
Citation: Trusso Sfrazzetto, G.;

Santonocito, R. Nanomaterials for

Cortisol Sensing. Nanomaterials 2022,

12, 3790. https://doi.org/10.3390/

nano12213790

Academic Editor: Run Zhang

Received: 23 September 2022

Accepted: 25 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

Nanomaterials for Cortisol Sensing
Giuseppe Trusso Sfrazzetto 1,2 and Rossella Santonocito 1,*

1 Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
2 National Interuniversity Consortium for Materials Sciences and Technology (I.N.S.T.M.),

Research Unit of Catania, 95100 Catania, Italy
* Correspondence: rossella.santonocito@phd.unict.it; Tel.:+39-095-738-5148

Abstract: Space represents one of the most dangerous environments for humans, which can be
affected by high stress levels. This can lead to severe physiological problems, such as headaches,
gastrointestinal disorders, anxiety, hypertension, depression, and coronary heart diseases. During
a stress condition, the human body produces specific hormones, such as dopamine, adrenaline,
noradrenaline, and cortisol. In particular, the control of cortisol levels can be related to the stress
level of an astronaut, particularly during a long-term space mission. The common analytical methods
(HPLC, GC-MS) cannot be used in an extreme environment, such as a space station, due to the steric
hindrance of the instruments and the absence of gravity. For these reasons, the development of
smart sensing devices with a facile and fast analytical protocol can be extremely useful for space
applications. This review summarizes the recent (from 2011) miniaturized sensoristic devices based
on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-electrodes), which
allow rapid and real-time analyses of cortisol levels in biological samples (such as saliva, urine, sweat,
and plasma), to monitor the health conditions of humans under extreme stress conditions.
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1. Introduction

The extraterrestrial environment, especially during long-term space missions, is one
of the most hostile places for humans and leads to high levels of stress in astronauts. In
particular, persistent chronic stress can lead to major physiological problems, such as
headaches, insomnia, fatigue, hypertension, loss of concentration, gastric and memory
problems, depression, and immune system dysfunctions [1–7]. To avoid having a chronic
response to stress, during a space mission, whether short or, especially, in the long term,
it is essential to monitor daily stress levels to avoid compromising astronauts’ activities.
During a stress condition, the human body synthesizes catecholamine neurotransmitters
(CNs) such as dopamine (DA), adrenaline (AD), and noradrenaline (NAD), and also specific
hormones (called ‘stress hormones) [8], the most important of which is cortisol. Cortisol is
a fat-soluble steroid hormone, one of the main glucocorticoids synthesized by the adrenal
cortex [9]. It plays a key role in certain physiological processes such as the regulation of
blood pressure, glucose levels, and carbohydrate metabolism. Cortisol is a stress biomarker,
and its release is regulated by the hypothalamic-pituitary-adrenal (HPA) axis response [10],
which is the central stress response system in humans. The HPA axis is characterized by
the hypothalamic release of corticotropin-releasing factor (CRF).

Figure 1 shows schematically the mechanism of the release of adrenal cortisol into
the blood and diffusion into other tissues. In particular, CRF binds to its receptors in
the anterior pituitary gland, releasing adrenocorticotropic hormone (ACTH), which then
binds to receptors in the adrenal cortex, stimulating cortisol release [11]. The cortisol
secreted will then participate in all ongoing physiological processes. For these reasons,
monitoring cortisol levels in real time should be very useful during a space mission to
control stress levels.
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Cortisol levels change during the day following a well-established circadian rhythm,
they are lowest around midnight and start to increase in the early morning, and decrease
again during the day [12–14]. Cortisol can be found in detectable amounts in different
biological fluids such as blood, urine, saliva, sweat, hair, and interstitial fluid (ISF), as
reported in Table 1. In particular, blood is the matrix in which the highest concentration
of cortisol is present; however, its sampling is not recommended because blood collection
requires specialized medical personnel and sterile equipment, with the constant risk of
infection [15]. High concentrations of cortisol can be found in urine, and the measurement of
these levels requires a sampling collection over 24 h. Although it is not an invasive method,
it has several disadvantages in terms of practicality and reliability, because in a space
mission, all urine is collected, concentrated, filtered, and purified to obtain drinkable water.
Even if containing a lower concentration of cortisol than blood, saliva is the preferred body
fluid for the detection of cortisol, as sampling for analysis is almost entirely non-invasive,
with little or no discomfort for the subject providing the sample. Furthermore, the ease of
sample collection, handling, and storage has increased the prospects of its application in
point-of-care sensors for real-time cortisol detection [16].

