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Abstract: We have demonstrated the method of threshold voltage (VT) adjustment by controlling
Ge content in the SiGe p-channel of N1 complementary field-effect transistor (CFET) for conquering
the work function metal (WFM) filling issue on highly scaled MOSFET. Single WFM shared gate
N1 CFET was used to study and emphasize the VT tunability of the proposed Ge content method.
The result reveals that the Ge mole fraction influences VTP of 5 mV/Ge%, and a close result can also
be obtained from the energy band configuration of Si1-xGex. Additionally, the single WFM shared
gate N1 CFET inverter with VT adjusted by the Ge content method presents a well-designed voltage
transfer curve, and its inverter transient response is also presented. Furthermore, the designed CFET
inverter is used to construct a well-behaved 6T-SRAM with a large SNM of ~120 mV at VDD of 0.5 V.

Keywords: complementary FET (CFET); threshold voltage adjustment; SiGe; CMOS inverter;
technology computer-aided design (TCAD)

1. Introduction

The semiconductor logic device architectures continue to progress, and innovation is
driving Moore’s law scaling. Given the transition from planar metal oxide semiconduc-
tor field-effect transistor (MOSFET) to three-dimensional FinFET and following stacked
nanosheet gate-all-around FET (GAAFETs), the complementary FET (CFET) has been
recently proposed as a candidate architecture for the beyond technology node [1–4]. How-
ever, due to shrinking gate length (LG), insufficient space for filling multiple work function
metal (WFM), which is used for obtaining the desirable device’s threshold voltage (VT),
has become a challenging problem. Since the gate stack also uses space on the sidewalls
under the replacement metal gate (RMG) process [5–7], the issue could worsen on stacked
nanosheet GAAFETs and become more severe with CFETs. That is because the vertical
spacing between the channels must also simultaneously be considered for stacked architec-
tures [8]. As for CFETs, the dual WFM gates should be achieved in the same area but in
different layers, which increases the issue’s complexity to a greater extent [1,9].

To maintain the flexibility of multi-VT for balancing low power consumption and
high performance, volume-less (also called zero-thickness) methods for VT adjustment
are needed. Some research focused on finding methods to reduce the thickness of gate
stacks while not losing the VT stability [6,7]. Others proposed an alternative way of using a
dipole layer to adjust VT due to its role as an intrinsic fixed charge in gate stacks [10,11].
However, the incorporation of the dipole layer may cause an increase of interface trap
density [12,13], which would deteriorate the reliability of the device. Furthermore, the
dipole layer may also bring the degradation of mobility [10,13]. This paper proposes
another alternative method for adjusting VT by controlling the Ge content in the Si1-xGex
channel. Si1-xGex is used in strain engineering for hole mobility improvement due to its
compatibility in the Si CMOS process [14]. On the other hand, Si1-xGex was proposed to
lower PMOS VT by band engineering [15]. In addition, a FinFET CMOS technology of Si
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NMOS-SiGe PMOS with common WFM was demonstrated [16]. Additionally, decreasing
VT was found in Si1-xGex PMOS with increasing Ge content [17]. These studies showed that
the Si1-xGex possesses the potential to influence VT. Therefore, in this work, we discuss the
methodology of VT adjustment by varying Ge content in the SiGe channel and demonstrate
the VT adjustment method on the single WFM shared gate CFET as N1 technology using
Sentaurus technology computer-aided design (TCAD). The process on the SiGe channel
would have no occupation on the spacing for high-k metal gates and gate contact filling.
On the other hand, the SiGe channel with Ge content of less than 50% has already been
used in today’s semiconductor technology; hence, the proposed method is compatible with
the manufacturing technology. In addition, we present the inverter characteristics of the
designed N1 CFET and further use it to construct a 6T-SRAM.

2. Device Structure and Simulation Methodology

Figure 1a displays a bird’s eye view of the N1 CFET architecture in this study. The
Synopsys TCAD simulator was employed for the 3-D simulations [18]. The simulation
parameters, including gate length (LG = 12 nm), channel thickness (Wch = 6 nm), gate
oxide thickness (Tox = 2 nm, HfO2), channel vertical pitch (Pvertical = 14 nm), spacer length
(Lsp = 4 nm), and source/drain contact length (LC = 20 nm), are based on the prediction
of the 1 nm node logic device in the international roadmap for devices and system (IRDS)
2020 [19].
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Figure 1. (a) The 3-D device structure of CFET and (b) the CFET’s cross-sectional view on the y-axis
cutting plane sitting in the middle of the channel.

