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Abstract: We study the cooling of a rotating mirror coupled to a Laguerre–Gaussian (L–G) cavity
mode, which is assisted by an optical parametric amplifier (OPA). It is shown that the presence
of the OPA can significantly lower the temperature of the rotating mirror, which is very critical in
the application of quantum physics. We also find that the increase in angular momentum has an
influence on the cooling of the rotating mirror. Our results may provide a potential application in the
determination of the orbital angular momentum of light fields and precision measurement.
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1. Introduction

In recent years, cavity optomechanical systems have become a popular research field
in quantum optics, which focus on the interaction between a mechanical oscillator and light
field via radiation pressure. This kind of interaction makes the optical degrees of freedom
and mechanical degrees of freedom couple and let the cavity optomechanical system play a
role in precision measurement and force sensors [1–3]. When the cavity optomechanical
system is driven by a strong coupling field, it also becomes transparent to the input probing
field due to the destructive interferences between the input probing field and the anti-
Stokes fields generated by the interactions of the coupling field with the cavity, which
is called optomechanically induced transparency (OMIT) [4–6]. In the OMIT, quantum
coherent manipulation takes an important role in modulating the output light field, which
is very similar to electromagnetically induced transparency (EIT) [7–9]. At present, OMIT
has become a coherent control technology and is extended to studying optomechanical
system coupling with other media [10–18]: Zhang and his coworkers proposed an atom-
assisted cavity optomechanical system, consisting of a single Λ-type three-level atom, where
steady-state solution of electromagnetically and optomechanically induced transparency
and amplification is presented [10]. Based on the technology of OMIT, Xiao’s group
investigated optomechanically induced entanglement in the conventional single-cavity
optomechanical system coupling with a relatively weak probe field and a strong control
field [11], and Li and his coworkers proposed to realize cooling of a mechanical resonator
through an OMIT-like cooling mechanism in a double-cavity optomechanical system [12].
In addition, atomic ensemble, Kerr medium, optical parametric amplifier (OPA), and so
on are introduced in the optomechanical system. These hybrid optomechanical systems
can show strong nonlinearity effects under the condition of coupling of optical fields, so
researchers can achieve steady-state entanglement [13,14], photon blockade [15], and the
cooling of a mechanical oscillator [16,17] in hybrid systems.

About the cavity optomechanical system, some physical phenomena mentioned above
are mainly based on the interaction between mechanical oscillator and light field via
radiation pressure originating from momentum effects from the light field. For the light
field, the mechanical effects of angular momentum are also worthy of research and analysis
and some research works have paid attention to effects of angular momentum of the light
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field. When considering the mater interacting with the light beams with orbital angular
momentum, nonlinear behavior and frequency shifts in the medium arising from their
rotation are reported [19,20]. Explicit analytical expressions for the first few non-zero
moments of the beam orbital angular momentum are obtained and potential applications
in inertial confinement fusion, laser micromachining, and imaging are discussed [21]. Allen
and Barnett have made many analyses on Laguerre–Gaussian (L–G) light mode with good
angular momentum [22,23]. Based on the L–G light mode, optomechanically induced
transparency is investigated in Ref. [24]. L–G optical sum-sideband generation via orbital
angular momentum exchange is studied in an optorotational system [25].

Due to Laguerre–Gaussian spiral phase systems with remarkable optorotational inter-
action, many theoretical and experimental studies have begun to focus on this field recently
and it has been an emerging subject and led to many applications, including sideband
generation [25], cooling of rotational mirrors [26], and entanglements [27,28]. In the L–G
optorotational system, the rotating mirror can be seen as a mechanical torsional pendulum.
The theoretical studies show that the Hamiltonian of the L–G optorotational system is
similar to that of the cavity optomechanical system. Based on this idea, we investigate
the cooling of a rotating mirror in a L–G cavity containing an optical parametric amplifier
(OPA). For different parametric phase and parametric gain of OPA, we discuss, in detail, the
feasibility of achieving cooling of a rotating mirror. This paper is organized as follows. We
give an analytic description of the optorotational system in Section 2, where the evolution
equations of the system are analytically obtained. In Section 3, how to achieve the cooling
of a rotating mirror by choosing appropriate physical parameters is discussed in detail.
Finally, a conclusion of the results is summarized in Section 4.