Table 1. Cortisol levels in different biological samples in nominally healthy subjects. Adapted with
permission from [17]. Copyright 2020 Elsevier.

Sample Cortisol Concentrations

Blood 25 mg/mL (morning),
2 mg/mL (midnight)

Urine a 21,458–149,696 ng/24 h
44,000–140,000 ng/24 h

Saliva 1–12 ng/mL (morning),
0.1–3 ng/mL (evening)

Sweat 8–142 ng/mL

Hair 18–153 pg/mg

Interstitial fluid (ISF) 12–34 ng/mL (morning),
9–13 ng/mL (evening)

a The level of cortisol in the urine is measured over a 24 h period and is referred to as the 24 h urinary free cortisol
test; this test consists of the collection of a subject’s urine for 24 h; consequently, the results are expressed in 24 h
units due to the difference in the amount that can be collected from subject to subject. This test measures the total
amount of free cortisol excreted by the subject over 24 h, regardless of the amount of urine.
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Cortisol can also be found in sweat and hair, although at low concentrations, and it is
hypothesized that there is a strong correlation between the cortisol levels in sweat and hair
due to the pathway cortisol takes from serum, sebum, and sweat to hair. The sampling of
cortisol in sweat is inconvenient as sweating depends on atmospheric conditions (humidity
and temperature) and physical activity levels. However, research is developing sweat
collection systems (e.g., a microfluidic cloth or patch) but these have not yet been tested
in space environments [18]. ISF is an extracellular fluid that surrounds the cells of the
human body. Its composition is similar to that of blood plasma. Cortisol, along with other
metabolites and proteins, can be found within the ISF, but the detection of the hormone may
require an invasive approach [19]. Taking into account these considerations, the preferred
human matrixes to detect cortisol levels are saliva and sweat.

Enzyme-linked immunosorbent assays (ELISA) [20], chemiluminescence assays (CLIAr) [21],
and capillary electrophoresis-based immunosorbent assays (CE-IA) [22] are the common
techniques used to quantify free cortisol levels in human patients. In addition, immunosens-
ing or immunoassay (IA) techniques are very promising for screening analyses as they
improve sensitivity [23,24], with a low limit of detection (LOD) values, and are cheap
and easy to use. The common laboratory analytical methods, such as LC-MS [25], HPLC,
and, in particular, tandem mass spectrometry (MS/MS) are also extremely sensitive [26],
accurate, and selective, but cannot be used in ‘extreme’ environments such as space stations
or spacecraft due to their bulkiness. In addition, they need trained personnel, and the
lack of gravity (or reduced gravity) affects their operation. Therefore, due to the change in
cortisol levels depending on daily activities, the development of point-of-care (POC) sensing
devices that qualitatively and quantitatively monitor cortisol levels through a fast and easy
analytical protocol can be extremely useful for space applications.

The target of NASA and ESA for the future is to start long space missions, in order
to create permanent space bases on the moon and to reach Mars. These future missions
preclude the possibility to collect a sample on the mission and perform the analysis on Earth
which leads to the necessity to execute the analysis in situ. Recently, tissue- and clothing-
based biosensing approaches are growing [27], allowing diagnostic devices to be integrated
into a wearable format, which can be used to develop non-invasive approaches for the
quantitative measurement of biomarkers in bodily fluids. In addition, many methods have
been employed to improve the use of Lateral Flow Assays (LFAs) [28], one-step assays that
require low sample volumes to produce good qualitative, quantitative, or semi-quantitative
results. There are LFAs for serum, salivary, plasma, and sweat cortisol that provide non-
invasive techniques. Now, research wants to develop multiplexed LFAs for cortisol as they
could improve the application of these devices, allowing a POC differential diagnosis of
the disease. In this context, smartphone applications have been developed for LFAs for
cortisol, LH (Luteinizing hormone), and TSH (Thyroid-stimulating hormone), allowing
patients to monitor their health at home [29].

