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Abstract: The development of non−Pt or carbon−based catalysts for anion exchange membrane fuel
cells (AEMFCs) requires identification of the active sites of the catalyst. Since not only metals but
also carbon materials exhibit oxygen reduction reaction (ORR) activity in alkaline conditions, the
contribution of carbon-based materials to ORR performance should also be thoroughly analyzed.
However, the conventional CN− poisoning experiments, which are mainly used to explain the main
active site of M−N−C catalysts, are limited to only qualitative discussions, having the potential
to make fundamental errors. Here, we report a modified electrochemical analysis to quantitatively
investigate the contribution of the metal and carbon active sites to ORR currents at a fixed potential
by sequentially performing chronoamperometry with two reaction inhibitors, CN− and benzyl
trimethylammonium (BTMA+). As a result, we discover how to quantify the individual contributions
of two active sites (Pt nanoparticles and carbon support) of carbon−supported Pt (Pt/C) nanoparticles
as a model catalyst. This study is expected to provide important clues for the active site analysis of
carbon-supported non−Pt catalysts, such as M−N−C catalysts composed of heterogeneous elements.

Keywords: fuel cells; oxygen reduction reaction; multiple reaction inhibitor; activity quantification;
active site; poisoning

1. Introduction

As climate change due to the greenhouse effect caused by carbon dioxide (CO2)
becomes more serious around the world, renewable energy resources to replace fossil fuels
are attracting a lot of attention. Among various renewable energy resources, hydrogen
is recognized as an eco−friendly and sustainable energy resource. Accordingly, in recent
years, hydrogen fuel cells have been intensively developed as promising energy conversion
devices that can replace internal combustion engines [1–5].

In hydrogen fuel cell systems, carbon-supported Pt (Pt/C) nanoparticles are the most
widely used as representative electrocatalysts, and simultaneously serve as a performance
evaluation standard in the development of novel catalysts [6–8]. However, since Pt is a
precious and expensive material, it cannot be a reasonable final candidate when considering
the commercialization of fuel cells. Therefore, extensive studies of various catalyst struc-
tures have been performed to ensure high oxygen reduction reaction (ORR) activity while
lowering the catalyst cost. For instance, alloy catalysts with reduced Pt usage, non−Pt
catalysts using other transition metals, and carbon-based materials that do not even contain
metals have been developed [9–14].

Meanwhile, in the study of applying a catalyst that replaces Pt in fuel cells, a clear
understanding of the reaction mechanism is required, and the identification of the active site
of the catalyst must precede. In this context, experimental results describing the reaction
mechanisms and active sites of non−Pt or carbon-based catalysts have been reported
for decades [15–19]. For instance, the atomically dispersed transition metal (M = Fe, Co,
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Mn, etc.) and nitrogen co-doped carbon (M−N−C) catalysts have been proposed as
the most promising alternative to Pt-based catalysts [20,21]. In general, the main active
site of the M−N−C catalysts is elucidated through the experimental method of adding
a small amount of a reaction inhibitor, such as Cl−, ClO4

−, NO2
−, NO3

−, CN−, and
tris(hydroxymethyl)aminomethane, to the electrolyte [22–24]. One can observe a change in
the i–V curve for ORR since the reaction inhibitors poison the catalyst due to the strong
binding energy to the metal surface.

However, most of these studies are limited to the qualitative discussions that the center
Fe (or Co) atoms will become the main active sites through the reduced ORR performance
after poisoning. In particular, there is a possibility of making an error of assuming that the
main active site is completely poisoned by the reaction inhibitors, despite the relatively
low but clear ORR activity observed within a wide potential range. For instance, it is
well known that the binding energy of CN− to the center metal atom of the Fe−N−C
catalyst is much smaller than that to the surface of Pt nanoparticles, making it impossible
to completely poison the Fe−N−C catalyst by CN−. In addition, since carbon materials
exhibit relatively high activity in alkaline solutions, the conventional electrochemical
analysis using only CN− may reveal fundamental limitations in an alkaline electrolyte for
the half-cell test of anion exchange membrane fuel cells (AEMFCs) [25,26]. On the other
hand, D. Malko et al. demonstrated a protocol to determine the number of metal active
sites of the M−N−C catalysts via nitrite adsorption followed by reductive stripping [27].
However, the electrochemical analysis was also limited to the understanding of the center
metal atoms except for the active carbons. Accordingly, a quantitative analysis of the
contribution of each component (metal or carbon) to ORR performance at a given potential
has not been conducted in most previous studies [23,28–30].

