for therapeutic use [39]. Nanocarriers are a
preferred method of delivery over normal therapeutic delivery due to good advantages
including (1) an increased surface-to-volume ratio allowing for rapid release of drugs
to targeted areas [40], (2) tunable surface chemistries which allow for a diverse range of
therapies to be delivered, (3) reduction of therapy dose required, making a nanotherapy
designs more cost-effective and (4) the ability to alter the size of nanocarriers giving the
ability to administer drugs through many routes [41,42]. Gold nanoparticle (GNP) surfaces
can be easily modified through the conjugation of molecules containing thiol (SH) groups
utilizing highly predictable and well-characterized chemistries [42–44]. Oligonucleotide
therapies, such as AS1411, can be superior conjugated ligands to GNPs due to their bio-
logical relevance, high specificity, selectivity, and versatility in conjunction with their easy
chemical modification [44,45]. Additionally, multiple molecules can be conjugated to GNP
surfaces to support the effective delivery of drug therapies by conferring in vivo stability,
such as polyethylene glycol (PEG) [46].

Certainly, AS1411 and GNP designs have contributed to generating new and novel
therapies for various cancers [14,34,37,47–54]. However, current AS1411-mediated drug
delivery primarily focuses on using AS1411’s nucleolin targeting as a standalone therapy
or on delivering chemotherapy agents. Little research has been done to functionalize GNPs
with a base conjugation of AS1411 while allowing for additional GNP modification to
provide non-chemotherapy agents. Because of this and the rising need for generating new
successful and non-invasive GBM therapies, GNPs conjugated with AS1411 molecules
hold potential for applications in the delivery of non-chemotherapy GBM therapies. An
emerging class of oligonucleotide therapies, spherical nucleic acids, further supports this.
They have shown the ability to surpass the blood–brain barrier—a significant consideration
when creating GBM-specific treatments [55–57]. Given this, we have aimed to develop
an optimal AS1411/GNP system tailored to act against GBM. Ideally, an optimal system
against GBM would allow for the conjugation of bioactive molecules to GNPs to have a
maximum anti-GBM response such as (1) affect hallmarks of tumorigenesis as indicated by
a decrease in GBM metabolic activity, proliferation, and invasiveness and (2) have broad
changes in GBM in vitro morphology.

2. Materials and Methods
2.1. Materials

HAuCl4·3H2O was purchased from Alfa Aesar (Tewksbury, MA, USA). Citric acid,
trisodium salt (Na3C6H5O7), sodium borohydride (NaBH4), dithiothreitol (DTT), and anhy-
drous sodium bicarbonate (NaHCO3) were purchased from Sigma Aldrich
(St. Louis, MO, USA). Nanopure ultrapure water (Barnstead, resistivity of 18.2 MΩ-cm) was
used for preparing all aqueous solutions. 10.0X phosphate-buffered solution (pH 7.4) was
purchased from Thermo Fisher Scientific (Waltham, MA, USA), used for salting particles, and
used for subsequent dilutions where 1X PBS is required. Hydrochloric acid (HCl) and nitric
acid (HNO3) were analytical grades and purchased from VWR (Rednor, PA, USA). Aqua
regia solution (3 parts HCl and 1 part HNO3), was used to clean all glassware for GNP
synthesis. Thiol Polyethylene Glycol-4-alcohol (SH-PEG-OH; Molecular Weight 210.3 g/mol;
95% purity) was purchased from BroadPharm (San Diego, CA, USA) and prepared for use
via company specifications. Oligonucleotides having a regular DNA backbone (phospho-
diester), a 5′-Thiol C6 S-S modification (Thio-MC6-D), 5′-6T spacer (for AS1411 and CRO),
and high-performance liquid chromatography purification were supplied by Integrated
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DNA Technologies (Coralville, IA, USA). The oligonucleotide sequences used (including
6-T spacer) were 5′TTTTTTGGTGGTGGTGGTTGTGGTGGTGGTGGTTT (AS1411) and 5′-
TTTTTTCCTCCTCCTCCTTCTCCTCCTCCTCCTTT (CRO). Fluorophore-labeled oligonu-
cleotides (Cy5-AS1411 and Cy5-CRO) are identical in sequence to non-labeled versions with
the addition of a 3′ modified fluorescent Cyanine-5 (Cy5) and also obtained from Integrated
DNA Technologies. Illustra NAP-25 DNA size exclusion chromatography gravity columns
were acquired from GE Healthcare Life Sciences (Pittsburgh, PA, USA). Amicon Ultra 15.0 mL
centrifugal filters with Ultracel-30 (30,000 MWCO) were purchased from Merck Millipore
(Billerica, MA, USA). UV absorption spectra of nanoparticle formulations and oligos were
measured with a UV Visible Spectrometer (Varian Cary 50 BIO UV, Agilent Technologies,
Santa Clara, CA, USA). Dynamic light scattering and zeta potential measurements were
acquired on nanoparticle formulations using a NanoBrook Zeta PALS Zeta Potential An-
alyzer (Brookhaven Instruments, Holtsville, NY, USA). U87MG glioblastoma cancer cells
were purchased from ATCC (Manassas, VA, USA). Dulbecco’s Modified Eagle Medium,
Heat Inactivated Fetal Bovine Serum, and 10X Trypsin were purchased from Thermo Fisher
Scientific. 100X Penicillin/Streptomycin mixture (Marlborough, MA, USA) was purchased
from Cytiva. Glioblastoma cells were subcultured in T25 or T75 sterile culture plates from
Corning Incorporated (Tewksbury, MA, USA). For experimental studies, U87MGs were pas-
saged into sterile culture plates from VWR (Radnor, PA, USA) for Brightfield microscopy and
metabolic studies or in 10 mm glass bottom, poly-d-lysine coated Matek dishes purchased
from MaTek Life Sciences (Ashland, MA, USA) for confocal studies. Metabolic activity on
nanoparticle or control-treated U87MGs was measured using (2,3-Bis-(Methoxy-4-Nitro-5-
Sulfophenyl-2H-Tetrazolium-5-Carboxanilide) (XTT) acquired from Biotum (Fremont, CA,
USA).