This review aims to summarize recent (from 2011) miniaturized sensoristic devices
based on nanomaterials (gold and carbon nanoparticles, nanotubes, nanowires, nano-
electrodes), which allow rapid and real-time analyses of cortisol levels in biological samples
(such as saliva, urine, sweat, and plasma), to monitor the health conditions of humans
under extreme stress conditions. In particular, we focused our attention on optical and
electrochemical sensing of cortisol by nanostructures, due to their high sensitivity.

Recently, some interesting reviews on the electrochemical [17], immunological [30],
and aptameric sensing of cortisol with point-of-care technologies have been reported [31].

2. Nanomaterials for Sensing

In recent years, nanomaterials have been widely used for the chemical sensing of many
species [32–35]. In particular, cortisol sensing by nanostructured species can be performed
by different classes of nanosystems: gold nanoparticles, carbon nanoparticles, graphene
oxide, metal nanoflowers, nanowires, nanoflakes, and metal nanorods. Gold nanoparticles
(AuNPs) have an average diameter of about 16–50 nm, excellent physical and chemical
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properties, good biocompatibility, and very high molar absorbance, which makes them
excellent luminescence quenchers employed in sensing applications [36]. Carbon-based
fluorescent nanoparticles (CNPs) [37–39], such as carbon dots (CD), graphene quantum
dots (GQD), and polymer dots (PD), have a narrow size distribution ranging from about 3.0
to 6.0 nm and an average diameter of about 5.1 nm. Graphene oxide is a 2D nanostructure
based on SP2-carbon atoms, which contains different oxygen atoms due to the carbon
oxidation reaction [40]. Metal nanoflowers are composed of metal phosphates such as
cobalt [41], copper, manganese, zinc, ferrous, and calcium salts as inorganic components,
having larger diameters concerning carbon and gold nanoparticles (100–500 nm). They
are characterized by simple synthesis, high stability, larger specific area, good carrier
transmission, and enhanced photocatalytic efficiency. Nanowires show high electrical
conductivity, good optical properties, high flexibility, and a low cost of synthesis [42]. For
these reasons, they have been used in the realization of various transparent, flexible, and
stretchable devices, such as touch screens, smart windows, and solar cells. Nanoflakes
are in the range of 1.5–5 nm in diameter and contain different oxygen-based groups, such
as epoxide, ether, and hydroxyl groups, and a wide type of morphologies (hexagonal,
triangular, rectangular). Nanorods can be obtained from different metal or non-metal
elements and show interesting chemical–physical properties [43]. Their dimensions are
wide, from 1 to 100 nm, and are used in many electronic devices.

The use of these nanostructures in sensing applications drastically improves the
selectivity, sensitivity, and stability of the sensor, due to the improvements of nanomaterials
in (i) catalytic activity; (ii) the conductivity of the transducer due to its excellent mechanical,
thermal, electrical, and optical properties; (iii) several receptors that can be anchored onto
the nanostructure; (iv) high surface-to-volume ratio; (v) material sizes that can fall into the
nanometre region, drastically increasing the number of surface atoms. Furthermore, the
surface of nanostructures can be functionalized with pendant arms leading to increased
reactivity [44].

In addition, nanostructures improve the affinity of the analyte-receptor bond since
there is a significant delocalization of the electrical charge on the surface [45]. Further-
more, there are several methods to detect cortisol levels that exploit both optical and
electrical output.