In the meantime, the architecture designs are also referred from the experimental
CFET structure proposed by Intel [1], which stacked the two-channel NMOS on top of
the three-channel PMOS on a Si-on-insulator (SOI) substrate. The PMOS is designed to
have a longer contact gate pitch (CGP) than the NMOS to separate the source contacts of
NMOS and PMOS as the electrodes of GND and VDD for the CFET inverter, respectively.
As shown in Figure 1b, the contact of Vin is shared by the NMOS gate and the PMOS gate.
In addition, Vout is shared by the NMOS drain and PMOS drain. GND and VDD are used
for the sources of NMOS and PMOS, respectively. Tungsten is used as the contact metal for
all the electrodes. Afterward, SiO2 is used as fill for oxide passivation, side-wall spacer, and
filler of nanosheets inter-spacing. The structural simulation parameters of the N1 CFET
simulation are shown in Table 1.
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Table 1. Simulation parameters of 1 nm node CFET devices.

Fixed Parameter Quantity Value

Wch Channel width 6 nm
Tch Channel thickness 5 nm
Tox Gate oxide thickness (HfO2) 2 nm

Pvertical Channel vertical pitch 14 nm
Lsp Spacer length 4 nm
LC S/D contact length 20 nm

NS/D S/D Doping concentration 1 × 1020 cm−3

Nch
Channel Doping

concentration 1 × 1016 cm−3

Variable Parameter Quantity Value

x Ge mole fraction of Si1-xGex
channel 0–0.5

LG Gate length 6-12 nm

To increase the accuracy of the simulation in this study, the ID-VG transfer characteris-
tics of the CFET with LG of 75 nm were calibrated to the experimental result from [1]. The
following physical models were considered and coupled in the TCAD simulation:

1. The drift-diffusion model was included with the coupled Possion’s and continuity
equations to determine the electrostatic potential and carrier transport.

2. The density gradient model was included to correct the quantum confinement effect
in the drift-diffusion model due to the highly scaled dimension [20].

3. The doping-concentration-dependent Shockley–Read–Hall (SRH) recombination model
was included for the generation–recombination mechanism.

4. The Slotboom bandgap narrowing model was included for doping-concentration-
dependent bandgap correction [21].

5. The doping-dependent, transverse field dependence, and high-field saturation mobil-
ity models were included to consider impurity scattering, interfacial surface roughness
scattering, and coulomb scattering degradations.

6. A ballistic mobility model was considered for quasi-ballistic transport.

The calibration result is shown in Figure 2. The simulation of the following inverter
transient response and the 6T-SRAM were achieved using “mixed-mode” in SDEVICE of
Sentaurus TCAD.
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Figure 2. Calibrated ID-VG transfer characteristics of CFET between Intel experimental data [1] and
TCAD simulation.
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3. Results and Discussion

First, to demonstrate the VT tunability of changing the Ge mole fraction (x) in the
Si1-xGex channel for N1 CFET, we analyzed the electrical characteristics of PMOS and
NMOS on the Si1-xGex composition in the CFET structure. Figure 3a,b show the ID-VG
transfer curves of PMOS and NMOS, respectively, in CFET structure with VD = ±0.6 V.
For the individual electrical characteristics of NMOS and PMOS, only the targeted MOS’s
corresponding gate, source, and drain were contacted, and the remaining contact was
floating. For example, while extracting the electrical characteristics of the NMOS, the Vin
(gate of the NMOS), GND (source of the NMOS), and Vout (drain of the NMOS) were
contacted. In addition, VDD was floating. The mole-fraction-dependent material, Si1-xGex,
is set as the channel material for both PMOS and NMOS; that is, the channel is Si if x = 0 and
Ge if x = 1. As the Ge mole fraction varies from 0 to 0.5, the ID-VG curves of both PMOS and
NMOS shift to the right. However, by comparison, PMOS shows a more noticeable shift on
VT. As for NMOS, the shift is relatively negligible. Due to the excellent gate control ability
benefitting from the GAA structure, as the x ranged from 0 to 0.5, the subthreshold swing
(SS) and drain-induced barrier lowering (DIBL) are nearly unchanged for both NMOS and
PMOS. The SS and DIBL are not shown in the figure.
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Figure 3. (a,b) are ID-VG transfer curves of the PMOS and NMOS, respectively, in CFET structure,
with varying Ge mole fraction (x) from 0 to 50%.