2.2. Co-Conjugated PEG and AS1411 GNP Synthesis

4 nanometer (nm) citrate-capped GNPs were sterilely synthesized at room temperature
using previously reported protocols [58,59]. Briefly, 95 mL of 18.2 MΩ-cm nanopure
ultrapure water was mixed with 2.5 mL of 0.01 M Na3C6H5O7. Then, 2.5 mL of 0.01 M
HAuCl4 was added, mixed for 18 s, and reduced with 3 mL of 0.1 M NaBH4. Bare GNPs
were stirred for 2 h before further modifications. Thiol-modified AS1411 (SH-AS1411)
contains disulfide linkages upon purchasing for storage and stability that were cleaved
before conjugation. This is done via boiling the required amount of SH-AS1411 necessary
for conjugation, 250 µL of 1.0 M DTT, 1800 µL of 0.25 M phosphate buffer (PB), and enough
nanopure ultrapure water to complete a boiling volume of 2.5 mL for 1 h followed by
cooling for another hour. SH-AS1411 was isolated via size exclusion chromatography
using Illustra NAP-25 DNA gravity columns and 0.1 M PB as the eluent. Gravity columns
were primed with 25 mL of eluent before AS1411 isolation. The entire 2.5 mL of annealed
AS1411/DTT mixture was eluted through the columns and collected in 3.5 mL of pure
0.1 M PB. SH-PEG alcohol was diluted in DMSO according to manufacturer specifications.
Cleaved and purified SH-AS1411 and SH-PEG alcohol were then simultaneously conjugated
to GNPs in different ratios (see next paragraph), generating a two-component PEG/AS1411
coating. Stepwise addition of 10X phosphate-buffered saline (PBS) over 96 h up to a
concentration of 1X (based on final volume of particles synthesized before salting) followed
by maximum sonication in a water bath for 10 min. Centrifugation at 13,500× g for 20 min,
followed by a triplicate 1X-PBS washing and re-centrifugation after each wash removed
any non-conjugated components.

Multiple PEG/AS1411 co-conjugated GNP formulations were synthesized that differed
by their loading ratios of PEG and AS1411. Maximum possible loading onto GNPs was
held constant at 12 times (expressed as 12X) the concentration of gold nanoparticles present
within the colloidal solution, as measured by ultraviolet-visible (UV-VIS) spectrometry [41].
This 12X loading was divided up into multiple ratios of PEG:AS1411 and resulted in the
following experimental conditions preserved throughout this paper: no PEG loading with
maximum AS1411 loading (12X), maximum PEG loading with no AS1411 loading (0X),
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and three different loading ratios of AS1411:PEG (3X, 6X, and 9X). For formulations below
the maximum of 12X AS1411, PEG was introduced to fulfill the 12X maximum loading
requirements. Co-conjugated GNPs bearing SH-PEG and a CRO sequence were synthesized
similarly once an optimal loading ratio was determined.

