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Abstract: In this paper, a fast reverse design method of multi-layer frequency selective surface (FSS)
based on the equivalent circuit (EC)-assisted multi-objective particle swarm optimization (MOPSO)
algorithm is proposed. Converting the desired frequency response requirements into an EC and
then determining structural parameters via building blocks’ EC and MOPSO simplifies the inverse
design process of the FSS. The layer-by-layer building blocks of EC are used instead when dealing
with the problem of complicated EC computation associated with multi-layer FSS. By converting
factors that are difficult to calculate, such as interlayer coupling, into an MOPSO seeking process,
the computational complexity is reduced while the design accuracy can be improved. To begin
with, it is necessary to determine the distribution of zeros and poles according to the design goals in
order to calculate the appropriate EC. Then, the preliminary design of the FSS has been completed in
accordance with the EC and the associated building block structure. Finally, the objective function of
the optimization algorithm is determined according to the desired frequency response, and the FSS
structure parameters are optimized. Taking dual band-stop FSS and triple band-pass FSS structures
as examples, the transmission coefficient results obtained by the proposed reverse design method are
consistent with the transmission coefficient results based on the ECs, which verifies the effectiveness
of the proposed method. The optimized triple band-pass FSS demonstrates strong stability even at
oblique incident angles of up to 45◦ in both TE and TM polarizations.

Keywords: frequency selective surface; equivalent circuit; optimization; building blocks; semi-empirical
formula

1. Introduction

The frequency selective surface (FSS) has promising applications in the microwave
field as a periodic structure with spatial and frequency filtering properties [1–6]. The
analysis of the FSS is usually performed by establishing the corresponding physical model
after determining the parameters such as the form and size of the FSS and then calculating
the reflection or transmission coefficient. The finite FSS unit, periodic method moments,
and equivalent circuit (EC) are often used to analyze electromagnetic (EM) structures based
on FSS [7–11]. To solve the obstacles of the sizeable computational volume and long opti-
mization cycle required for the design of an FSS structure in conventional design methods,
the EC came into being [12–16]. These methods calculate the equivalent inductance L
and equivalent capacitance C of the FSS using an EC that depends on the geometry of
the FSS [17,18]. Any change in the size of the FSS will cause a corresponding change in
the inductance and capacitance values [19,20]. Therefore, the EC is simple, effective, and
intuitive.

There are generally two fundamental analysis and solution methods for its perfor-
mance characteristics for any microwave system composed of an infinite two-dimensional
periodic structure, supporting and matching dielectric layers, and free space on both sides.
One is based on the Floquet model theory, applying periodic boundary conditions and
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full-wave numerical simulation software, for instance, HFSS and CST [21,22]. It can nu-
merically solve the EM field distribution in the microwave system accurately and then
calculate the reflection, absorption and transmission, and other characteristics of the system
EM waves. The other is to equate the microwave system to a microwave network and then
use EC and microwave network theory to qualitatively and approximately analyze and
solve the network parameters such as impedance A, and S [23]. The first method gives
rigorous and accurate results, but it seldom involves analyzing the regulation principle of
the periodic structure on the electromagnetic wave. Generally, only the designed structure
can be analyzed and solved. The latter one allows a qualitative analysis of the network
characteristics and operating principles of the FSS. It can also serve as guidance for the
design and performance optimization of the FSS, but it cannot obtain details such as the
internal field and current system distribution. Since the EC can directly reflect the filtering
characteristics of the periodic structure, many researchers have tried to derive an exact
formula that can fully reproduce the traits of FSS [24].

