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Nanomaterials and nanostructures are continuously driving technology revolutions in
broad engineering fields, such as defense [1], aerospace, electronics [2], biomedical [3,4],
energy [5], and other high-end sectors. Landmark nanostructures, such as fullerene [6],
carbon nanotube (CNT) [7], and graphene [8], have significantly promoted the growth
of nanomaterials and triggered novel applications. For instance, there are increasing
interests in the synthetic nanochannels (e.g., graphene nanochannels), which possess
unique transmission behavior and show appealing prospects for nanofiltration [9,10], water
desalination [11–14], and energy storage [15,16]. Through atomistic simulations, Li et al. [17]
investigated the permeability of a hexagonal diamond nanochannel for a NaCl solution. To
facilitate various engineering implementations, a comprehensive understanding of their
mechanical properties and deformation mechanisms is usually a prerequisite, which can be
acquired through nanoscale experiments and atomistic calculations.

Extensive works have been conducted to extend the concepts/theories established at
macro-scale to nanoscale, in order to describe the mechanical behavior of nanomaterials.
For instance, surface effects and axial extension have been incorporated in the beam theory
to describe the bending and vibration of nanowires [18,19], which are the building blocks for
nanoelectromechanical systems. Considering the coupled loading scenarios, Lu et al. [20]
investigated the deformation mechanisms of nanowire under coupled tension-torsion
loads. Pan et al. [21] derived the exact solutions for torsion and warping of axial-loaded
beam-columns in order to avoid the underestimation of the torsional stiffness of thin-
walled nanostructures. With the advancement of fabrication technology, more complex
nanostructures have been reported, such as heterostructures, Janus structures, helical/spiral
structures [22], nanoscrolls [23], and three-dimensional networks [24]. These complex
structures exhibit unique physical and chemical properties. For instance, Yang et al. [25]
found that the Janus WSSe and MoSSe monolayers exhibit a strong mechanical anisotropy
under tension.

A common utilization of nanomaterials is reinforcement for engineering materials,
which includes polymers, fibers and metals [26]. Extensive works have employed low-
dimensional nanomaterials to enhance the mechanical and thermal properties of composite
materials [27,28]. For instance, the CNT has excellent mechanical properties, which is
promising for artificial muscles and flexible electronics, while the mechanical performance
of CNT fibers/bundles depend on various factors, such as the alignments and composi-
tions of constituent CNTs as shown by Wei et al. [29]. The excellent mechanical properties
of nanomaterials also make them promising for extreme applications, such as the pro-
tective shields that alleviate the damage from the hyper-velocity impact. In this regard,
Xia et al. [30] investigated the deformation and penetration mechanisms of titanium carbide
MXene nanosheets. Studies reveal that many factors affect the mechanical performances of
polymer composites synergistically, such as the type, percentage, alignment, dispersion,
and functional groups of the nanofillers [31]. Investigations show that CNT acts as a skele-
ton in the poly phenylene terephthalamide polymer that enhance both the strength and
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modulus [32], and the graphene foam can remarkably increase the storage modulus and
loss modulus of the polydimethylsiloxane polymer [33].

Besides nanomaterials, plenty of works have investigated the atomistic underlying
mechanisms for the mechanical behaviors of engineering materials, which provides use-
ful guidelines for the design of high-performance materials. For example, Wu et al. [34]
probed the penetration process of aluminum nanorod through atomistic simulations, and
Wan et al. [35] assessed how the initial void influence the damage characteristic of sin-
gle crystal aluminum under shock loading. Interestingly, Jiang et al. [36] found that the
presence of copper nanoparticle will trigger the formation of regular stacking fault in
the single crystal aluminum under shock compression. Based on the smoothed particle
hydrodynamics (SPH) method, Wu et al. [37] discussed the differences in the fragmenta-
tion characteristics between the microscopic (atomic scale) and macroscopic scales under
hypervelocity impact. In real applications, materials are usually exposed under a complex
loading environment, e.g., electronics experience cyclic thermal and mechanical loadings
during service [38]. As such, it is crucial to explore the responses of materials under coupled
loading. For example, Zhao et al. [39] established a multiscale model to investigate the
mechanical–thermal responses of woven composites. There is also increasing attention
being devoted to the strain engineering of nanomaterials. For instance, Yang et al. [40]
reported that proper strain can modulate the valley polarization in VS2 heterostructures.
Other works also reported the strain tailored thermal transport properties [41] and interfa-
cial thermal conduction of nanostructures [42].

In summary, this Special Issue of Nanomaterials entitled “Nanomechanics and Plastic-
ity” compiles a series of original research articles that explore the mechanics at nanoscale
for different advanced materials. We are confident that this Special Issue will provide the
reader with an overall view of some of the latest prospects in the nanotechnology field.
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