2.3. Nanoparticle Characterization

Particle size (measured in nanometers), zeta potential (measured in millivolts), and poly-
dispersity indices (unitless) were calculated for all nanoparticle types. Changes in absorption
spectra recorded on a Varian Cary 50 BIO UV (Agilent Technologies, Santa Clara, CA, USA)
spectrometer verified conjugations. Oligo loading was evaluated for each GNP formulation
via a 72-h cleavage of oligos from GNPs by treatment in a mixture of 1X PBS with 1.0 M DTT
followed by UV-VIS measurement of cleaved and purified oligos (via Illustra NAP-25 DNA
gravity columns with 0.1 M phosphate buffer as the eluent). Moles of oligo were calculated
from UV measurements using Beer’s Law and compared to moles of gold present in colloidal
solution to determine an average number of oligos per GNP. Transmission electron microscopy
(TEM) studies was performed on the FEI Tecnai F20 TEM to determine GNP morphology
and distribution. A field emission gun (FEG) was used for the electron source and the studies
were performed with an accelerating voltage of 360 keV.

2.4. Cell Culture

U87MGs were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10%
heat-inactivated fetal bovine serum and 1% penicillin/streptomyosin mixture (final con-
centrations of 100 units per milliliter and 100 micrograms per milliliter, respectively). All
subcultures were passaged using 0.25% Trypsin and seeded at a minimum density of
5000 cells/cm2. U87MGs were seeded at densities representing 1000 cells/well onto sterile,
clear polystyrene 96 well plates. U87MGs seeded onto plates or dishes were cultured for
two days before GNP treatments to allow cells to acclimate to culture conditions.

2.5. Cytotoxicity and Specificity Studies

Cell and control wells in 96 well plates were incubated with nanoparticle formulations
combined with DMEM ranging from 0–5 micromolar (µM) AS1411 for 72 h with no me-
dia changes. Control cells were treated with 10 µM AS1411, bare GNPs representing the
highest gold concentration, or no treatment. XTT absorbance data was obtained from a
Molecular Devices SpectraMax M2 Spectrometer running SoftMaxPro 7.0 software. GNP
absorbance interference with the assay was corrected by treating wells with no cells with
GNP treatments. The resulting XTT absorbances within the cell plates were subtracted from
corresponding wells with cells and GNP treatments. Statistically significant cytotoxicity
of GNP formulations on U87MGs was determined via two-way ANOVA analyses. The
specificity of AS1411 was verified by comparing the cytotoxicity of optimally determined
co-conjugated GNPs bearing AS1411 to those bearing CRO. IC50 values (or the concentra-
tion that effectively inhibits 50% survival) of co-conjugated GNPs were obtained using
GraphPad Prism version 7.0.0 for Windows, GraphPad Software (San Diego, CA, USA;
www.graphpad.com, accessed on 17 February 2022).

2.6. Microscopy Studies

10X brightfield images were acquired in 96 well plates using a Nikon TE200 Epiflo-
rescent microscope (Melville, NY, USA) with a Coolsnap HQ CCD camera (Roper, Duluth,
GA, USA) enabled with NIS Elements software on U87MGs treated with GNP formulations
and controls 72 h before XTT treatments.

2.7. Proliferation Analysis

Cell and control wells in 6 well plates were incubated with optimal co-conjugated
PEG-AS1411 GNPs combined with DMEM ranging from 0–5 micromolar (µM) AS1411
for 72 h with no media changes. Control cells were treated with 10 µM AS141 or no

www.graphpad.com
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treatment. Cell counts were obtained by collecting the cells after the 72 h incubation period
by washing plates with 1X PBS and treating them with Trypsin for 5 min. Manual counting
using a hemocytometer was completed to acquire cell numbers and then compared to the
initial seeding density of 90,000 cells/well. Statistically significant differences in cellular
proliferation of U87MGs were determined via one-way ANOVA analyses.

2.8. Statistical Analysis

All data were collected and processed in Microsoft Excel. Appropriate statistical tests
were completed using GraphPad Prism using a significance level of α = 0.05. Data are
presented as mean values +/− standard deviation. Statistical tests reported are one or two-
way ANOVAs with Bonferroni post hoc tests. Sample sizes are described where needed.