In short, these proposed formulas can approximate the quasi-static model of a simple
FSS. However, these formulas are often complex and inaccurate for complex FSS models.
Amir did not directly apply the empirical formula when designing the square loops FSS
in [25]. Instead, he simplified some widely used EC-based analytical formulations and
validated the relationship between the square loops FSS and the EC elements. According to
the requirements, the corresponding structure parameters were selected from the curves
for simulation verification. This method can guide the simple FSS design and often needs
to be revised to ensure accuracy. On behalf of expanding the scope of the application
of an equivalent circuit model (ECM), Fllipo edited the circuit lumped parameters of a
single-layer FSS in [26] and extended it to the analysis of a multi-layer FSS cascade using
the method of transmission matrix multiplication. It can be used to calculate the reflection
coefficient and transmission coefficient curve of FSS at various frequencies and predict
FSS performance more quickly. The larger the number of FSS layers in the design, the
greater the amount of calculation for the transmission matrix multiplication. The analysis
of matrix multiplication does not consider the influence between different layers of FSS
in practical applications. Therefore, the extraction method of EC parameters is still not
accurate enough. In the design process, the coupling effect between the layers of the FSS is
often ignored when using the method in reference [27].

In order to accurately and quickly design compliant FSSs, combining optimization
algorithms with traditional design processes has become a research hotspot in recent years.
A domain decomposition hybrid genetic algorithm (GA) incorporating a local optimization
scheme for real-coded quantities has been applied to optimize FSS [28–31]. A unique
development strategy that involved selecting the most suitable magnetic substrate from a
GA database has been adopted [32]. The basic idea of optimization is to divide the pattern
or substrate material, encode, and finally search and optimize to reach the design goal.
In [33], Yilmaz integrated the particle swarm optimization (PSO) algorithm into the design
of the square ring FSS and optimized the FSS structure size with its EC transfer function
as the objective function. Because the transfer function selected here is only for a fixed
EC, and there is no general method for extracting the transfer function of the FSS EC, the
optimization algorithm using the transfer function as the objective function is not universal.

This paper proposes a design method to improve the design accuracy of the FSS that
combines full-wave simulation software with EC and employs optimization algorithms
as auxiliary means. First, we use the basic FSS building blocks corresponding to the EC
for preliminary design aiming at the design goal. Then, the full-wave simulation and
intelligent algorithm are applied to optimize the structure parameters of FSS. Taking the
design of dual band-stop FSS and triple band-pass FSS as examples, the effectiveness of
this method is verified. At the same time, we have processed and experimentally measured
the triple band-pass FSS in this paper, and the results are consistent with the simulation
results. This method does not pursue the derivation of accurate formulas such as multi-
layer transmission matrix or modified EC transmission coefficients to calculate the correct
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structure parameters. Instead, factors that are not easy to calculate, such as the influence
of the dielectric substrate, the impact of polarization, and the effect of coupling between
multi-layer FSS, are transferred into the optimization algorithm to eliminate. Therefore, the
applicability of this method is not limited to the FSS of a specific building block. Using the
EC to design the rough structure and then the optimization algorithm to accurately design
also reduces many calculation costs.

The rest of the paper is organized as follows. In Section 2, the reverse design method
based on the ECM is proposed. An analysis of the FSS building blocks and their corre-
sponding EC is presented, as well as a detailed description of how the proposed method is
designed. Section 3 verifies the effectiveness of the proposed method through two design
examples of dual band-stop and thriple band-pass FSS. Section 4 conslude the paper.

2. Reverse Design Method of FSS Based on the ECM

According to the existing research, many FSSs are designed to rely heavily on full-wave
simulation, with parametric scanning playing a significant role in this process. Nevertheless,
while numerical simulations produce an accurate frequency response for a given FSS
structure, there is insufficient information about beginning the design of the FSS and how
to initialize its geometry so that the expected frequency response is achieved. In addition to
providing the designer with an approximation of the frequency response with an acceptable
level of accuracy, the ECM is frequently used to determine how an FSS operates. However,
it’s seldom found that FSS designs incorporate ECM as a design tool to achieve the desired
frequency response.

The filter corresponds to an equivalent circuit consisting of four functions: low-pass,
high-pass, band-pass, and band-stop. Consequently, a filter with arbitrary frequency
response can be implemented. The FSS building blocks structure can realize these four
filtering functions. In addition, since these block structures are symmetrical and have
better polarization and oblique incidence angle insensitivity, they can be used as candidate
structures for building more complex and more performance-demanding FSSs.