2. Model and Methods

The system we consider is shown in Figure 1, which is a Laguerre–Gaussian optorota-
tional system formed by two spiral phase elements: the left element represents a partially
reflecting mirror and the right one stands for a perfectly reflecting mirror. The left mirror is
fixed and the right mirror is rotating around the cavity axis. The right rotating mirror with
the mass m and radius R can be seen as a mechanical torsional pendulum whose moment
of inertia about the axis of rotation is defined as I = mR2. The intrinsic damping rate and
the angular frequency of the mechanical torsional pendulum are Dφ and ωφ, respectively.
When the Laguerre–Gaussian beams interact with a submicron particle or Bose–Einstein
condensate, recent experiments demonstrate that the Laguerre–Gaussian beams can exert
a torque on them [29,30]. Similarly, when the Laguerre–Gaussian optorotational system
is driven by a fundamental-mode Gaussian beam, L–G beam may be generated by spiral
phase elements. L–G beam can exert a torque on the right rotating mirror [31]. Here our
optorotational system is driven by an incident Gaussian beam with the frequency ωL and
the positive amplitude ε =

√
2κP/(}ωL), where P is the input laser power launched into

the cavity. Note that κ is the cavity decay rate determined by κ = πc/(2FL), where F is the
cavity finesse and L is the L–G cavity length when the cavity is not driven. The Gaussian
beam with topological charge 0 which is incident upon the L–G cavity is reflected and the
output light beam has added topological charge 2l from the rotating mirror. In other words,
the coupling between the L–G cavity and the rotating mirror has arisen, because each
reflected photon with initial charge 0 acquires angular momentum 2l} from the rotating
mirror [26]. The torque exerted by each photon in the L–G cavity to the mechanical torsional
pendulum is }ξφ = }cl/L, where ξφ = cl/L is the optorotational coupling parameter. Here,
l represents orbital angular momentum. It is obvious that the exchange of orbital angular
momentum between the photons and the mechanical torsional pendulum is the reason for
the cooling of the mechanical torsional pendulum.
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Figure 1. Sketch of a Laguerre–Gaussian cavity composed of two spiral phase elements: the right 
element represents a fixed mirror and the right one denotes a rotating mirror (MR) rotating around 
the cavity axis (z axis) which is suspended from a support S. The RM has an equilibrium position of 𝜙 = 0 and an angular displacement 𝜙 of rotation about the z axis. In addition, the cavity also con-
tains a degenerate OPA. The L–G cavity is driven by an input Gaussian beam. When the Gaussian 
beam with topological charge 0 is incident upon the L–G cavity, the output field will be added a 
topological charge 2𝑙 from the mechanical torsional pendulum. 

We write the Hamiltonian in a rotating frame with 𝜔  as the form 𝐻 = ℏ𝜔 𝑐 𝑐 + 12 𝐿𝐼 + 𝐼𝜔 𝜙 − ℏ𝜉 𝑐 𝑐𝜙 + 𝑖ℏ𝜀 𝑐 − 𝑐 + 𝑖ℏ𝐺 𝑒 𝑐 − 𝑒 𝑐  (1)

where 𝑐 and 𝑐  are the annihilation and creation operators of the cavity mode satisfying 
the communication relation 𝑐, 𝑐 = 1. Here, 𝜔  is the L–G cavity intrinsic frequency 
when the right mirror is stationary. 𝐿  is the angular momentum of the mechanical tor-
sional pendulum about the cavity axis, 𝜙 is an angular displacement and they satisfy the 
communication relation 𝜙, 𝐿 = 𝑖ℏ. The first two terms on the right side of Equation (1) 
are the free energies of the cavity field and the mechanical torsional pendulum, respec-
tively. The third term describes the interaction between the cavity and the mechanical 
torsional pendulum. The fourth term arises from the coupling of the cavity field and the 
input Gaussian field. The last term is the coupling between the OPA and the cavity field, 𝐺 is the nonlinear gain of the OPA, and 𝜃 is the phase of the pump field driving the OPA. 