3. Optical Nanosensors

Jeon and co-workers have designed a new localized surface plasmon resonance-based
cuvette-type sensor for the detection of cortisol, leading to rapid detection in human
serum samples [46]. In particular, the nanosensor, called Plex NanoCuve, consists of
a parallel assembly of four sensing strips, two protection strips, and two spacer strips.
The principle of operation is based on the change in the local refractive index of gold
nanoparticles upon binding to biomolecules, this change induces a shift in the localized
surface plasmonic resonance (LSPR) wavelength [47,48]. In this nanosensor, conjugated
cortisol binds bovine serum albumin (BSA) and is immobilized on plastic units coated with
gold nanoparticles (Figure 2). Cortisol was detected in PBS solution and serum (within
20 min) at concentrations between 1 and 10,000 ng/mL, values comparable to that of the
traditional enzyme-linked immunosorbent assay (ELISA), which typically requires more
than 4 h and complex sample preparation. The few amounts of samples (200 µL) required
for a single analysis and the relatively quick time for the analysis should be fine for space
applications after reducing or changing the readout system and obtaining a portable device.

Liu and co-workers developed a new type of portable biosensor based on carbon
quantum dots (QDs) conjugated with magnetic nanoparticles (MNPs) for the sensitive
detection of cortisol in saliva samples [49]. Firstly, they demonstrated that cortisol leads
to the fluorescence quenching of QDs [50], functionalized on the surface with selective
aptamers (Aptamer-QD@MNP) or antibodies (Antibody-QD@MNP), which are selective
for cortisol (Figure 3). Then, they obtained the real nanosensor for the detection of cortisol
in saliva samples by the conjugation between QDs and MNPs [51]. This approach allows
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the detection of cortisol concentrations lower than 1 nM. In particular, the detection limit
obtained is ca. 1 nM for Aptamer-QD@MNP and ca. 100 pM for Antibody-QD@MNP.
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Kim and co-workers presented a new sensor to simultaneously detect creatinine
(an important bioindicator of kidney function) and cortisol in sweat using a portable
Raman spectrometer [52] (Figure 4). They fabricated silver nano snowflakes (SNSFs)
on a SERS (surface-enhanced Raman scattering) substrate and hydrophobic filter paper
using the polyol method [53]. In particular, the sensor was created by synthesizing a
colloidal suspension of SNSF according to the polyol method reported in the literature [54].
This substrate facilitates the simultaneous detection of creatinine and cortisol and allows
measurement on small sample volumes of human sweat (2 µL). Notably, the possibility to
use a hand-held Raman spectrometer for these measurements leads to real applicability in
a space mission.
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Mohammad-Andashti and co-workers prepared an on-off fluorescent sensor for the
detection of cortisol [55], based on highly luminescent MoS2 quantum dots (QDs) obtained
by simple, environmentally friendly, and green microwave exfoliation (Figure 5). Specifi-
cally, high-fluorescence MoS2 quantum dots were prepared by mixing MoS2 powder with
ammonium hydroxide and deionized water, transferred to a Teflon microwave vessel, her-
metically sealed, and placed in a microwave oven. The detection of cortisol used an on–off
protocol, in that some cations (such as Cu2+, Pb2+, Cd2+, Ag+, Fe3+, and Al3+) switched
off the luminescence intensity of MoS2 QDs, but then the luminescence of MoS2 QDs-Ag+

and Cu2+ mixtures was recovered with the addition of cortisol, with a higher emission
recovery for the Cu2+ ion. This occurs because cortisol interacts with copper ions through
its hydroxyl and carbonyl groups leading to a copper-cortisol complex, which releases
copper from the surface of MoS2, resulting in the recovery of the emission intensity of
MoS2 QDs.

The method was successful in determining the cortisol content in saliva, with a
detection limit between 100 ng/mL and 500 ng/mL. Considering that the low level of
cortisol in the saliva is from 1 to 11 ng/mL, the amount of sample required for a single
analysis with this method must be 5 mL, so its application in real life is actually precluded.