2.1. FSS Building Blocks and Their EC

Since the 1980s, E.A. Parker has analyzed the EC model of numerous building blocks
of FSS, such as metal square slots and square loops [12]. The EM structure based on an
FSS is similar to the filter in circuit theory, including a low-pass filter, high-pass filter,
band-pass filter, and band-stop filter. Depending on the filtering characteristics, the EC of
FSS can be represented as a series or parallel resonant RLC circuit (as shown in Figure 1).
After correctly establishing the EC model, extracting effective EC parameters is the key to
designing FSS using EC.

The equivalent inductance L for metal grids and the equivalent capacitance C for metal
patches can be defined as [6]: The TM incidence occurs when the electric field polarization
is parallel to the incidence plane, i.e., θ = 0°, and TE incidence occurs when the electric field
is perpendicular to the incidence plane, i.e., φ = 0°. Therefore, the impedance expressions
for TE and TM incidence are needed to simulate the array at oblique incidence angles. For
the square loops structure, the semi-empirical relationship obtained by transmission line
theory is defined as: 

XLloop
Z0

= ωLloop = d
p F(P, 2w, λ, θ),

BCloop
Z0

= ωCloop = d
p · 4εe f f F(P, g, λ, θ),

(1)

F(P, 2w, λ, Ψ) =
p
λ
(ln(csc

πw
2p

) + G(P, w, λ, Ψ)), (2)

where G(P, w, λ, Ψ) is derived in [12]. If Ψ = θ, it indicates the case of TE polarization.
Otherwise, if Ψ = φ, it indicates the case of TM polarization.
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Figure 1. FSS building blocks and its EC.

XLloop is the normalized inductive reactance of the square patches and the slots, BCloop
is the normalized capacitive reactance, Z0 is the characteristic impedance of the free space,
p represents the length of the array period, d is the side length of the square ring, w is the
width of the square loop side, g represents the slot between the square rings.

The EC of the metal slots is shown in Figure 1, including an inductor L1 representing
the grid, with a series resonant circuit Lslot and Cslot representing the square patch. Their
values correspond to the parameters of the metal slots structure, which can be expressed as:

XL1

Z0
= ωL1 = F(p, w, λ, θ), (3a)

XLS1

Z0
=

p− 2g
2p

F(p, d− 2g, λ, θ), (3b)

XLslot
Z0

= ωXLslot = XLS1 +
g

d− 2g + w
XL1, (4)

BC1

Y0
= ωC1 = 4F(p, d, λ, θ), (5a)

BC2

Y0
= ωC2 = 4F(d− g, g, λ, θ), (5b)

BCslot
Y0

= ωCslot = (1.75BC1 + 0.6BC2)εe f f . (6)

For a multi-layer FSS composed of an n-layer FSS and (n− 1)-layer dielectric substrate,
the transmission line model adopted by Flipo can be used to approximate the construction
of the transmission matrix [18]. This method uses more complicated calculations and
approximates the transmission matrix of a multi-layer FSS, which has good generality
and versatility. Its detailed calculation process had been proved in [27]. Optimization
algorithms are used to compensate for factors that increase the computational complexity,
such as the effect of coupling between FSS layers. Therefore, the application of this method
is not limited to the form of specific building blocks of the FSS.
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2.2. Design Process of the Proposed Method

The mode matching method, finite element method, spectral-domain method, etc. can
calculate the EM response more accurately, but its calculation process is more complicated.
So, a simple EC was proposed, which can design the FSS relatively quickly. The proposed
method designs the FSS inversely by mapping the EC of simple building blocks to the EM
field. The design procedure of the proposed method is shown in Figure 2. The design steps
are briefly summarized as follows:

Figure 2. Flow chart of the proposed method.

First, the design objectives are analyzed from the actual requirements. This distribution
of zeros and poles is determined by the filtering characteristics (band-pass/band-stop) of
the desired frequency response.

Second, the initial FSS design phase. From the distribution of zeros and poles in step 1,
the topology of the EC and the values of its components L, C are determined. Then, the FSS
topology is determined based on the FSS building block structure shown in Figure 1 with
the corresponding equivalent circuit. Finally, the values of the FSS structure parameters are
calculated according to Section 2.1.

Third, determine whether the initial designed FSS frequency response is consistent
with the target. If it is not consistent, go to the next step.