The dynamics of the system can be described by the quantum Langevin equations 𝜙 = ,  𝐿 = −𝐼𝜔 𝜙 + ℏ𝜉 𝑐 𝑐 − 𝐿 + 𝜀 ,  𝑐 = −𝑖 𝜔 − 𝜔 + 𝑖𝜉 𝜙𝑐 + 2𝐺𝑒 𝑐 − 𝜅𝑐 + √2𝜅𝑐 + 𝜀, (2)

where we have included the corresponding damping and noise terms. Here, 𝑐  refers to 
the input vacuum noise operator. Its mean value is zero and its fluctuations satisfy the 
correlation functions 〈𝛿𝑐 𝑡 𝛿𝑐 𝑡 〉 = 𝛿 𝑡 − 𝑡  ,  〈𝛿𝑐 𝑡 𝛿𝑐 𝑡 〉 = 0,  〈𝛿𝑐 𝑡 𝛿𝑐 𝑡 〉 = 0. (3)

The force 𝜀  is the Brownian noise operator which represents the mechanical noise 
that couples to the mechanical torsional pendulum from the thermal environment. It has 
zero mean value and the following correlation function when the temperature of the en-
vironment is 𝑇 〈𝛿𝜀 𝑡 𝛿𝜀 𝑡 〉 = ℏ 𝜔 𝑒 1 + 𝑐𝑜𝑡ℎ ℏ 𝑑𝜔, (4)

where 𝑘  is the Boltzmann constant. Further we assume the cooling of the motion of the 
mechanical torsional pendulum is performed at high temperature and 𝑘 𝑇 ≫ ℏ𝜔 holds, 
so we can simply Equation (4) by using 𝑐𝑜𝑡ℎ ℏ𝜔 2𝑘 𝑇⁄ = 2𝑘 𝑇 ℏ𝜔⁄  approximately. 

Figure 1. Sketch of a Laguerre–Gaussian cavity composed of two spiral phase elements: the right
element represents a fixed mirror and the right one denotes a rotating mirror (MR) rotating around
the cavity axis (z axis) which is suspended from a support S. The RM has an equilibrium position
of φ0 = 0 and an angular displacement φ of rotation about the z axis. In addition, the cavity also
contains a degenerate OPA. The L–G cavity is driven by an input Gaussian beam. When the Gaussian
beam with topological charge 0 is incident upon the L–G cavity, the output field will be added a
topological charge 2l from the mechanical torsional pendulum.

We write the Hamiltonian in a rotating frame with ωL as the form

H = }ωcc†c +
1
2

(
Lz

2

I
+ Iωφ

2φ2
)
− }ξφc†cφ + i}ε

(
c† − c

)
+ i}G

(
eiθc†2 − e−iθc2

)
(1)

where c and c† are the annihilation and creation operators of the cavity mode satisfying the
communication relation

[
c, c†] = 1. Here, ωc is the L–G cavity intrinsic frequency when

the right mirror is stationary. Lz is the angular momentum of the mechanical torsional
pendulum about the cavity axis, φ is an angular displacement and they satisfy the com-
munication relation [φ, Lz] = i}. The first two terms on the right side of Equation (1) are
the free energies of the cavity field and the mechanical torsional pendulum, respectively.
The third term describes the interaction between the cavity and the mechanical torsional
pendulum. The fourth term arises from the coupling of the cavity field and the input
Gaussian field. The last term is the coupling between the OPA and the cavity field, G is the
nonlinear gain of the OPA, and θ is the phase of the pump field driving the OPA.

The dynamics of the system can be described by the quantum Langevin equations

.
φ = Lz

I ,
.