In this work, based on the CN− poisoning test, we propose a modified electrochemical
method to quantitatively identify the contribution of elemental components of electrocata-
lysts to ORR activity in alkaline solution by additionally introducing a reaction inhibitor,
benzyl trimethylammonium (BTMA+). A commercial Pt/C catalyst and Vulcan XC−72
carbon are used as a simple model system, respectively, to demonstrate the effectiveness of
the developed quantitative analysis. At first, a catalyst poisoning experiment using each
reaction inhibitor is performed at a fixed potential to observe changes in the electrochemical
property according to the catalyst structure and components. Then, during ORR, the two
reaction inhibitors are sequentially introduced at the corresponding potential, and the
individual contributions of the Pt and carbon support constituting the model catalyst,
Pt/C, are quantitatively analyzed. This study is expected to provide important clues for
the analysis of the active sites of non−Pt catalysts composed of various heterogeneous
elements such as M−N−C catalysts.

2. Materials and Methods

To confirm the physical characterization of commercial Pt/C (20 wt%, Premetek,
Cherry Hill, NJ, USA) catalyst and carbon support (Vulcan XC-72, Cabot, Boston, MA,
USA), transmission electron microscopy (TEM) (HF5000, Hitachi, Tokyo, Japan) and pow-
der X-ray diffraction (XRD) (D8 ADVANCE, Bruker, Billerica, MA, USA) were used. All
electrochemical measurements were conducted at room temperature (25 ◦C) using a stan-
dard three−compartment electrochemical cell with a rotating disk electrode (RDE). The
three−electrode cell consists of a Ag/AgCl electrode in saturated KCl (3 M) aqueous so-
lution, a Pt sheet, and glassy carbon (GC) electrode with a geometric area of 0.196 cm2

as the reference electrode, counter electrode, and working electrode, respectively. The
potentials measured against a Ag/AgCl electrode were converted to the potentials versus
the reversible hydrogen electrode (RHE). Pt/C catalyst ink was prepared by mixing 5 mg
of catalyst, 34.4 µL of Nafion solution (Sigma−Aldrich, Burlington, MA, USA), 50 µL of
DI water, and 450 µL 2−propanol by sonication for 15 min. In the same way, the Vulcan
XC−72 ink was prepared with 4 mg of Vulcan, the same amount of Nafion solution, and
500 µL of 2-propanol. Then, 5 µL of the catalyst ink was loaded onto the GC of RDE
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and dried at room temperature. In the case of Pt/C catalyst, the total catalyst loading
was 238.7 µg cm−2 (Pt loading: 47.8 µg cm−2), and the Vulcan XC−72 sample loading was
190.9 µg cm−2, which is equal to the amount of the carbon support in the Pt/C catalyst
loading. The chronoamperometry was performed at 0.7 V with rotation of the RDE at
1600 rpm in O2-saturated alkaline electrolytes. The electrolyte used in each experiment was
0.1 M KOH, 0.01 M KCN−mixed 0.1 M KOH, and 0.1 M BTMAOH which is an alkaline
electrolyte with a benzene group. In addition, the performance recovery experiment was
conducted by washing the GC with DI water several times. The chronoamperometry
currents over time were normalized to the initial ORR currents of each sample.