Finally, the objective function of the multi-objective particle swarm optimization
(MOPSO) algorithm is determined. The solution that satisfies the design objective is
obtained in the Pareto solution of the MOPSO algorithm.

During the design process, there are a few points that need to be specifically stated:

(1) Instead of using a multi-layer FSS transmission matrix for the multi-layer FSS design,
we use the basic layer-by-layer building blocks for the design, which reduces the
computational complexity.

(2) We can obtain the size range of the FSS based on the operating frequency and wave-
length of the resonant circuit. The resonant wavelength of the FSS roughly corresponds
to the perimeter of the array cell, D ≈ λ/4.

(3) Considering that the dielectric loading will cause the center frequency drift, for
the dielectric half-space and full-space filling with relative permittivity of εr, the
corresponding FSS resonant frequency will be reduced to f0/

√
(εr + 1)/2 and f0/

√
εr,

respectively. f0 is the resonant frequency of the free-space FSS without dielectric load.
(4) Considering the influence of the polarization mode and the oblique incident angle,

multi-layer dielectric loading cascade and changing the shape of the metal patches
are usually used to ensure that the polarization and angle insensitivity characteristics
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of FSS are within the acceptable range. However, there is an influence of inter-layer
coupling factors when using dielectric loading cascade FSS. The calculation of the
transmission matrix is computationally intensive and complex. In this paper, an
MOPSO algorithm is used to omit the calculation of inter-layer coupling [27]. It
compensates for the influence of medium, polarization, and incident angle on the
frequency response in the original FSS design.

3. Implementation of the Design Method

This section verifies the effectiveness of the multi-layer FSS design method proposed
in this paper by using a dual band-stop FSS and a triple band-pass FSS as examples.

3.1. Design of Dual Band-Stop FSS

When designing a dual band-stop FSS, two monolayer models are usually cascaded [34].
According to the design goal, we loaded two monolayer FSS models to generate two
single band-stop responses and cascaded them to generate the desired dual band-stop
responses [35,36].

Let the design target be a dual band-stop FSS. The center frequencies of the dual
band-stop are f1 = 10 GHz, f2 = 33.5 GHz, covering the ultra-wideband from X to Ka-
band. According to the design goals, a resonant circuit that meets the characteristics of
FSS is constructed. Therefore, two sets of series-connected inductors and capacitors can
be cascaded to achieve the goal. The values of L1, C1, L2, and C2 in Figure 3a are equal to
1.016 nH, 0.022 pF, 2.76 nH and 0.094 pF, respectively. Metal square loops can be cascaded
to design an FSS that meets the above conditions.

Figure 3. (a) The EC of the dual band-stop FSS. (b) Schematic diagram of the dual band-stop FSS.

According to Section 2, the structural parameters of FSS can be approximately calcu-
lated, as shown in Table 1. Figure 3b is the schematic diagram of the dual band-stop FSS
structure.

Table 1. Structure parameters of the dual band-stop FSS (unit: mm).

h p d1 w1 d2 w2

0.25 6 5 0.24 2.25 0.1

The transmission coefficient results of the FSS and the EC are shown in Figure 4. It is
not consistent with the frequency response of the FSS model. The reasons for this situation
are as follows:

(1) In the quantitative analysis, the complexity of the mathematical formulae, which omit
some long and tedious factors in the calculation but have little impact on the overall
count, may cause cumulative errors.
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(2) The FSS and the resonant circuit on the transmission line are approximately equivalent.
It only reflects that the two are roughly the same in terms of filtering property and are
not precisely identical.

(3) As mentioned in the previous section, the dielectric substrate will change the operating
frequency of the FSS during the design process.

Figure 4. Model of the proposed dual band-stop FSS.

It is common for the design concept to obtain the initial structure based on the target
frequency response and existing research results in the field of expertise. The EM analysis of
the FSS structure will be carried out using the EM simulation software, and the parameters
scanned will be used to guide the modification of the structure parameters according to the
parameter scan results. The disadvantage of this approach is that it is very time consuming
and may not lead to the desired outcome. MOPSO offers a solution to this challenge.