Lz = −Iωφ
2φ + }ξφc†c− Dφ

I Lz + εin
φ ,

.
c = −i(ωc −ωL) + iξφφc + 2Geiθc† − κc +

√
2κcin + ε,

(2)

where we have included the corresponding damping and noise terms. Here, cin refers to
the input vacuum noise operator. Its mean value is zero and its fluctuations satisfy the
correlation functions 〈

δcin(t)δcin
†(t′)

〉
= δ(t− t′) ,

〈δcin(t)δcin(t′)〉 = 0,〈
δcin

†(t)δcin(t′)
〉
= 0.

(3)

The force εin
φ is the Brownian noise operator which represents the mechanical noise

that couples to the mechanical torsional pendulum from the thermal environment. It
has zero mean value and the following correlation function when the temperature of the
environment is T〈

δεin
φ (t)δεin

φ

(
t′
)〉

=
}Dφ

2π

∫
ωe−iω(t−t′)

[
1 + coth

(
}ω

2kBT

)]
dω, (4)

where kB is the Boltzmann constant. Further we assume the cooling of the motion of the
mechanical torsional pendulum is performed at high temperature and kBT � }ω holds, so
we can simply Equation (4) by using coth(}ω/2kBT) = 2kBT/}ω approximately.
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After a long period of evolution, the system will tend to a steady state. By setting
Equation (2) equal to zero, we get the mean values of the system

Lzs = 0, φs =
}ξφ|cs|2

Iωφ
2 , cs =

κ − i∆ + 2Geiθ

κ2 + ∆2 − 4G2
ε, (5)

where
∆ = ωc −ωL − ξφφs (6)

is the effective cavity detuning which is modified by ξφφs due to the optorotational interac-
tion. The φs corresponds to the new equilibrium angular displacement of the mechanical
torsional pendulum. cs is the amplitude of the cavity field at the steady state and |cs|2 is
the number of photons in the L–G cavity.

In the following, we will focus on the fluctuations of the operators. We assume that
the intracavity photon number |cs|2 is far greater than 1, which means the cavity field is
driven by a strong light field. Under this assumption, we linearize Equation (2) to analyze
the evolution of the system and examine the cooling of the mechanical torsional pendulum.
Therefore, each operator in Equation (2) may be expressed as the sum of the steady-state
mean value and a small fluctuation: a = as + δa, where a represents φ, Lz, c, respectively.
Then we obtain the evolution equation for the fluctuation operators

δ
.
φ = δLz

I ,
δ

.
Lz = −Iωφ

2δφ + }ξφ

(
csδc† + cs

∗δc
)
− Dφ

I δLz + εin
φ ,

δ
.
c = −i∆δc + iξφcsδφ + 2Geiθδc† − κδc +

√
2κδcin,

δ
.
c†

= i∆δc† − iξφcs
∗δφ + 2Ge−iθδc− κδc† +

√
2κδcin

†.

(7)

Our work must be carried out when the system is stable. Thus, it is required to obtain
the matrix form of Equation (7). Here we introduce the quadrature fluctuations in the
cavity field δx =

(
δc + δc†), δy = i

(
δc† − δc

)
and the quadrature fluctuations in the input

vacuum noise δxin =
(
δcin + δcin

†) and δyin = i
(
δcin

† − δcin
)
, then Equation (7) can be

written as
.
u(t) = Au(t) + n(t), (8)

where u(t)T = (δφ, δLz, δx, δy) is the vector of the fluctuations and n(t)T = (0, εin
φ ,√

2κδxin,
√

2κδyin ) is the column vector of the input noise. Then the matrix A of Equation (8)
is given by

A =


0

−Iωφ
2

iξφ(cs − cs
∗)

ξφ(cs + cs
∗)

1
I
−Dφ

I
0
0

0
}ξφ

cs+cs
∗

2
−(κ − 2G cos θ)
(−∆ + 2G sin θ)

0
}ξφ

cs−cs
∗

2i
(∆ + 2G sin θ)
−(κ + 2G cos θ)

. (9)

The dynamic stability of the system we study depends on matrix A which allows us
to correctly determine the range of some parameters. According to the Routh–Hurwitz
criterion [32], the following three inequalities yield