3. Results and Discussion

To determine the optimal configuration of PEG-AS1411-GNP for GBM applications,
human GBM-representing cell lines (U87MGs) were exposed to GNPs with differing loading
ratios of PEG and AS1411 components. A schematic of the GNPs (Figure 1) shows the
proposed topographic features. Multiple PEG/AS1411 co-conjugated GNP formulations
were synthesized that differed by their loading ratios of PEG and AS1411 (Figure 2).
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PEG is an anti-fouling molecule, thus protecting particles from protein aggregation,
and is used as a surface modifier to enable further modification of GNPs with additional
non-chemotherapy and anti-GBM therapies. Maximum possible loading onto GNPs was
held constant at 12 times (expressed as 12X) the concentration of gold present within a
colloidal solution, as measured by UV-VIS spectrometry. This 12X loading was divided
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up into multiple ratios of PEG:AS1411 resulting in the following experimental conditions,
which were preserved throughout the experiments: no PEG loading with maximum AS1411
loading (12X), maximum PEG loading with no AS1411 loading (0X), and three different
loading ratios of AS1411:PEG (3X, 6X, and 9X). For formulations below the maximum of
12X AS1411, PEG was introduced to fulfill the maximum loading requirements, maintaining
the maximum 12X conjugation for all formulations.

3.1. Determining Optimal Synthesis of PEG-AS1411 Co-Conjugated GNPs
3.1.1. Synthesis of PEG-AS1411 Co-Conjugated GNPs

The successful synthesis of AS1411-PEG co-conjugated GNPs was confirmed us-
ing zeta potential (mV), hydrodynamic diameter (nm), polydispersity indices (unitless),
oligonucleotide number per GNP, and UV/visible spectroscopy as shown in Figure 3A.
The top panel shows zeta potential, hydrodynamic diameter, and polydispersity indices
for each particle synthesis. Zeta potential measurements help identify surface charges
of nanoparticle syntheses and are used as a guideline for implying particle stability [60].
Generally, an increase in magnitude suggests a more stable particle synthesis allowing
for the proper interaction between particles and biological molecules conjugated onto the
surface. A gradual increase in zeta potential measurements is seen for all syntheses as
AS1411 loading is increased. As designed, this loading is verified in the bottom panel of
the figure, showing an increase in AS1411 loading across each synthesis. Benchmark values
looked for from zeta potential measurements are usually any of those that are >20 mV in
magnitude [61–63]. This would imply that 9X and 12X syntheses are the most stable, with
zeta potential measurements reading −21.7 ± 4.57 mV and −33.5 ± 8.85 mV, respectively.

Hydrodynamic size measures the size of the gold core, conjugated biomolecules, and
the hydration shell present around a particle when in solution. Generally, the hydrodynamic
size will increase as biomolecules are conjugated to a surface. The reported size is used
as a gauge to verify the conjugation of molecules and infer particle syntheses’ stability. A
stepwise increase in hydrodynamic size is seen between pairs for all particle syntheses. 0X
syntheses are most similar to bare citrate capped 4 nm GNPs. This is expected due to the
size of the conjugated PEG molecules. 3X and 6X syntheses are relatively identical, as are
9X and 12X syntheses, while larger than 3X and 6X syntheses. This would indicate an effect
on the size based on the distribution of the loading of AS1411 to the gold surface. This
implies that the difference in loading between 3X versus 6X and 9X versus 12X is not as
substantial as between 6X and 9X syntheses. It is believed that a saturation point is reached
that is most prominently demonstrated in the 9X synthesis. This behavior is also seen in
the UV-VIS spectra within the bottom panel of Figure 3. Absorption spectra at 520 nm
exhibit an increase in absorbent units as the particle size increase with the spectra of bare
GNPs and 0X, 3X and 6X, and 9X and 12X behaving similarly within their pairs. Within
these couplet groups, bare GNPs (4.3 ± 1.4 nm), 3X (13.7 ± 0.4 nm), and 9X (27.4 ± 1.3 nm)
syntheses are considered more stable due to the size of their variation. Absorbance maxima
at 520 nm wavelengths additionally show a slight shift to the right, suggesting a successful
surface conjugation [64]. Further demonstration of particle sizes and topography were
confirmed via TEM imaging, Figure 3B.