In general, the multi-objective problem designs can be mathematically described as:{
minF(X) = ( f1(x), f2(x), ... fn(x))T

s.t.x ∈ X
(7)

where x = x1, x2, . . . , xn represents a vector of n designable parameters shaping a specific
FSS, and X represents the space within which the parameters are designed. The i-th design
objective is represented by fi(x), i = 1, 2, ..., m and F(x) contains all of the design objectives.
According to the concept of multi-objective programming, no objective can be completely
superior to another. In other words, there is no x and y, and for all design goals, there exists
fi(x) < fi(y). Pareto dominance relations ≺ are defined as follows: for any two solutions x
and y, if fp(x) ≤ fp(y) for all p = 1, 2, . . . , n and at least one design goal exists in order to
make fp(x) < fp(y), then x dominates y, i.e., x ≺ y. Thus, for any solution x included in
the Pareto-optimal set, y ∈ Xand y ≺ x are impossible.

The performance of FSS is mainly expressed in two aspects: the bandwidth of the
band-pass or band-stop, and the stability of the transmission coefficient corresponding
to the wave incidence angle. In this paper, our design goal is to obtain FSS structure
parameters that are consistent with the frequency response of the equivalent circuit. As a
result, the two objective functions of the MOPSO algorithm correspond to the root mean
square error of the frequency response of the designed FSS from the equivalent circuit at
the corresponding sampling points. The objective function of MOPSO is designed in the
following:
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Obj1 = min

√
1
n

n

∑
i=1

(S21(i)− S21sim(i))2 (8a)

Obj2 = min

√√√√ 1
m

m

∑
j=1

(S∗21(j)− S∗21sim(j))2 (8b)

where S21(i) and S21sim(i) denote the desired and the simulated transmission coefficients
to the i-th sampling point when S21sim(i) ≤ −10 dB, respectively. S∗21(j) and S∗21sim(j)
denote the desired and the simulated transmission coefficients to the j-th sampling point
when S∗21sim(j) > −10 dB. The number of samples in the corresponding frequency bands is
denoted by n and m, respectively. For a population of N, to determine whether the k-th
particle is a non-inferior solution, it must satisfy the following condition when compared
to the other particles n:

Obj1(k) ≤ Obj1(n)&&Obj2(k) < Obj2(n) ‖ Obj1(k) < Obj1(n)&&Obj2(k) ≤ Obj2(n) (9)

Thus, the i-th particle provides a non-inferior solution. All non-inferior solutions currently
form a set of non-inferior solutions.

The objective function depends on the error between the desired and the simulated
transmission coefficients. The smaller objective value means that the frequency response
corresponding to the proposed FSS is better fitted to the target value. For building blocks
mentioned in this paper, the design problem can be phrased in terms of a multi-objective
optimization problem with multiple dimensions and continuous optimization, the number
of dimensions being determined by the structural parameters. Instead of a fully chance-
oriented trial-error approach, the MOSPSO-based design approach systematically utilizes
the MOPSO algorithm for multidimensional search operations.

The PSO algorithm has many similarities with other evolutionary computational
techniques such as genetic algorithms. To verify the validity of MOPSO, the classical
algorithm in GA, NSGAII, is adopted for comparison [37]. The parameters set of MOPSO
is as follows: the number of populations is 40, the size of the repository is 50, the maximum
number of iterations is 50, the initial weight is 0.5, the weight decay factor is set to 0.99, and
acceleration factors are equal to 1 and 2, respectively. The NSGAII value parameters are set
with the same number of populations and the mum number of iterations as MOPSO, the
crossover probability is 0.9, and the variance probability is 0.1.

As shown in Table 2, the MOPSO algorithm is able to reduce the number of EM
simulations. For the same population size and number of iterations, the MOPSO algorithm
takes less time to optimize. The optimization efficiency is improved by about 18% compared
with the NSGAII algorithm.

Table 2. Comparison of computational cost.