The VT shift quantified relative to the VT of x = 0 is shown in Figure 4. VT was
extracted by the conductance method. VTN has only a 33 mV difference as x increases from
0 to 0.5, whereas the absolute value of VTP decreases linearly with a slope of approximately
5 mV/Ge%. This is because while the electron affinity is 4.05 eV for Si and 4.00 eV for
Ge, which are very close, the energy band gaps (Eg) differ, 1.12 eV for Si and 0.66 eV for
Ge [17], as shown by the energy band diagrams of Si, SiGe, and Ge in Figure 5. That gap
results in the valence band energy (Ev) being pulled toward the vacuum level as the Ge
incorporates into the Si channel, whereas the conduction band energy (Ec) remains at nearly
the same level.



Nanomaterials 2022, 12, 3712 5 of 10
Nanomaterials 2022, 12, x 5 of 11 
 

 

 

Figure 4. The VT shift of NMOS and PMOS with varying Ge mole fraction, x, where the VT shift is 

quantified relative to the VT of x = 0. 

 

Figure 5. Energy band diagram of Si, SiGe, and Ge. 

The Eg of Si1-xGex can be expressed as follows [22]: 

Eg = 1.12 − 0.41x + 0.008 x 2 , x < 0.85, 300K (1) 

Since the Eg narrowing of Si1-xGex is mainly attributed to Ev offset, the VTP is more 

sensitive to the Ge content than VTN. In addition, as can be seen from Equation (1), if we 

neglect the contribution of Ec changing and the trivial quadratic term, the Eg would have 

a rate of change of approximately 4.1 meV with respect to the Ge x, which is also very 

close to the simulation result of the VTP shift. 

On the other hand, the adjustment of the threshold voltage by varying Ge content in 

CFET might result in a change in charge carrier mobility. As shown in Figure 6, we ana-

lyzed the effective hole mobility and saturation current (Isat) of PMOS. We focus only on 

PMOS and hole mobility since VTN is not sensitive to varying Ge mole fractions. The Isat 

was extracted at VD = VG-VT = 0.6 V. By increasing the Ge mole fraction in Si1-xGex p-chan-

nel, the effective hole mobility and Isat are both enhanced linearly. The effective hole mo-

bility increases by 112%, and Isat increases by 115% as the Ge mole fraction increases from 

0 to 0.5. For Ge mole fraction higher than 0.5, the hole mobility and Isat would be much 

higher. As a result, it might not be suitable to adjust VT with Ge mole fraction higher than 

0.5. 

0.0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0.0

0.1

0.2

 V
TN

 V
TP

 

 


|V

T
|

 Ge mole fraction, x

~5 mV/Ge%

Evac

Ec

Ev

1.12 eV
0.66 eV

4.05 eV 4.00 eV

Si GeSi1−xGex

c

Eg(x)

Figure 4. The VT shift of NMOS and PMOS with varying Ge mole fraction, x, where the VT shift is
quantified relative to the VT of x = 0.

Nanomaterials 2022, 12, x 5 of 11 
 

 

 

Figure 4. The VT shift of NMOS and PMOS with varying Ge mole fraction, x, where the VT shift is 

quantified relative to the VT of x = 0. 

 

Figure 5. Energy band diagram of Si, SiGe, and Ge. 

The Eg of Si1-xGex can be expressed as follows [22]: 

Eg = 1.12 − 0.41x + 0.008 x 2 , x < 0.85, 300K (1) 

Since the Eg narrowing of Si1-xGex is mainly attributed to Ev offset, the VTP is more 

sensitive to the Ge content than VTN. In addition, as can be seen from Equation (1), if we 

neglect the contribution of Ec changing and the trivial quadratic term, the Eg would have 

a rate of change of approximately 4.1 meV with respect to the Ge x, which is also very 

close to the simulation result of the VTP shift. 