Polydispersity indices measure the distribution of the recorded sizes within synthesis
and are used as a gauge for particle stability and to state whether or not a synthesis is
monodispersed (uniform with PDI values close to 0) or polydispersed (non-uniform with
PDI values close to 1). Benchmark values of PDI are usually acceptable in the range of
0.5 to 0.7 [61–63]. Once AS1411 is conjugated to the surface of the GNP, our PDI values lower,
indicating an increase in particle uniformity due to the oligonucleotide loading. All particle
syntheses indicate good PDI values. Together with zeta potential and hydrodynamic size
results, we can see an optimal particle synthesis among the 9X or 12X synthesis suggested
by the nanoparticle characterization.
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Figure 3. (A) Characteristics of various syntheses of PEG-AS1411 co-conjugated 4 nm GNPs. The
top panel shows each synthesis’s zeta potential, diameter, and PDI values and compares them to
citrate-capped bare GNPs. The bottom panel shows oligo loading within particle syntheses and
resulting UV-VIS spectra for each. (B) TEM image of GNP-AS1411 (0X). Average particle size was
measured to be 4.53 ± 0.78 nm.

3.1.2. Cytotoxicity of PEG-AS1411 Co-Conjugated GNPs

To aid in determining an optimal PEG-AS1411 co-conjugated 4 nm GNPs for glioblas-
toma therapy, their in vitro anti-proliferative activity within U87MG cells was determined.
Nanoparticle effects on GBM’s antiproliferative activity were determined using XTT as-
says measuring cellular metabolism (Figure 4). Unsurprisingly, 0X syntheses showed a
minimal effect on antiproliferative activity due to the lack of any conjugated AS1411 to
the GNP surface. This also indicates the relative safety of the conjugated PEG molecule
and implies there is no inherent profound toxicity to GBM from this specific PEG on 4 nm
GNPs. Interestingly, 3X, 6X, and 12X syntheses behaved similarly with acute toxicity at
lower concentrations of AS1411 but had no cytotoxic profile as concentrations of AS1411
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increased, with 12X syntheses having less of an overall effect on antiproliferative activity.
9X syntheses presented with the most standard cytotoxic profile and gradually increased
antiproliferative activity as AS1411 concentration increased. 9X GNP syntheses signifi-
cantly increase antiproliferative activity in GBM cells when compared to no treatment and
10 micromolar (µM) AS1411 control groups at 2.5 and 5 µM (62.05% and 48.69% decreases
in XTT measurements with p < 0.0001 and p < 0.0018, respectively, at 2.5 µM—70.07% and
59.53% decreases in XTT measurements with p < 0.0001 for both comparisons at 5 µM).
Although 3X syntheses presented with an early significant decline in activity, the lack of a
cytotoxic profile, and other behavior on cellular morphology, discussed next, ruled them
out as a promising candidate as the optimal particle type. Lastly, these effects are unlikely
to result from the different gold concentrations introduced among particle treatments.
Proliferation assays completed on U87MGs with bare GNPs representing maximal gold
content (present in 5 µM groups; Figure 5) show no significant increase in antiproliferative
activity for each particle type. Therefore, any concentration present at lower amounts
should not have an effect either.
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Figure 4. As measured by XTT assay, antiproliferative activity within U87MGs post-treatment with
various PEG-AS1411 co-conjugated 4 nm GNPs. The legend shows particular particle syntheses
for each concentration of oligonucleotide (AS1411) present within GNP syntheses. Groups treated
with 0X represent the maximum amount of gold present within each concentration. NT represents
non-treated control groups (media only). * represents p < 0.05, ** represents p < 0.01, *** represents
p < 0.001, **** represents p < 0.0001.

It is known that the surface coverage of thiol-bearing groups reaches saturation at
approximately 75% coverage of the gold surface [65]. For our purposes, oligonucleotide
loading of 4 nm GNPs at 12X oligo concentration is regarded as 100% coverage of the
4 nm surface. This parameter is based on max loading calculations comparing 4 nm GNP
surface area (approximately 50.2 nm2) to the estimated surface area taken up by a molecule
AS1411 in its quadruplex state at the point of thiol-GNP surface contact (4.15 nm2). Suppose
saturation is measured by the bioactivity of AS1411, a known anti-cancer agent. In that
case, this saturation fact is supported here since it was determined that the 9X syntheses
(75% of the theoretical max) possess the most optimal bioactivity against GBM compared to
other syntheses. The 9X syntheses are most likely providing the necessary environment for
AS1411 to maintain its anti-cancer activity biostructure while simultaneously not interfering
sterically from too much or not enough loading onto the GNP surface.
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Figure 5. Proliferation activity, measured by cell viability, within U87MGs post-treatment with bare
4 nm GNPs representing maximal gold concentrations present within the solution for each particle
type. * represents p < 0.05. The red line indicates the normalized initial cell seeding value.