Optimization Approach Numbers of EM Simulation
CPU Time/h

Total Relative (%)

MOPSO 2040 40.78 82.01%
NSGAII 2200 60.70 100%

The upper and lower thresholds of the optimization parameters are determined by
manufacturing errors. Their search ranges are set as follows: d1 ∈ [5, 6], w1 ∈ [0.2, 0.3],
d2 ∈ [2.5, 3.5], w2 ∈ [0.4, 0.8]. As shown in Table 3, both the MOPSO algorithm and the
NSGAII algorithm can improve the accuracy of the model. Compared with the results
obtained with parameter scanning in the CST software, the optimization algorithm can
obtain the model structure parameters more quickly and accurately.



Nanomaterials 2022, 12, 3846 9 of 15

Table 3. FSS structure parameters for different optimization approaches (unit: mm).

Parameters
Optimization Approach

Parameter Sweep MOPSO NSGAII

d1 5.5 5.50 5.49
w1 0.25 0.21 0.20
d2 3 3.28 3.00
w2 0.5 0.62 0.50

The structural parameters of the proposed dual band-stop FSS optimized by different
methods are shown in Table 3. As shown in Figure 5, the results obtained by MOPSO
optimization are basically consistent with the results of EC. The NSGAII has the second-best
effect, and the results of parameter scanning with CST software have a larger error than the
results of EC. This is because the CST software can only set fixed compensation iterations
for the parameters for EM simulation, which has a larger error. In contrast, MOPSO and
NSGAII are global scans in the range of structural parameters, which make it easier to
obtain optimal solutions.

Figure 5. Comparison of transmission coefficients obtained from MOPSO, NSGAII, CST parameter
scan optimization, and ECM in ADS. (a) Transmission coefficient in the frequency range of 8–11 GHz,
(b) Transmission coefficient in the frequency range of 28.5–35 GHz.

3.2. Design of Triple Band-Pass FSS

This section introduces the design of a triple band-pass FSS loaded with a multi-layer
dielectric. According to the filter circuit, this scheme works in the C-band, X-band, Ku-band,
and the center frequencies are f1 = 4.53 GHz, f2 = 8.52 GHz, and f3 = 13.73 GHz. The
corresponding resonant circuit is constructed according to the design requirements, as
shown in Figure 6a. The square loops and square slots cascade structure with a dielectric
constant of 6 is used to design the triple band-pass FSS. The schematic diagram of the
structure is shown in Figure 6b.
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Figure 6. (a) The EC of the triple band-pass FSS. (b) Schematic diagram of the triple band-pass FSS.

According to the design goals, the component values of the triple band-pass filter
circuit can be received, as shown in Table 4.

Table 4. The EC parameters value of triple band-pass FSS.

L1 C1 L2 C2 L3 C3 L4

0.06 nH 0.1 pF 1.22 nH 0.57 pF 5.1 nH 0.03 pF 2.12 nH

From the corresponding relationship between FSS building blocks and the EC, the
structural parameters obtained are shown in Table 5 below:

Table 5. FSS structure parameters (unit: mm).

Length Height d1 d2 d3 d4 d5 d6

6 0.25 4.3 3 5.8 2.5 4.5 3.5

Figure 7a shows the transmission coefficient results of FSS constructed according to
the structural parameters in Table 5. It shows that the frequency domain response of the
designed FSS, although meeting the design requirements of the triple bands, is different
from the frequency domain response of the circuit. It is mainly manifested in the center
operating frequency and bandwidth. The 3 dB band-pass is not formed at the first two
center frequencies, and the center frequency of the third band-pass is out of position.
Relying on the EC to calculate the FSS structure parameters, there are substantial errors
and uncertainties. For the unrealized band-pass and center frequency offset problems, the
optimization goal needs to be more restricted when optimizing the designed FSS.

It is not only necessary to optimize the center frequencies but also to improve the
bandwidth [38]. The objective functions of optimizing the working bandwidth are defined
as Equation (8). S21 and S21sim denote the desired and the simulated transmission coefficient
when S21sim ≥ −3 dB, respectively. S∗21 and S∗21sim denote the desired and the simulated
transmission coefficient when S∗21sim < −3 dB. The structural parameters that need to be
optimized are d1, d2, d4, d6, among which d1 ∈ (4, 5), d2 ∈ (3, 6), d4 ∈ (2, 3), d6 ∈ (3, 4).