2κ
(

κ2 − 4G2 + ∆2 + 2κ
Dφ

I

)
+

Dφ

I

(
2κ

Dφ

I + ωφ
2
)
> 0,(

2κ +
Dφ

I

)2
(

2}ξφ
2|cs |2∆
I +

2}ξφ
2(cs

2+cs
∗2)G sin θ

I +
2i}ξφ

2(cs
2−cs

∗2)G cos θ

I

)
+

2κ
Dφ

I

{(
κ2 − 4G2 + ∆2

)2
+

(
2κ

Dφ

I +
(

Dφ

I

)2
)(

κ2 − 4G2 + ∆2
)
+ ωφ

2
[
2
(

κ2 + 4G2 − ∆2
)
+ ωφ

2 + 2κ
Dφ

I

]}
> 0,

ωφ
2
(

κ2 − 4G2 + ∆2
)
− 2}ξφ

2|cs |2∆
I − 2}ξφ

2(cs
2+cs

∗2)G sin θ

I − 2i}ξφ
2(cs

2−cs
∗2)G cos θ

I > 0.

(10)
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Note that the conditions (10) above are related to the parameters’ nonlinear gain G
and phase θ of OPA.

The angular displacement fluctuation δφ in the mechanical torsional pendulum can be
obtained by solving the Fourier transform of Equation (7) in frequency space

δφ(ω) = (κ−iω)2+∆2−4G2

d(ω)
εin

φ +
√

2κ}ξφ[2Ge−iθ cs+(κ−iω−i∆)cs
∗]

d(ω)
δcin+√

2κ}ξφ[(κ−iω+i∆)cs+2Geiθ cs
∗]

d(ω)
δcin

†,
(11)

where

d(ω) =
(

Iωφ
2 − Iω2 − iDφω

)[
(κ − iω)2 + ∆2 − 4G2

]
− 2}ξφ

2
[
iGe−iθcs

2 + |cs|2∆− iGeiθcs
∗2
]
. (12)

The first term in Equation (11) is from the thermal Langevin force, while the last two
terms are from radiation torque. The angular displacement fluctuation in the mechanical
torsional pendulum is determined by the total external forces that act on it. Generally, by
taking Equation (11) as the form δφ(ω) = χe f f (ω)Ft(ω), the effective susceptibility χe f f (ω)
is defined which reflects the response of the mechanical torsional pendulum to the total ex-

ternal forces Ft(ω). Here, χe f f (ω) can be written as χe f f (ω) =
(

Iωe f f
2 − Iω2 − iDe f f ω

)−1

with the effective resonance frequency ωe f f (ω) and the effective damping rate De f f (ω)
given by

ωe f f (ω) =

(
ωφ

2 −
2}ξφ

2

I
αβ

γ

) 1
2

(13)

and

De f f (ω) = Dφ +
2}ξφ

2ακ

γ
(14)

where
α = iGe−iθcs

2 + |cs|2∆− iGeiθcs
∗2

β = κ2 −ω2 + ∆2 − 4G2

γ =
(

κ2 −ω2 + ∆2 − 4G2
)2

+ 4κ2ω2.
(15)

Equation (13) shows that the angular frequency of the mechanical torsional pendulum
makes change in the presence of Ft(ω), which is the so-called “optical spring effect”.
Further, the different values of G and θ cause the modification of damping rate Dφ which
leads to the cooling of the mechanical torsional pendulum.

The spectrum of the angular displacement fluctuation in the mechanical torsional
pendulum is given by

Sφ(ω) =
1

4π

∫
dω′e−i(ω+ω′)t〈δφ(ω)δφ

(
ω′
)
+ δφ

(
ω′
)
δφ(ω)〉 (16)

By inserting Equations (3), (4) and (11) into Equation (16), we obtain

Sφ(ω) = 1
|d(ω)|2

{2κ}2ξφ
2
[(

κ2 + ω2 + ∆2 + 4G2
)
|cs|2 + 2Ge−iθcs

2(κ + i∆) + 2Geiθcs
∗2(κ − i∆)

]
+2kBTDφ

[(
κ2 −ω2 + ∆2 − 4G2

)2
+ 4κ2ω2

]
}

(17)