Yılmaz and co-workers developed a plasmonic sensor based on gold nanoparticles
for the real-time determination of cortisol in complex aqueous solutions [56]. The sensor
surfaces were modified with propyl 3-(trimethoxyl)methacrylate, and then a precomplex
was prepared using the functional monomer N-methacryloyl-L-histidine methyl ester, and
then 2-hydroxyethyl methacrylate was added to the monomer solution to ethylene glycol
dimethacrylate, and polymerization was initiated. Two plasmonic sensors, one imprinted
with cortisol without AuNPs and one unimprinted without cortisol, were prepared to con-
firm the signal-enhancing effect of AuNPs and to determine the selectivity of the imprinting
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process, respectively. Finally, through the calculation of kinetic binding parameters, the
detection performance of cortisol was evaluated, in particular showing a detection limit of
0.0087 ppb. The main limitation of this system is its non-portability, which precludes its
use for real-time cortisol analysis. This problem can be solved by using a portable read-out
system, such as optical fiber or a simple camera.
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Very recently, Chen and co-workers developed a nanosensor based on calcium nanoflowers
mixed with horseradish peroxidase, streptavidin, and α-amylase for cortisol detection,
with a limit of detection of 95.5 pg/mL and response in the range of 0.33–1000 ng/mL [57].
They used this new sensor in rat serum, human urine, and saliva. In particular, this system
exploits two different output signals, the change of glucose (by simple glucose blood
meter) and TMB (Tetramethylbenzidine) oxidation (by a simple smartphone). Notably, this
nanosensor can reveal the antidepressant effects of many drugs (Figure 6). The easy use of
this prototype and the non-invasive detection method pave the way for the practical use of
this system for cortisol detection.
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4. Electrochemical Nanosensors

Recently, new electrochemical techniques for the detection of cortisol have gained
popularity [58]. These techniques show a low cost, high sensitivity, and a high level of inte-
gration, especially since they can be portable [59–61]. In this context, Arya and co-workers
designed an electrochemical biosensor for cortisol detection [62]. They electrophoretically
deposited polyaniline-protected gold nanoparticles (PPAuNPSs) onto a gold electrode,
and the cortisol-specific monoclonal antibody (C-Mab) was covalently immobilized on
the electrode surface (PPAuNP/Au) using N-ethyl-N′-(3-dimethyl aminopropyl) carbodi-
imide and N-hydroxysuccinimide (EDC/NHS) as coupling agents (Figure 7). Using Cyclic
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Voltammetry (CV) and Differential Pulse Voltammetry (DPV), the concentration of cor-
tisol in phosphate-buffered saline (PBS) solution was determined. The results showed
that the PPAuNP-based electrode remained stable during repeated scans and, in addition,
the BSA/C-Mab/PPAuNP/Au electrode in PBS buffer accurately detected cortisol in the
range of 1 pM-100 nM, with a sensitivity of 1.63 µA/M. This system is optimized for the
laboratory scale and requires implementation to obtain a point-of-care device.
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Figure 7. Schematic illustration of the fabrication of the BSA/C-Mab/PPAuNP/Au electrode for
cortisol detection (reproduced with permission from [62]. Copyright 2015 Elsevier).

