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Abstract: Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food,
drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and
bio-compatible nature when used in direct close contact with the human body. These NPs are the
most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation
properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional
(physical and chemical) methods and the latest biological methods (biological, green, and biological
derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as
a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors,
instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices,
oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an
important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials),
maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and
acrylic resin dentures), and restorative dentistry (GIC and composites).

Keywords: nanomaterials; nanoparticles (NPs); nanodentistry; medicine; and titanium oxide (TiO2)

1. Introduction

The advent of nanotechnology has led to a substantial surge in the applications of NPs
for biomaterials, antibacterial substances, drug delivery systems, electronic equipment,
sunscreens, and cosmetics [1,2]. Nanomaterials have previously been defined as natural,
manufactured, or incidental materials that include particles as agglomerates or aggregates
or in an unconfined form where 50% or a higher number of the particles depict one or more
outer dimensions within the range of 1–100 nm [3]. Moreover, to consider a material as a
nanoparticle one of its three dimensions should be in a range of 1–100 nm [4,5]. Unique
chemical and physical properties are demonstrated by oxide NPs due to their limited size
and their corner surface sites possessing higher density [6]. The physicochemical properties
of fine particles (FPs) vary as compared to the NPs (NPs) that have a similar composition.

The TiO2 fine particles (FPs) are poorly soluble and have a low toxicity [7,8]. The
TiO2 NPs (NPs) have an enhanced catalytic activity as compared to the fine particles (FPs),
which consequently leads to their higher utilization in consumer and industrial products.
The properties of the TiO2 NPs may pose a challenge to human health and are responsible
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for the distinctive bioactivity of these NPs [9,10]. The TiO2 NPs are prominent and versatile
oxides that have a higher production due to their acceptable chemical stability, lower cost,
strong oxidation properties, high refractive index, and formidable oxidation properties [11].
The TiO2 NPs have found their optical industrial applications as semiconductors due to
having the critical property of the wide band gap [12,13]. They have also been used in
electronic devices and as sensors due to their particular ionic and electrical properties [14].
As these NPs exist as a water insoluble powder and are white in color, they can be utilized
in the paint industries as pigments [15]. Three polymorphic forms of the TiO2 NPs exist
naturally; they are the rutile, brookite, and anatase forms with crystalline structures, and
the gemstone industries have utilized them extensively [14]. The TiO2 NPs have been
employed for decomposing water waste pollutants as photocatalysts, as food additives,
and as antibacterial and antimicrobial agents [16–19]. The TiO2 NPs can help in destroying
fungi, viruses, bacteria, and cancer cells [20]. The TiO2 NPs have been used in sonodynamic
and photodynamic therapy (PDT) for the treatment of cancer [21]. The NPs have the
ability to convert photon energy into heat through photo thermal therapy, via their super
hydrophilicity, in vivo chemical and thermal stability, low toxicity, optical absorption, and
thermal conductivity [22]. The nanostructure of TiO2 has been used for drug delivery
systems in various anticancer drugs, such as temozolomide, cisplatin, doxorubicin, and
daunorubicin [23–25]. Previously, polyethylene glycol-coated NPs have been used for
the treatment of melanoma through photothermal therapy [26]. The (TiO2) NPs have
been used in dental applications due to their ability to enhance the mechanical properties
of biomaterials without altering their biocompatibility [27–29]. Previous studies have
utilized the TiO2 NPs in order to improve the bond strength and antimicrobial properties
of composites [30]. The TiO2 NPs have also been used to improve the working time,
setting time, push-out bond strength, and compressive strength of cements [31]. The
mechanical properties of the resins have also been optimized by incorporating titania NPs
into them [32,33]. Moreover, silver-doped titania NPs have also been incorporated into
dental polymers in order to produce potent bactericidal effects [34].