With the Fourier transform of δ
.
φ = δLz/I in Equation (7), we obtain the spectrum of

the angular momentum fluctuation in the mechanical torsional pendulum

SLz(ω) = I2ω2Sφ(ω). (18)

In order to describe the limits for cooling, the final expressions for the two vari-
ances

〈
δφ2〉 and

〈
δLz

2〉 can be obtained by performing the integrals 1
2π

∫ +∞
−∞ Sφ(ω)dω and
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1
2π

∫ +∞
−∞ SLz(ω)dω. Furthermore, according to the law of thermal equilibrium, the effective

temperature of the system can be defined as

Te f f =

[
1
2

Iωφ
2〈δφ2〉+

(
〈δLz

2〉/2I
)]

/kB (19)

We also introduce the parameter r = 1
2 Iωφ

2〈δφ2〉/(〈 δLz
2〉/2I

)
which can be re-

garded as the ratio of rotational kinetic energy to potential energy of the rotating mirror.
According to the parameter, we can know the relative change in the angular displacement
fluctuation and the angular momentum fluctuation in the mechanical torsional pendulum.
When the rotating mirror is cooled close to the ground state, the value of parameter r
approaches 1.

3. Results and Discussion
3.1. Effective Resonance Frequency and the Effective Damping Rate

The parameters we choose in the calculations are from Ref. [27]: the input Gaussian beam
wavelength λ = 810 nm, the input laser power P = 50 mW, the cavity finesse F = 5× 103,
the cavity length L = 1 mm, the L–G cavity intrinsic frequency ωc = 2π × 1014 Hz, the mass
of the right mechanical torsional pendulum m = 100 ng, the radius of the right mechanical
torsional pendulum r = 10 µm, the mechanical quality factor Qφ = 2×106, and the frequency
of the mechanical torsional pendulum ωφ = 2π× 10 MHz. It has been proved that when
∆ ≈ ωφ, the cooling of the mechanical torsional pendulum can be optimally achieved in a
dispersive optomechanical system [33].

In Figure 2, we plot the normalized effective resonance frequency ωe f f (ω)/ωφ and
the normalized effective damping rate De f f (ω)/Dφ of mechanical torsional pendulum (the
rotating mirror) as a function of the normalized frequency ω/ωφ for different parametric
gains G = 0, 0.1κ, 0.2κ, 0.3κ when ∆ = ωφ, θ = 0, and l = 20. The normalized effective
resonance frequency ωe f f (ω)/ωφ decreases gradually as parametric gain G increases and
the decreasing trend is slow; that is, the influence of parametric gain G on the normalized
effective resonance frequency is weak. However, the normalized effective damping rate
De f f (ω)/Dφ is dramatically increased with increasing the parametric gain G. This is because
increasing the parametric gain G leads to a larger photon number |cs|2 in the cavity, thereby
generating a stronger optorotational coupling. The intracavity photon numbers |cs|2 are
2.996× 109, 4.134× 109, 6.305× 109, 1.105× 1010 for G = 0, 0.1κ, 0.2κ, and 0.3κ, respectively.
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Figure 3 plots the normalized effective resonance frequency ωe f f (0)/ωφ and the
normalized effective damping rate De f f (0)/Dφ of the mechanical torsional pendulum as
a function of the parametric phase θ/π for different parametric gains G = 0.1κ, 0.2κ, 0.3κ
when ∆ = ωφ, ω = 0, and l = 20. Note that the maximum normalized effective damping
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rate De f f (0)/Dφ is attained at θ = 0. Therefore, in the following discussion, we always set
θ = 0.
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3.2. Cooling of the Rotating Mirror with the OPA

In this section, we investigate the cooling effect of the mechanical torsional pendulum
in the presence of the OPA.