Vabbina and co-workers presented a highly sensitive and selective label-free electro-
chemical immunosensor for cortisol [63]. These sensors are one-dimensional ZnO nanorods
(1D ZnO-NRs) and two-dimensional ZnO nanoflakes (2D ZnO-NFs), synthesized on Au-
coated substrates in a one-pot approach. One-dimensional ZnO-NRs and two-dimensional
ZnO-NFs were chosen because they offer detection advantages over bulk materials [64],
in particular, the 1D-NSs have a high surface area/volume ratio, and the 2D-NSs have a
large area in the polarized plane (0001) and a high surface charge density, such that they
promote a higher loading of anti-cortisol antibodies (Anti-Cab) and thus improve detec-
tion performance. This is because the selective detection of cortisol by CV was achieved
by immobilizing the anti-cortisol antibody (Anti-Cab) on ZnO nanostructures (NSs) via
electrostatic interaction. These immunosensors, through CV studies on electrochemical
detection, showed a high sensitivity of 11.86 mA/M and a minimum detection concentra-
tion of 1 pM. For real applications, the developed immunosensor was tested on human
salivary cortisol of two specimens collected at different time intervals (see Figure 8). In
addition, the shelf-life of this system is ca. 30 days, thus supporting its usability as a real
detection system.
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Sanghavi and co-workers presented a microfluidic aptamer-based quantitative cortisol
detection methodology that does not require the labeling of the target, the immobiliza-
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tion of the capture probe on the detection surface, or washing steps before reading [65].
They used gold nanoparticles functionalized with aptamers (AuNPs) at high concentra-
tions to increase the surface available for the capture of the analyte and to allow free
three-dimensional diffusion of the analyte towards the binding surface. The detection is
performed on an alternative graphene-modified electrode (Figure 9), optimized to enhance
the adsorption and electron transfer kinetics of electroactive molecules. To improve the
binding kinetics of aptamers for cortisol, the authors applied this sensing strategy without
surface immobilization within a nanoslit (Figure 9) geometry, locating the sensing electrode
in the vicinity of the electroactive species released by the aptamers. The microfluidic nature
of this system precludes the possibility to use it in the absence of gravity, but it is open to the
practicability for analysis in real life [66]. In fact, fluid motion and handling microgravity
or the absence of gravity require different system engineering with respect to those used
on Earth. In particular, in normal gravity conditions, buoyancy plays a crucial role in
transport phenomena, while in the absence of gravity, the main effect involved in fluid
transport is surface tension. For this reason, microfluidic systems developed on Earth must
be implemented to be used in space missions.
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Sun and co-workers developed a sensitive and competitive electrochemical immunosensor
for cortisol detection [67]. This immunosensor consists of gold nanoparticles and mag-
netically functionalized reduced graphene oxide (AuNPs/MrGO) (Figure 10). Cortisol is
detected by the presence of a cortisol-selective antibody on the surface. The final signal of
the electrochemical immunosensor in the test fluid had negative correlations with the corti-
sol concentration in the samples. Finally, the electrochemical response of the immunosensor
was greatly amplified by applying AuNPs/MrGO with excellent electrical conductivity.
The cortisol detection ability was excellent, with a linear range between 0.1 to 1000 ng/mL,
and a detection limit of 0.05 ng/mL. This system has been tested with human serum as the
real sample, and thus a device for obtaining saliva or sweat should be implemented for the
space mission.
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Liu and co-workers reported on a new type of rapid point-of-care test for the non-
invasive detection of salivary cortisol [68] (Figure 11). The sensor was prepared by loading
onto glassy carbon electrodes (GCE) multilayer films containing two-dimensional tin
disulfide nanoparticles [69], cortisol antibody (C-Mab), and bovine serum albumin (BSA).
The electrochemical performance of the biosensor as a function of cortisol concentrations
was determined by cyclic voltammetry and differential pulse voltammetry, showing a good
detection range from 100 pM to 100 µM in authentic saliva samples, a detection limit of
100 pM, and a sensitivity of 0.0103 mA/Mcm2 (R2 = 0.9979). The detection of cortisol in
real saliva requires only 2 mL of sample, thus making it usable in practical analysis.