On the other hand, the adjustment of the threshold voltage by varying Ge content in 

CFET might result in a change in charge carrier mobility. As shown in Figure 6, we ana-

lyzed the effective hole mobility and saturation current (Isat) of PMOS. We focus only on 

PMOS and hole mobility since VTN is not sensitive to varying Ge mole fractions. The Isat 

was extracted at VD = VG-VT = 0.6 V. By increasing the Ge mole fraction in Si1-xGex p-chan-

nel, the effective hole mobility and Isat are both enhanced linearly. The effective hole mo-

bility increases by 112%, and Isat increases by 115% as the Ge mole fraction increases from 

0 to 0.5. For Ge mole fraction higher than 0.5, the hole mobility and Isat would be much 

higher. As a result, it might not be suitable to adjust VT with Ge mole fraction higher than 

0.5. 

0.0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0.0

0.1

0.2

 V
TN

 V
TP

 

 


|V

T
|

 Ge mole fraction, x

~5 mV/Ge%

Evac

Ec

Ev

1.12 eV
0.66 eV

4.05 eV 4.00 eV

Si GeSi1−xGex

c

Eg(x)

Figure 5. Energy band diagram of Si, SiGe, and Ge.

The Eg of Si1-xGex can be expressed as follows [22]:

Eg = 1.12 − 0.41x + 0.008x2, x < 0.85, 300 K (1)

Since the Eg narrowing of Si1-xGex is mainly attributed to Ev offset, the VTP is more
sensitive to the Ge content than VTN. In addition, as can be seen from Equation (1), if we
neglect the contribution of Ec changing and the trivial quadratic term, the Eg would have a
rate of change of approximately 4.1 meV with respect to the Ge x, which is also very close
to the simulation result of the VTP shift.

On the other hand, the adjustment of the threshold voltage by varying Ge content
in CFET might result in a change in charge carrier mobility. As shown in Figure 6, we
analyzed the effective hole mobility and saturation current (Isat) of PMOS. We focus only
on PMOS and hole mobility since VTN is not sensitive to varying Ge mole fractions. The
Isat was extracted at VD = VG-VT = 0.6 V. By increasing the Ge mole fraction in Si1-xGex
p-channel, the effective hole mobility and Isat are both enhanced linearly. The effective hole
mobility increases by 112%, and Isat increases by 115% as the Ge mole fraction increases
from 0 to 0.5. For Ge mole fraction higher than 0.5, the hole mobility and Isat would be
much higher. As a result, it might not be suitable to adjust VT with Ge mole fraction higher
than 0.5.
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Figure 6. (a) extracted effective hole mobility of PMOS with varying Ge mole fractions. (b) Isat of
PMOS with varying Ge mole fractions. Isat was extracted at VD = VG − VT = 0.6 V.

As the VTP is much more adjustable by varying the Ge content, it is justifiable to use
Si as the channel material of NMOS and adjust only the VT by changing x in the Si1-xGex
p-channel for designing the N1 CFET inverter. By performing a single WFM (for adjusting
VTN) and Ge content method (for adjusting VTP) together on CFETs, we could relieve the
lack of spacing for dual WFM. Therefore, we then tuned the work function of the shared
gate of the N1 CFET to let the Si NMOS possess an expected VTN. In this case, we set the
work function to 4.49 eV to let VTN = 0.25 V. Subsequently, we varied the x of the Si1-xGex
PMOS to match VTP and VTN. Notice that the ID-VG curves in Figure 3 are with the N1
CFET, whose work function of the shared gate was set. As can be seen from Figure 3, the
PMOS with Si0.7Ge0.3 has a VTP of −0.25 V, which matches the Si NMOS. Figure 7 shows
the ID-VD output characteristics of the Si0.7Ge0.3 PMOS and the Si NMOS in the N1 CFET
structure with VG ranging from ±0.2 to ±0.8 V at a step of ±0.1 V. Their output currents
are comparable, though the PMOS has a longer CGP which may lead to a more significant
total resistance. That implies the design of more stacks of PMOS than NMOS can overcome
the degradation.
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Figure 7. ID-VD output characteristic of Si0.7Ge0.3 PMOS and Si NMOS in CFET structure with
LG = 12 nm, showing good symmetric output current.

