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The development of novel nanomaterials became a subject of intensive research, due
to high market needs for innovative applications in virtually all aspects of life. In particular,
the evolution of photovoltaic (PV) devices encountered a great scientific progress in the
last few years, mainly because solar power has great potential to cover society needs in
the context of energy crisis the world is facing nowadays. In this case, the researchers’
efforts are especially directed lately into designing solar cell architectures with improved
photo-conversion efficiency, while mainly employing environmentally-friendly materials
and inherently maintaining low manufacturing costs. In this context, I am really delighted
to observe the large diversity of topics chased by the authors in this Special Issue of

“Nanomaterials”, dealing practically with all the four essential sub-systems of a PV cell, i.e.,
(i) photo-absorber component, (ii) “window” layer, (iii) electrons- and holes-transporter
media, as well as (iv) charge collecting electrodes.

Basically, the most important component in a PV structure, whatever it is the genera-
tion it belongs to, is the main photo-absorber, as this material must be typically engineered
to gather photons from as wide region of solar spectrum as possible. In this sense, there
are several papers focused onto studying novel materials typically prepared by low-cost
techniques, used as photoactive layers to design cheaper and more efficient PV devices. For
instance, it is worth mentioning here the comprehensive review of S. Gedi et al. debating
with the physical properties of a relatively new class of materials relying onto tin-based
binary sulfides (SnxSy), exclusively synthesized by simple chemical bath deposition (CBD)
approaches [1]. Besides, as the authors present, these materials are ecologically-friendly,
abundant on earth and they could be successfully employed not only in solar energy
photo-conversion devices, but in other applications to generate “clean” energy, such as
photocatalysis or thermoelectricity. Very good performances of the second generation’
solar cells based on copper indium gallium selenide (CIGS) thin films exclusively grown
by electrochemical pathways are also demonstrated elsewhere [2], as well as the work
on ultra-thin noncrystalline cadmium telluride (CdTe) films prepared by the novel blade
coating technique that promises to offer a reliable solution for low-cost and large-scale
fabrication of solar cells based on semiconducting nanocrystals [3]. Not in the least, good
results were also obtained while testing other main absorber materials for PV cells like
antimony selenoiodide (SbSeI) thin films [4], or by implementing specific innovative fabri-
cation technologies such as engagement of aluminium arsenide (AlAs) capping layers onto
indium arsenide/galium arsenide (InAs/GaAs) quantum dot (QD) structures for solar
cells [5]. The latter strategy was proven to be effective on improving the photovoltaic
efficiency, when compared to the reference traditional QD-based solar cells.

Subsequently, the properties of the “window” layer in a PV device are in most of
the cases greatly responsible for the overall wideness of the photoactive region of the cell.
Noteworthy, J. Lee et al. pointed out that the efficiency of the chalcogenide solar cells (i.e.,
specifically the CIGS-based) is highly-dependent on the quality of the “window” layer and
especially on its thickness [6]. Although the application of such ultra-thin “window” layers
is typically limited by the capabilities of the deposition method, the authors demonstrated
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that by replacing the commonly employed sputtering method with the atomic layer de-
position (ALD) technique, ultra-thin zinc oxide (A-ZnO) layers (i.e., with a thickness of
only 12 nm) could be achieved, featuring superior properties to act as “window” layers
and to determine thus better photovoltaic performances when compared to those PV cells
based on sputtered intrinsic zinc oxide (i-ZnO) “window” layers. According to the au-
thors, the ALD process could be also advantageously engaged into the large-scale mass
production of CIGS-based solar cells. In contrast, other researchers demonstrated that zinc
selenide (ZnSe) thin films prepared by radio-frequency (RF) magnetron sputtering under
optimized specific conditions could possess excellent physical properties to successfully act
as environmentally-friendly “window” materials for solar cells, helping thus at diminishing
the amount of cadmium (Cd) still commonly used for the second generation of solar cells
relying on cadmium telluride (CdTe) as main absorber [7].

The transport of the photo-generated charge carriers towards the cell’s electrodes play
also an important role in the overall photovoltaic response. For this reason, a great interest
of the scientific community is dedicated to this process, as these materials should exhibit
good compatibility with the neighbouring components of the cell and most importantly,
they must feature an energetic band diagram structure with adequate LUMO (lowest
unoccupied molecular orbital) and HOMO (highest occupied molecular orbital) levels
that facilitate the transport of electrons and holes towards the cathode and anode electric
contacts of the PV cell, respectively. In this sense, the thorough studies onto complexes
based on titanium dioxide (TiO2) acting as electron transporter layer (ETL) materials must
be acknowledged [8,9], as well as the exhaustive review on hole transporter layer (HTL)
materials for organic PV cells by C. Anrango-Camacho et al. [10].

Ultimately, the collection of the photo-generated charge carriers substantially depend
on the physical properties of the back- and top-electrodes of the cell. Obviously, at least
one of these electrodes must combine a high electrical conductivity with an excellent trans-
parency in the visible region of the electromagnetic spectrum. These two antagonistic
properties are sometimes hard to reconcile, motivating the important work dedicated to
the study of novel transparent conducting oxide (TCO) materials for PV cells. Herein, a
new composite relying on indium-zinc-tin oxide (IZTO) was successfully engaged as a
transparent electrode, the authors demonstrating its potential when used within construc-
tion of an ultra-flexible organic PV cell used for powering human wearable devices [11].
Other novel TCO materials with superior physical properties have been also studied by
L. Hrostea et al. [12]. In this case, the authors deposited oxide/metal/oxide multi-layers
as alternative to the well-studied indium-doped tin oxide (ITO), onto glass and especially
plastic substrates, hence owning to a great potential for flexible photovoltaic devices.

It is obvious now that a great dedication of studying in details each building-block
of the PV device is essential, as the morphological, compositional, structural, optical and
photo-electrical properties of each of the constituting material have to be all-together
well-harmonized in order to get the expected increase in the performance of a solar cell,
whatever its type and generation.
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