Klinghammer and co-workers designed a portable microfluidic platform based on
silicon-based semiconductor nanowire sensors (SiNW FETs) for monitoring diurnal cor-
tisol levels in saliva samples at nanomolar concentrations [70]. The sensor is based on
nanoscopic field-effect transistors (FETs), which provide real-time and label-free detection
due to their low detection limits [71]. To bring the ‘target-receptor’ complex closer to the
surface of the nanowires (SiNWs), they exploited the specific DNA aptamer sequences
previously reported by Martin et al. [72]. In addition, aptamer-based FETs are suitable
sensors for the detection of small analytes like cortisol. The sensing mechanism is based
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on the conformational changes induced by cortisol upon binding to negatively charged
aptamers. Cortisol wraps tightly around silicon nanowires, and the surface potential,
which is measured by static contact angle measurements, is altered (Figure 12). Finally,
circular dichroism (CD) spectroscopy was used to test the selectivity of the platform and the
conformational changes observed following the recognition of cortisol levels. As previously
cited, microfluidic devices cannot be used in the absence of gravity.
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Madhu and co-workers designed highly flexible, wettable yarn-based electrochemical
immunosensors capable of non-invasively quantifying levels of biochemical markers on hu-
man sweat in real-time [73]. Specifically, these yarn-based sensors have been immobilized
via hydrothermal synthesis on ZnO nanorods (ZnONRs) as they exhibit excellent morphol-
ogy, crystallinity, and specific surface area. The ZnONRs showed excellent mechanical
stability and super-wetting properties (Figure 13). With this immunosensor, cortisol could
be detected over a wide linear detection range from 1 fg/mL to 1 µg/mL. The detection
limits were calculated between 0.45 and 0.098 fg/mL using the CV and DPV techniques,
respectively. Cortisol was detected in real sweat samples, making this system interesting
for practical applications if it can be transformed into a portable device.
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of an immunosensor with ZnONRs/CCY and electrochemical detection of cortisol (reproduced with
permission from [73]. Copyright 2020 American Chemical Society).

Rison and co-workers developed a new electrochemically conductive sensing electrode,
based on ZnO nanoparticles electrochemically deposited on a pencil graphite electrode
(PGE) coated with graphene [74] (Figure 14). The sensor was characterized using electro-
chemical techniques such as CV analysis and electrochemical spectroscopic impedance
testing (EIS). This system can detect salivary cortisol amounts within a linear range of
5 × 10−10 M–115 × 10−10 M, with a LOD of 0.15 nM. These limits, the LOD, the LOQ, and
the linearity interval were measured by Differential Pulse Voltammetry (DPV) studies. The
possibility to detect cortisol with CV and EIS makes this system suitable for laboratory
scales, and thus the practicability for real analysis should be improved.
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Sonawane and co-workers demonstrated the improved distribution and electronic
properties of gold nanoparticles (AuNPs) using a plasma-assisted technique at room
temperature [75] (Figure 15). This sensor was used for the electrochemical detection of corti-
sol by exploiting the plasma-induced effects of AuNPs. The electrochemical immunosensor
was realized using AuNPs by depositing them onto the surface of the activated screen-
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printed carbon electrode (SPCE). AuNPs were modified with dithiobis-(succinimidyl propi-
onate) (DTSP) to form SAMs and conjugate anti-cortisol antibodies. The electrochemical
sensing of cortisol occurs through antigen–antibody interactions on the surface of the
modified electrode. To demonstrate the improvement of the electronic properties of the
AuNPs after the plasma-assisted approach, surface-enhanced Raman spectroscopy (SERS)
was used via ζ-potential measurements. Using electrochemical techniques such as cyclic
voltammetry and electrochemical impedance spectroscopy, the analytical characteristics of
the cortisol sensor were studied. Additionally, this system works on a laboratory scale and
needs to be implemented to make it portable.
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Chemical Society).

Singh and co-workers developed a reagent-free electrochemical aptasensor with a
nanocomposite antifouling layer to monitor in vivo stress biomarkers such as cortisol [76].
This electrochemical sensor is based on a conformation-switching aptamer, on top of
a conductive antifouling nanocomposite surface, to detect cortisol in undiluted human
serum, as shown in Figure 16. In particular, it consists of a thiolated aptamer, labeled
with methylene blue (MB), immobilized on a gold nanowire nanocomposite (AuNW)
to capture cortisol and generate a signal proportional to the cortisol concentration. The
signal is recorded by differential pulse voltammetry (DPV) and chronoamperometry. The
aptasensor shows excellent stability in undiluted human serum and sensitive response with
detection limits of 0.51 and 0.68 nM in buffer and undiluted serum samples, respectively. A
linear detection range of 1 to 1000 nM was calculated for artificial samples in both buffer
and serum, which covers the physiological cortisol range of 100–600 nM in humans. This
sensor paves the way for the realization of new biosensor formats, such as implantable and
wearable sensors, by achieving performance comparable to the best cortisol test. The use of
human serum as a real sample limits the application in space missions and, in general, in
facile cortisol detection.