Due to a litany of reasons as to why one sees cellular effects from an anticancer
treatment, and given that any in-depth analysis of such processes with multiple particle
types would be time-consuming, expensive, and inefficient, we examined the effects of our
particle treatments on GBM cellular morphology (Figure 6) to help determine an optimal
particle formulation that exhibits clear and profound cellular effects that can be used for
additional in-depth cellular analyses. Screening the particles to see any morphological
effects further suggests that XTT data from 9X particles may act as an optimal GNP synthesis
for anti-GBM applications. GBM morphology in the 9X panel (Figure 6D) compared to
the non-treated panel (Figure 6F) shows an apparent alteration to the classical neuronal
morphology. GBM cells became more circular and spread out, affecting cellular function.
While bare gold expresses no significant effect on U87MG anti-proliferative ability (Figure 5),
Figure 6H shows an apparent effect on cell density, suggesting that bare GNPs affect
normal cell behavior but not at cytotoxic levels. This result has also been reported when
investigating the effects of bare gold interactions with cells [66–68]. Additionally, the 9X
treatment (Figure 6D) lacks the intense black spots due to nanoparticle aggregation found
in the 3X, 6X, and bare GNP treatments,—indicating greater nanoparticle stability under
the treatment conditions for the 9X nanoparticles. Lastly, this panel is most closely related
to cell morphologies of cells undergoing methuosis, a non-apoptotic cellular death pathway
largely implicated in AS1411-based treatments [69–71]. Thus, it is assumed that because of
the similarities in cellular morphologies reported in the literature [28,72], AS1411 could be
the most bioactive in the 9X syntheses. Taken together with XTT and characteristic data,
the 9X formulation was chosen as the optimal formulation in that it (1) affects hallmarks
of tumorigenesis as indicated by a decrease in GBM metabolic activity, (2) induces broad
changes in GBM in vitro morphology, and (3) maintains reported AS1411 bioactivity.

3.2. Specificity of Optimal PEG-AS1411 Co-Conjugated GNPs

To verify that the effects seen from 9X GNPs are due to the anti-cancer aptamer AS1411,
optimal GNP syntheses were generated with a control oligonucleotide, CRO, where each
guanine base in AS1411 is replaced with cytosine. Unlike AS1411, the CRO sequence is
not known to form quadruplex structures. XTT metabolic assays compared the bioactivity
of 9X PEG-AS1411 4 nm GNPs to that of 9X PEG-CRO 4 nm GNPs (Figure 7). From this
data, we can see the dose-dependent response on the decrease of antiproliferative activity
from 9X GNPs bearing AS1411, ultimately leading to a 75.0% decrease in metabolic activity
at concentrations close to 5 µM oligo when compared to the non-treated control. GNPs
bearing CRO oligos cause only a 5% decrease in antiproliferative activity for U87MGs
compared to the non-treated control. This value remains consistent for most concentrations
tested with GNPs bearing CRO oligos. 9X 4 nm GNPs bearing AS1411 oligo begin to
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show significant effects on U87MG metabolic activity when compared to optimal 9X 4 nm
GNPs bearing CRO oligo at higher concentrations of oligo (~2.5 and 5 µM), indicating their
specificity towards anti-GBM like activity (p < 0.0012 and p < 0.0017, respectively). Further
studies using non-cancerous, brain-related cells such as neural progenitor cells can confirm
the specificity of AS1411-coated GNPs.
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Figure 7. As measured by XTT assay, antiproliferative activity within U87MGs post-treatment with
optimal 9X PEG-CRO control or PEG-AS1411 co-conjugated 4 nm GNPs. A significance level of
** represents p < 0.01.