2. Background of Nanotechnology

Nanotechnology has been considered as a significant discipline of the latest research
involving the synthesis protocols and the designing and manipulating techniques of the
particle’s structure in different dimensions in the range of about 1–100 nm. Moreover, this
emerging nanotechnology has specifically opened vast doors for the synthesis of nano-
scaled materials and the exploration of their unique electronic, optical, physicochemical,
strength, magnetic, electrical, and mechanical characteristics, together with the utilization
of this rapidly growing novel technology in certain various fundamental frontiers. These
fundamental areas that involve nanotechnology are electronics, multimedia, cosmetics,
medicine, engineering, electronics, industries, food, environment, robotics, optics, ma-
chines, catalysts, drug delivery systems, genomics, biomedicines, material sciences, energy
sciences, light emitters, solar energy processes, imaging technology, physics, chemistry,
electromagnetic devices, electron transistors, energy-producing plants, water treatment
plants, solar energy conversion, etc. [35,36]. Currently, nanotechnology has gained a popu-
lar status in multiple health systems, such as control, prevention, diagnosis, monitoring,
and treatment; this has happened quite rapidly because of its unique and high-quality
properties [37,38]. The word “nano” is taken from the Greek word nanos, meaning “dwarf”,
which factually refers to 1 billionth of physical size. Furthermore, it can be inferred that the
area of nanotechnology works at the level of atoms and molecules ranging between 1 and
100 nm in size [39].

2.1. History of Nanotechnology

NPs were used by artisans as far back as the 9th century in Mesopotamia for generating
a glittering effect on the surface of pots. Pottery from the Middle Ages and the Renaissance
often retains a distinct gold or copper-colored metallic luster [40]. The luster originated
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within the film itself, which contained silver and copper NPs dispersed homogeneously in
the glassy matrix of the ceramic glaze [41]. The concepts that seeded nanotechnology were
first discussed in 1959 by renowned physicist Richard Feynman in his talk “There’s Plenty
of Room at the Bottom”, in which he described the possibility of synthesis via the direct
manipulation of atoms. The term “nanotechnology” was first used by Norio Taniguchi in
1974, though it was not widely known at that time [38,40].

2.2. Significant Features of Nanotechnology

There are three major features that play a vital role in defining the versatility and
superiority of nanotechnology in comparison to normal technology [42]:

I. This technology can bring changes in the original matter’s structure by converting
it into a nanoscale product.

II. The newly formed nanoscale structure should contain periodic repetition (i.e., the
nanoparticle must periodically repeat itself in one or more than one direction) just
like the parent matter.

III. The novel properties, characteristics, and functions of a newly formed nanoscale
product should be like those of the parent matter or be superior to the parent matter
despite being nanometric.

2.3. Classification of NPs

NPs are categorized generally as organic, inorganic, and carbon-based in origin, as
illustrated in (Figure 1). The carbon-based NPs are entirely made of carbon. The organic
NPs are found to be non-toxic, biodegradable, and ideal for drug delivery. The NPs that do
not consume carbon during their synthesis are called inorganic NPs and include metal and
metal oxide-based NPs. The metal oxide-based NPs have extraordinary properties, such as
their sizes (ranging between 10 and 100 nm); shapes (spherical, cylindrical, etc.); surface
characteristics (pore size, high surface-area-to-volume ratio, surface charge dentistry, and
surface charge); structures (crystalline and amorphous); color; and sensitivity to various
environmental factors (heat, air sunlight, moisture, etc.) (Figure 2) [43,44].
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Figure 2. Size and shape of different types of NPs: (a) polymers, micelles, lipids, and dendrimers
belonging to organic-origin NPs; (b) metals, metals oxide, ceramics, semiconductors belonging to
inorganic-origin NPs; (c) fullerenes, copolymer, carbon nanotubes, carbon nanofibers, and carbon
black belonging to carbon-origin NPs (idea adapted from the ref [46]).

3. The Titanium Oxide NPs

These NPs are commonly named as TiO2 or titania because they are oxides of met-
als [47–49]. Titania is available in the form of fine, white powder and/or thin film [22,50].
Naturally, there are four crystal forms of titanium oxide: TiO2 (B), brookite, anatase, and
rutile [51]. However, the mixture of anatase and the rutile crystal phase form of the TiO2
NPs, which usually exists, is more inert and stable in comparison to the anatase crystal
phase form, which displays more chemical reactivity. This chemical reactivity of the anatase
crystal phase form could be beneficial in eliminating cancer cells efficiently [52,53].

The TiO2 NPs are famous for their well-known attractive properties, including mag-
netic, optical, thermal, physicochemical, electrical, rheological, mechanical, and biological
properties. These NPs are highly suitable for utilization in various fields under normal
conditions because of their relatively low cost, insoluble nature, and high refractive in-
dex (n = 2.4). They are absolutely extra white, which enhances their value in multiple
different fields [47–49]. Moreover, TiO2 NPs are widely used in anti-flavor textiles, water
disinfectants, food supplements, cosmetics, indoor sprays, anti-flavor textiles, household
appliances, paper, plastics, food packaging materials, sunscreens, electronic products,
medicines, fibers, bakery products, sensors, glazes, and coloring agents in foods due to
their smaller size [54–56].