Madhu and co-workers designed new wearable electrochemical cortisol-sensing de-
vices, exploiting the anchoring of nano-structured materials on textile materials [77]. The
sensor exploits a conductive carbon fiber integrated with SnO2 nanoflakes (SnO2/CCY).
Anti-cortisol antibodies were immobilized on this fiber to improve its detection selectivity.
Using an electroactive redox probe (Fe(CN)6

3−/4−), the response of the electrochemical
immunosensor to cortisol binding was monitored, and the oxidation current of the redox
probe (−0.42 V vs. Ag/AgCl) was probed to create the calibration plot of the sensor. Finally,
the electrochemical immunosensor responded to a wide range of cortisol concentrations
(from 10 fg/mL to 1 µg/mL) and showed a good detection limit (1.6 fg/mL). Under op-
timized conditions, the immunosensor was evaluated to measure the cortisol levels in
human sweat at a laboratory scale. Due to the good analytical parameters, such as linearity
and detection limit, the development of a practical device will lead to a good system for
real cortisol detection.
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electrode (BSA/AuNW/GA). (Step 2) Immobilization of the thiolated and MB-labeled cortisol ap-
tamer, followed by (Step 3) Blocking with mercaptoethanol. (Step 4) Incubation with the sample
and (Step 5) DPV measurement (reproduced with permission from [76]. Copyright 2021 American
Chemical Society).

5. Conclusions and Future Perspectives

This review summarizes recent scientific development on miniaturized sensor devices,
based on gold and carbon nanoparticles, nanotubes, nanowires, and nanoelectrodes, which
enable the rapid, real-time analysis of cortisol levels in biological samples (such as saliva,
urine, sweat, and plasma) to monitor human health conditions under extreme stress. These
nanomaterials will be used as probes within portable point-of-care or lab-on-chip smart
sensing devices, able to quantitatively monitor cortisol levels through a quick and easy
analytical protocol, which is of huge importance for space applications, as cortisol levels
vary with daily activities. In particular, we have focused on the optical and electrochemical
detection of cortisol using nanostructures, due to their high sensitivity. In order to obtain
a promising sensoristic device for the continuous monitoring of cortisol in space, we
believe that the combination of a specific recognition site (aptamers or antibodies) with
nanoparticles (as a transducer), exploiting an optical/colorimetric readout can be the ideal
setup. In particular, nanoparticles (carbon or gold) can be easily functionalized on their
surface by stable bonds with cortisol-selective aptamers or antibodies. The possibility
to monitor the detection of the analyte by a simple change of color/emission by using
a smartphone or optical fiber as a detector makes this ideal sensor device portable and
suitable for real applications. Due to the presence of cortisol in different human matrices,
sensing can be performed in blood, urine, saliva, sweat, hair, and interstitial fluid. The
sampling of urine, sweat, and saliva is undoubtedly the most convenient and least invasive
sampling technique; however, the low cortisol concentration values require high sensitivity
and selectivity. These two aspects will be the crucial target for future cortisol detection by
point-of-care techniques. The sensoristic devices here reported are, until now, developed
on Earth, and are required to be implemented to be used in a real space mission. To this
end, some important aspects need to be addressed: (i) the absence of gravity, (ii) portability,
(iii) wearability, (iv) the use of non-dangerous materials (inflammable materials should be
avoided), (v) possibility to restore the sensoristic device, to reduce the hindrance on board,
(vi) easy to use by the crew members. The development of efficient point-of-care sensors for
cortisol detection is important also for stress diagnosis, and in general for the monitoring
of cortisol, on the Earth, giving the possibility of an easy analysis methodology to be used
by common persons.
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