3.3. Anti-GBM Activity of PEG-AS1411 Optimal Co-Conjugated GNPs

Previous metabolic assays reported here can only be used as a screening tool, do not
offer any insights into the mechanism of action of PEG-AS1411 co-conjugated GNPs, and
have interference by GNPs in evaluating results. Thus, assays measuring specific hall-
marks of GBM more directly and without potential interference from GNPs are preferred.
Proliferation is a hallmark of GBM, contributing to its highly invasive and infiltrative
nature and clinical progression. Several cellular signaling pathways are altered within
GBM to create an environment of uncontrollable growth. Therefore, to determine if op-
timal PEG-AS1411 4 nm GNPs could be a specific and advantageous anti-GBM therapy,
their effects on GBM cell proliferation were examined. Any effects on GBM proliferation
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from the treatment of 9X 4 nm GNPs with PEG and AS1411 can be used as a gauge to
further define their bioactivity against GBM. From the data (Figure 8), we can see that
proliferation of U87MGs is decreased in a dose-dependent manner with the treatment of
PEG-AS1411 co-conjugated 4 nm GNPs at 1 µM, 2 µM, and 5 µM causing a significant
decrease in proliferation by 75.57% and 56.49% (p < 0.0001 for both) for both 2 µM and 5 µM
treatments, respectively. Additionally, 4 nm GNPs bearing control oligo (CRO) treated
at the same concentrations of oligonucleotide show no significant effect on the prolifera-
tion. These data imply that our optimal GNP therapy reported here is specific to GBM
and effective at altering GBM proliferation, significantly contributing to GBM aggression.
This effect is most likely due to AS1411′s mode of action through its interaction with its
protein target, nucleolin (NCL) which has recently gained interest as a biomarker of cellular
proliferation [37,73]. Mechanistic studies in other cancer-representing cells have aimed at
elucidating AS1411′s antiproliferative role. These have shown that treatment with AS1411
modestly increases EGFR phosphorylation leading to an increase in phosphorylation of
Akt and Rac1 proteins, which most likely contributes to its anti-proliferative nature [69].
Analyzing gene expression of major cancer-related genes in cancerous cells has begun
to elucidate additional cell cycle mediators (TP53, CDK proteins, MDM proteins, and
BCL2/BAX) of this activity, but specific mechanisms are still unclear [35,74]. Other studies
into effects on GBM regulation of proliferation using NCL interaction with AS1411 have
also shown large decreases (upwards of 40% decrease) in U87MG proliferation after 48 h
of 5 µM AS1411 treatment and upwards of 50% decrease after 72 h [73]. Here, we present
improved effects (75% decreases) achieved at lower concentrations of AS1411 (2 µM). This
confirms the increased bioactivity of AS1411 against its cancer targets once placed within a
nanocarrier system, as seen in previous studies, with the antiproliferative effects consistent
across two cancer cell types [34]. Ultimately, the optimized co-conjugated PEG-AS1411
4 nm GNP carrier system could be a promising therapy against GBM.
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Figure 8. Proliferative effects at differing oligo concentrations on U87MGs from optimal 9X co-
conjugated 4 nm GNPs conjugated with either PEG/AS1411 or PEG/CRO. Statistical significance
of *** represents p < 0.0002 and **** represents p < 0.0001. No treatment (NT) and 10 µM AS1411
treatments serve as controls. Percent growth measurements normalized to initial seeding density
(dashed red line).

4. Conclusions

Here, we have presented the development and optimization of a PEG-AS1411 co-
conjugated 4 nm GNP nanocarrier system designed to be optimally active against glioblastoma
and allow for further modification with non-chemotherapy agents. Optimal 9X loaded GNPs
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were stable. Screening particle syntheses with various loading profiles further implicated 9X
loaded syntheses as the optimal particle type producing typical cytotoxic profiles with the
most notable effects on the metabolic activity of U87MGs and the most significant impact on
cellular morphology—indicating alterations to normal U87MG cellular function. Optimal
particles have pronounced uptake in the cellular environment after 72 h of treatment and retain
the known specificity of AS1411. Most notably, optimal particles have a pronounced effect
on U87MG proliferation. Due to the design of this therapy, and its impact on proliferation,
it serves as a rationale for it to be used as a carrier to deliver further anti-GBM molecules.
Further studies currently in progress are working to evaluate the anti-GBM performance of
9X particles, specifically looking at their effects on crucial regulator molecules (microRNA-21)
and essential cellular proteins (PTEN, STAT3, PDCD4) affecting overall GBM proliferation,
invasiveness, and survivability. Ongoing studies are looking at the effect in vivo performance
of our optimal PEG-AS1411 co-conjugated 4 nm GNPs.

5. Patents

ANTI-NUCLEOLIN AGENT CONJUGATED NANOPARTICLES. Filed September 2019.
Application No. PCT/US2020/050261.
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