3. Results and Discussion

The physical structures of Pt/C catalyst and Vulcan XC−72 carbon were characterized
by using TEM and XRD, as shown in Figures 1 and 2. The TEM images in Figure 1a,b reveal
that the Pt/C catalyst has very small Pt nanoparticles of ~2.58 nm uniformly dispersed on
the carbon support. On the other hand, in the case of the Vulcan XC−72 sample, carbon
particles of 30–50 nm, similar to the size of the carbon support of Pt/C, are observed
without metal nanoparticles (Figure 1c,d). In addition, as shown in Figure 2, the XRD peaks
of the Pt/C catalyst show the Pt(111), Pt(200), and Pt(220) planes along with the C(002)
plane, whereas the Vulcan XC−72 sample indicates only the C(002) and C(101) peaks due to
the absence of metal particles [31–34]. Accordingly, it is confirmed that the Pt/C catalyst is
composed of Pt nanoparticles and carbon support, and the Vulcan XC−72 sample consists
only of carbon particles.
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Figure 2. XRD patterns of (a) Pt/C and (b) Vulcan XC−72.

Chronoamperometry was then performed under various operating conditions with
different electrolytes to electrochemically analyze the contribution of each component, Pt
nanoparticle and carbon support, to ORR activity of the Pt/C catalyst. First, 0.1 M KOH
was selected as a commonly used alkaline electrolyte to observe the inevitable degradation
of ORR performance for Pt/C and Vulcan XC−72 samples over time. Second, 0.01 M
KCN−mixed 0.1 M KOH solution was used to investigate the effect of CN− on the Pt
nano-particle and carbon support. Third, chronoamperometry was carried out in 0.1 M
BTMAOH solution, which can also deteriorate the ORR performance of the catalyst due
to the adsorption capacity of benzene by electrostatic or π−p interactions with the carbon
surface [35–37].

Figure 3a–c show the change in ORR performance of the Vulcan XC−72 sample under
the above-mentioned experimental conditions. First of all, the normalized ORR current of
Vulcan XC-72 gradually decreases by ~65% over 12 h in 0.1 M KOH (Figure 3a). Likewise,
the performance is similarly reduced by 70% due to the effect of CN−, implying that CN−

has a negligible poisoning effect on pure carbon material (Figure 3b). As a result, the
decrease in ORR performance in both electrolytes is thought to occur naturally and is not
due to any poisoning mechanism. In sharp contrast, when BTMA+ is used as a reaction
inhibitor, the ORR activity of Vulcan XC−72 rapidly decreases by ~92% after 8 h, as shown
in Figure 3c. Therefore, it is revealed that BTMA+ is the most suitable reaction inhibitor to
poison the carbon sample, which is elucidated by the fact that benzene-based molecules
such as BTMA+ can be electrochemically and/or physically captured by activated carbons.



Nanomaterials 2022, 12, 3800 5 of 10
Nanomaterials 2022, 12, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 3. Chronoamperograms of Vulcan XC−72 at 0.7 V in O2−saturated (a) 0.1 M KOH, (b) 0.01 M 
KCN−mixed 0.1 M KOH, and (c) 0.1 M BTMAOH. 

Now, we need to focus on the electrochemical test results of Pt/C catalyst. As shown 
in Figure 4a, it is confirmed that the ORR performance of Pt/C is not significantly reduced 
even after 12 h in 0.1 M KOH, unlike the Vulcan XC−72 sample. However, it is well known 
that Pt nanoparticles are rapidly poisoned by CN- due to the strong binding energy 
[10,38,39]. To investigate the effect of CN- poisoning time on ORR activity of Pt/C, a per-
formance recovery test was conducted by washing the GC with DI water after CN- poi-
soning for a period of time (1, 15, and 30 min), as shown in Figure 4b–d. After CN- poi-
soning for 1 min, the normalized ORR current is reduced by ~70%, but immediately re-
turns to ~50% of its initial performance, which implies that Pt nanoparticles cannot be 
completely poisoned in a short time. As expected, with increasing the poisoning time from 
15 to 30 min, the ORR current recovered after the washing step became negligible. Fur-
thermore, the current was reduced by 75~80%, which may be due to complete poisoning 
of the Pt nanoparticles. Considering these results, we recognized that 30 min is sufficient 
time to poison the metal nanoparticles. 

Figure 3. Chronoamperograms of Vulcan XC−72 at 0.7 V in O2−saturated (a) 0.1 M KOH, (b) 0.01 M
KCN−mixed 0.1 M KOH, and (c) 0.1 M BTMAOH.