3.2.1. From Room Temperature T = 300 K to millikelvin Temperature

First, we assume that the initial temperature of the thermal environment is T = 300K.
In Figure 4a, we plot the effective temperature Te f f (K) of the mechanical torsional

pendulum as a function of the normalized positive cavity detuning ∆/ωφ. The black solid
curve, the blue dashed curve, the green dot-dashed curve, and the red dotted curve are
corresponding to different parametric gains G = 0, 0.1κ, 0.2κ, 0.3κ, respectively, and other
parameters θ = 0 and l = 20. When G = 0, 0.1κ, 0.2κ, 0.3κ, it is found that the minimum
values of the effective temperatures of the mechanical torsional pendulum are 0.0389K,
0.0221K, 0.0118K, and 0.0057K at ∆ = ωφ, respectively. It is noted that the presence of the
OPA with G = 0.3κ and θ = 0 can improve the cooling of the mechanical torsional pendulum
by a factor of about 6 compared to that without the OPA (G = 0). Figure 4b shows the
parameter r against the normalized positive cavity detuning ∆/ωφ for different parametric
gains G = 0, 0.1κ, 0.2κ, 0.3κ when θ = 0, and l = 20. It is noted that the parameter r is larger
than 1, which indicates that the angular momentum fluctuations in the mechanical torsional
pendulum are suppressed over the angular displacement fluctuations. Figure 4c plots the
effective temperature Te f f (K) of the mechanical torsional pendulum against the parametric
gain G of the OPA when ∆ = ωφ, l = 20, and θ = 0. We choose the parameter gain G of
the OPA in a range of 0 to 0.495κ, which ensures that the system is stable. As Figure 4c
shows, in the absence of the OPA (G = 0), the effective temperature Te f f of the mechanical
torsional pendulum is 0.0389K. In the presence of the OPA, the effective temperature Te f f of
the mechanical torsional pendulum reaches the minimum value 0.0018K at G = 0.46κ. Thus,
the cooling of the mechanical torsional pendulum can be improved by a factor of about 21
using the OPA compared to the case without the OPA. However, as the parametric gain G
continues to increase, the effective temperature Te f f of the mechanical torsional pendulum
rises. Therefore, it is necessary to choose the appropriate parametric gain G carefully in
order to achieve the best cooling of the mechanical torsional pendulum. Figure 4d shows
the effective temperature Te f f (mK) of the mechanical torsional pendulum against the orbital
angular momentum l for different parametric gains of the OPA when ∆ = ωφ and θ = 0.
From Figure 4d, for a given value of the parametric gain G of the OPA, it is seen that the
cooling of the mechanical torsional pendulum is improved with increasing the value of the
orbital angular momentum l. The reason is that a larger value of orbital angular momentum
l generates a stronger optorotational coupling. Without the OPA (G = 0 and θ = 0), the
minimum value of the effective temperature Te f f is 3.76 mK at l = 70. With the OPA
(G = 0.3κ and θ = 0), the minimum value of the effective temperature Te f f is 1.50 mK at
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l = 70. Thus, the cooling of the mechanical torsional pendulum can be improved by a factor
of 2.5 with the help of the OPA.
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3.2.2. From Temperature T = 3 K to Submillikelvin Temperatures

We assume that the mechanical torsional pendulum couples to the thermal bath
at temperature T = 3K. The mechanical torsional pendulum can be cooled to a lower
temperature when the OPA is introduced.

In Figure 5, we plot the effective temperature Te f f (K) of the mechanical torsional
pendulum as a function of the normalized positive cavity detuning ∆/ωφ for different
parametric gains G = 0, 0.08κ, 0.16κ, 0.24κ and other parameters l = 20, T = 3K, and
θ = 0. For a given value of the parametric gain G, it is seen that the effective temperature
Te f f (mK) of the mechanical torsional pendulum is changed with the increase in the effec-
tive cavity detuning ∆/ωφ. We also find these four curves have their own minimum values
for different parametric gains. In order to display the minimum value more clearly, the
enlargement of the curves in Figure 5a for the range of ∆

ωφ
∈ [0.8, 1.5] is shown in Figure 5b.