According to the MOPSO algorithm described in the previous section, optimize the
structural parameters in Table 4. The optimized structural parameters are d1 = 5.00 mm,
d2 = 5.80 mm, d4 = 3.00 mm, d6 = 3.60 mm. Figure 7b demonstrates the transmission
coefficient of the optimized FSS and filter circuit. After the adjustment, the difference
between the transmission frequency response of the FSS and the EC becomes smaller. The
transmission coefficient results curve also coincides better. It can be seen that the design
method combining empirical formula and optimization algorithm can make up for the
deficiency of using the EC alone for the reverse deduction.
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Figure 7. (a) Transmission coefficient of triple band−pass FSS for the ECM (shown in red) and desired
(shown in black), (b) Transmission coefficient of optimized triple band−pass FSS for the optimized
structure parameters by MOPSO algorithm (shown in red) and desired (shown in black).

Based on the analysis in Section 2, it appears that the incidence angle is one of the most
important indicators of the accuracy of the EC model and the practicality of the method
proposed. For the purpose of verifying the precision, stability, and applicability of the FSS
designed using the EC method, we analyzed the transmission coefficients under both TE
and TM polarizations.

Figure 8 reflects the polarization and angular stability of the FSS under different
polarization and oblique incidence conditions. Under TE and TM polarization, the triple
band-pass FSS at oblique incidence has good stability in the first two bands with a maximum
oblique incidence angle of up to 45◦.

Figure 8. Transmission coefficients under different oblique incidence angles of the optimized triple
band−pass FSS. (a) TE polarization, (b) TM polarization.

To verify the effectiveness of the EC-based FSS design scheme proposed in this paper,
a triple band-pass FSS is fabricated and measured as an example. To simulate the infinite
plane as much as possible, the final object has a size of the final object is 300 mm × 300 mm,
containing 50 × 50 building blocks, as shown in Figure 9.

Figure 10 shows the schematic of the FSS measurement setup. The measurement
approach employs the arch method. Both the transmission and receiving horns are mounted
on an arc perpendicular to the plane of the fabricated FSS located. FSS is excited by the
transmission horn, and its reflected signal is detected by the receiving horn. To ensure
the test accuracy, a metal plate with identical dimensions as the triple band-pass FSS to
be tested is prepared for calibration. The panel is surrounded by absorbers to reduce
diffractions from the edges of the FSS panel. The antenna is located approximately 2 m
away from the transmitting and receiving antennas to ensure that both the transmitter and
receiver are in the far-field region.
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(a) top view (b) bottom view

Figure 9. Photos of the triple band-pass FSS fabricated prototype.

Figure 10. The arch measurement setup of the fabricated FSS. The transmission and receiving horns
are mounted on an arc perpendicular to the plane of the fabricated FSS.

Figure 11 shows the actual measurement results of the triple band-pass FSS. It can be
seen that under TE polarization and TM polarization, the actual measurement results are
in good agreement with the simulation results. Therefore, the actual performance of the
designed FSS meets the requirements and also proves that the method proposed in this
paper is effective.
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Figure 11. Comparison of transmission coefficient results between full-wave simulation and mea-
surement data.

4. Conclusions

An EC-assisted MOPSO method to accelerate the reverse design of the FSS based on
the building blocks is proposed in this paper. In place of entirely relying on empirical
formulas and precise calculations, the proposed method performs the initial design based
on a correspondence between the building blocks and the EC. Following that, the MOPSO
algorithm is used to optimize the structural parameters of the building blocks in order to
achieve the exact design. By illustrating dual band-stop and triple band-pass FSS with
numerical and measurement results, the proposed method is shown to be valid and accurate.
Based on the simulation results, it appears that this method offers good consistency in
frequency response for FSSs and filter circuits designed using this method. Furthermore, it
has been shown that the triple band-pass FSS frequency performance maintains its stability
under a wide range of oblique incident angles up to 45◦ in both TE and TM polarization.
With the method presented in this paper, the inverse design process of multi-layer FSSs is
simplified and the complexity of manufacturing is reduced.
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