Now, we need to focus on the electrochemical test results of Pt/C catalyst. As shown
in Figure 4a, it is confirmed that the ORR performance of Pt/C is not significantly reduced
even after 12 h in 0.1 M KOH, unlike the Vulcan XC−72 sample. However, it is well
known that Pt nanoparticles are rapidly poisoned by CN− due to the strong binding
energy [10,38,39]. To investigate the effect of CN− poisoning time on ORR activity of Pt/C,
a performance recovery test was conducted by washing the GC with DI water after CN−

poisoning for a period of time (1, 15, and 30 min), as shown in Figure 4b–d. After CN−

poisoning for 1 min, the normalized ORR current is reduced by ~70%, but immediately
returns to ~50% of its initial performance, which implies that Pt nanoparticles cannot be
completely poisoned in a short time. As expected, with increasing the poisoning time
from 15 to 30 min, the ORR current recovered after the washing step became negligible.
Furthermore, the current was reduced by 75~80%, which may be due to complete poisoning
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of the Pt nanoparticles. Considering these results, we recognized that 30 min is sufficient
time to poison the metal nanoparticles.
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However, as shown in Figure 4e, when BTMA+ is only used as a reaction inhibitor,
the normalized ORR current of Pt/C decreases by ~80% after 12 h. Interestingly, after
washing, the activity is recovered to ~65% of its initial current, which can be explained by
the adsorption of BTMA+ not only to the carbon support but also to the Pt nanoparticles.
Despite this, since the BTMA+ binding energy to the Pt nanoparticle might be weaker
than that to the carbon support, we guess the ORR current can be significantly recovered
after washing [40–42]. Therefore, it is concluded that BTMA+ is only suitable for suppress-
ing the activity of carbon materials, whereas CN− is suitable as a reaction inhibitor for
metal nanoparticles.
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Finally, the quantitative analysis of the contribution of metal nanoparticles and carbon
support to the ORR current at a fixed potential (0.7 V) was conducted more precisely
by sequential introduction of the two inhibitors. As shown in Figure 5, CN− poisoning
for 30 min was first carried out in O2−saturated 0.1 M KOH solution to deteriorate the
ORR activity of Pt only. After washing, the chronoamperometry was continued in 0.1 M
BTMAOH solution without CN−, resulting in the almost complete suppression of the
ORR current.
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Consequently, it was unambiguously revealed that the ORR current reduced by ~80%
due to CN− poisoning was attributed mainly to the Pt nanoparticles and the remaining 20%
of the performance was due to the carbon support. In other words, for the Pt/C catalyst,
the contribution of the Pt nanoparticles to ORR performance at 0.7 V is ~4 times higher
than that of the carbon support, implying that the main active site is the surface of the Pt
nanoparticles as reported elsewhere [43–45].

4. Conclusions

In summary, through the sequential poisoning by CN− and BTMA+, we quantitatively
analyzed the contributions of the Pt nanoparticles and carbon support to ORR performance
during chronoamperometry at a given potential in alkaline electrolytes. First of all, it was
clearly confirmed that CN− and BTMA+ are suitable inhibitors for deteriorating the Pt
nanoparticles and carbon support, respectively. Then, by sequentially introducing the two
reaction inhibitors (CN− → BTMA+) during the chronoamperometry, we discovered that
the contribution of the Pt nanoparticles to the ORR current at 0.7 V was ~80%, whereas
that of the carbon support accounts for ~20%. In other words, by precisely quantifying
the activity contributions of the two active sites, the surface of the Pt nanoparticles was
identified as the main active site for ORR. From this point of view, we believe that the ORR
activity of M−N−C catalysts, which consist of metal atom−decorated carbon materials,
can also be analyzed using a sequential poisoning with multiple reaction inhibitors. Based
on the CN− and BTMA+ poisoning tests for Pt/C and Vulcan XC−72, we will continue to
develop electrochemical methods to find the key factors affecting the ORR performance of
M−N−C catalysts, providing insight into the design of non-Pt catalysts for AEMFCs.
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