From Figure 5b, the black solid curve, the blue dashed curve, the green dot-dashed curve,
and the red dotted curve correspond to G = 0, 0.08κ, 0.16κ, 0.24κ, respectively. For each
curve, we can find that the effective temperatures Te f f (K) of the mechanical torsional
pendulum have the minimum values Te f f = 0.8851 mK, 0.7426 mK, 0.6643 mK, 0.6263 mK
at ∆/ωφ = 1, ∆/ωφ = 1.125, ∆/ωφ = 1.175, ∆/ωφ = 1.275, respectively. We also calculate
the effective mean phonon numbers corresponding to each curve at their respective lowest
temperature. The corresponding effective mean phonon numbers of the mechanical tor-
sional pendulum are about 1.344, 1.047, 0.884, and 0.805, respectively. It is shown that when
G = 0, the lowest temperature of the mechanical torsional pendulum is not at ∆ = ωφ. As
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the parametric gain G in the OPA increases, the minimum value of the effective temperature
Te f f is obtained at a larger detuning (∆/ωφ > 1).
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4. Conclusions

In summary, we proposed a scheme where the cooling of a mechanical torsional
pendulum in a Laguerre–Gaussian (L–G) cavity can be achieved in the presence of an
OPA. For the parametric phase θ = 0, which is different from the value in a Fabry–Perot
cavity in Ref. [34] as well as a dissipative optomechanical system in Ref. [17], increasing the
parametric gain G can lower the temperature of the mechanical torsional pendulum. The
reason is that the increase in the parametric gain G changes the intracavity photon number
to enhance the interaction between the cavity and the mechanical torsional pendulum,
which makes the effective damping rate of the mechanical torsional pendulum increase
significantly. Furthermore, the mechanical torsional pendulum can be cooled to sub-Kelvin
temperatures from room temperature of 300K and to the ground state in a cryogenic
environment by choosing the appropriate parametric gain G in an OPA and the cooling of a
mechanical torsional pendulum with a larger value of the orbital angular momentum l can
be improved by generating a stronger optorotational coupling. Finally, as the parametric
gain G in the OPA increases, the minimum value of the effective temperature Te f f is
obtained at a larger detuning (∆/ωφ > 1), which is not the same as cooling of a traditional
optomechanical system [34]. Our model is an extension of the cavity optomechanical
system. Our studies show that remarkable optorotational coupling of Laguerre–Gaussian
spiral phase systems can provide a potential application in the determination of the orbital
angular momentum of light fields and precision measurement.

Next, we discuss the feasibility of the experiment of our scheme. The generation of
the L–G beam is crucial to the implementation of our scheme. Researchers can use spiral
phase plates or spiral phase mirrors to produce the L–G beam [35]. We know that the spiral
phase plate with a helical surface is an optical element. Photons reflected or transmitted by
the spiral phase plate will obtain well-defined orbital angular momentum [36]. Therefore,
using spiral phase plates to generate the L–G beam may be the most straightforward
approach [35]. Current micro/nano-fabrication technology allows the spiral phase plate
and mirror to be fabricated with high precision and low mass and the generation of the
L–G beam with a topological charge value as high as 1000 has been demonstrated [37].
When a Gaussian mode beam passes through the spiral phase plate, it will be converted
into L–G mode. Due to the transfer of orbital angular momentum, L–G beam can exert a
torque on objects, including a submicron particle, a Bose–Einstein condensate, which has
been realized in recent experiments [29,30]. The torques arising in the spiral phase elements
as a result of the interaction with light have been extended to the Laguerre–Gaussian
(L–G) optorotational system. In analogy with the cavity optomechanical system, the L–G
optorotational system consists of two spiral phase elements acting as cavity mirrors (a
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concrete schematic diagram is shown in Figure 1), so the theoretical studies show that the
Hamiltonian of the L–G optorotational system is similar to that of the cavity optomechanical
system. Based on the torque from the L–G beam, trapping and cooling the rotational motion
of a mirror, producing optomechanically induced transparency and realizing entanglement
of a L–G cavity mode with a rotating mirror have been reported in the L–G optorotational
system [24,26,27]. In addition, the parameter selections of our scheme are based on Ref. [27]
and our scheme has feasibility in the experiment based on the research progress in the L–G
optorotational system.
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