Figure 8a,b show the analysis of the electrical characteristics including VTP and sub-
threshold swing (SS) of Si1-xGex PMOS with different LG from 12 nm to 6 nm. As LG values
shrink down to below 8 nm, the assumption of the 5 mV/Ge% VTP relation would become
unsuitable. The assumption shows a deviation of less than 4%, with LG ranging from 12 nm
to 8 nm. However, the deviation becomes larger than 10% with LG values of 7 nm and
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below. In Figure 7b, SS would increase with a higher Ge mole fraction, but the increase
is ignorable with LG of 12 nm and 11 nm. As the LG becomes smaller, the increase of SS
with respect to Ge mole fraction would then get more obvious, but still acceptable when
LG is larger than 8 nm. However, at LG smaller than 8 nm, SS becomes no longer suitable.
In conclusion, the proposed Ge content method for adjusting VT can be applied on CFET
device with LG scaled down to 8 nm.
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12 nm to 6 nm.

The N1 CFET inverter constructed with Si1-xGex PMOS and Si NMOS was also ana-
lyzed. Figure 9a shows the voltage transfer curves of the N1 CFET inverter with x of the
Si1-xGex PMOS varying from 0 to 0.5 and the VDD of 0.6 V. The switching thresholds (VM) of
the VTCs were extracted as the voltage where VIN = VOUT, as shown in Figure 9b. The VM
of the N1 CFET inverter at VDD of 0.5, 0.6, and 0.7 V increase monotonically with increasing
x of the Si1-xGex PMOS. The dotted lines represent where the VM equals VDD/2; in this
case, the N1 CFET inverter with x = 0.3 has the VM nearly VDD/2 for all three VDD due to
the VT and current matching. Figure 10 presents the transient response of the designed
N1 CFET inverter with Si0.7Ge0.3 PMOS and Si NMOS under a ~14 GHz operation. The
transient response was performed with fan-out of 3 (FO3) and without load capacitance.
The designed N1 CFET inverter exhibits propagation delay times from low to high (τplh)
and from high to low (τphl) of ~1.27 ps and ~17.3 ps, respectively. The propagation delay
times were extracted at 0.5 VDD.
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Figure 9. (a) The voltage transfer curves (VTC) of CFET inverter with Si1-xGex PMOS and Si NFET.
(b) The inverters’ switching thresholds (VM) versus x in Si1-xGex PMOS with VDD = 0.5, 0.6, and
0.7 V, and the dotted lines represent where the VM equals VDD/2.
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Figure 10. Transient response of the designed N1 CFET inverter with Si0.7Ge0.3 PMOS and Si NMOS
under a ~14 GHz operation.

Moreover, the designed N1 CFET inverter with Si0.7Ge0.3 PMOS and Si NMOS was
used to build a 6T-SRAM cell. The 6T-SRAM cell was constructed with two N1 CFET
inverters and two NMOS access transistors. The butterfly curves of the 6T-SRAM built with
N1 CFET inverters at VDD of 0.5, 0.6, and 0.7 V are shown in Figure 11. Excellent stability is
present with a large static noise margin (SNM) of ~120 mV as VDD down to 0.5 V, and the
SNM values are ~140 and ~155 mV at VDD of 0.6 and 0.7 V, respectively.
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4. Conclusions

In this study, we proposed the VT adjustment method by controlling Ge content in the
SiGe channel and demonstrated it on N1 CFET by TCAD simulation. The PMOS shows a
high sensitivity on the Ge mole fraction since the incorporation of Ge pulls Ev towards the
vacuum level but has little effect on Ec. The simulation result shows the VTP has a change
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rate of approximately 5 mV/Ge%, which is close to that derived from the Eg relation. The
N1 CFET designed by the Ge content method presents a good VTC and nearly VDD/2 VM.
Well-performing inverter transient response is also presented. In addition, the 6T-SRAM
shows a large SNM of ~120 mV as VDD down to 0.5 V. With the help of the proposed
Ge content method, the VT tuning flexibility can be significantly improved for the highly
scaled device.
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