3.1. Basic Requirements for Employing TiO2 NPs in Medical and Dental Applications

The biocompatibility of TiO2 NPs in the medical and dental applications is the most
important requirement of these NPs and is dependent on two main factors, which include
its synthesis protocols and its characteristic features attained by characterization techniques.

3.1.1. Synthesis Protocols of TiO2 NPs

The synthesis of NPs is carried out by two main techniques, referred to as the conven-
tional (top-down) and biocompatible (bottom-up) methods. The physical and chemical
methods of synthesis are deployed in the conventional (top-down) techniques, whereas the
biological, green, and biological derivative methods are employed in the biocompatible
(bottom-up) techniques to a large extent (Figure 3) [57,58].
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Figure 3. Schematic representation of protocols employed for the synthesis of TiO2 NPs: (a) chemical
and physical methods involved in the conventional methods category and biological methods
involved in the latest methods category, showing (b) chemical, physical, and biological synthesis
involving both the bottom-up and top-down techniques (idea adapted from the ref [57,58].

Conventional (Top-Down) Synthesis

The top-down technique involves the breakdown of bulk material in nano-sized
particles through physical methods involving thermal decomposition, sputtering, laser
ablation, nanolithography, and milling [59], whereas the chemical techniques include:
co-precipitation, laser pyrolysis, the sol-gel process [60], spray pyrolysis, chemical vapor
deposition [61], the aerosol process, reverse micelle [62], atomic/molecular condensation,
the microemulsion process [63], and the hydrothermal method [64]. The process of the
synthesis has a great impact on the transformation phase, i.e., from amorphous to anatase or
rutile or brookite [65]. However, this method produces defects in the surface structure and
morphology of the new material, which becomes the main limitation because the surface
chemistry and physical properties of the NPs are highly dependent on the surface structure
as well as the morphology [66]. The synthesis of TiO2 NPs via the chemical method is most
widely used due to its ease of fabrication and the proper control of the size and shape of
the NPs. On the other hand, its utilization is limited due to its over-expensive production,
ecotoxicity, excessive energy, and non-availability of environmental sustainability, together
with high temperature and pressure, which inhibit their mass production further, reducing
their applications in certain different areas [67].
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In addition, the electrophoretic fabrication of TiO2 NPs is easy as well as timesaving,
but it involves the utilization of non-aqueous solvents that are harmful, as reported by
Boccaccini et al. in previous research [68]. The hazardous effects, including aquatic
pollution, land pollution, environmental pollution, and the destruction of wildlife as
well as habitats, are caused by these non-aqueous solvents. Furthermore, these non-
aqueous solvents are toxic enough to cause certain health hazards when evaporated in the
surrounding air in the environment [68].

The microwave-assisted preparation of TiO2 NPs is widely accepted due to its time-
saving capacity and its uniform, homogeneous, and quick heating of the reaction mixture
at required the temperature, which is an advantage. On the other hand, this method is not
cost-effective but rather expensive because it requires the increased power of heating. As
this method is an energy-intensive procedure, it therefore lacks the production of TiO2 NPs
in large amounts [69].

The sol-gel process of TiO2 NPs is extensively investigated to fabricate more crystalline
NPs, followed by sol formation, gelation, and solvent removal [70]. This method is costly
because it involves the utilization of expensive raw materials that lead to the cracking and
volume reduction of newly formed TiO2 NPs after the drying process [71].

The solvothermal method employs both high pressure and temperature for longer du-
ration (pressure < 1 atm and temperature > boiling point of water). This is a time-consuming
process and requires high maintenance costs for autoclaves because the equipment used is
quite expensive [72]. In addition, when additional surfactants are used in this process, they
will not only make the reaction more complex but will also lead to the excessive formation
of impurities [73].

Currently, hydrothermal methods of synthesis have been greatly employed due to their
ease in fabricating TiO2 NPs, which can be used on large scale for, e.g., TiO2 nanotubes [74].
The hydrothermal method is quite expensive due to the increased requirements of high
levels of energy, surfactants, pressure, and temperature. Moreover, this a time-consuming
process and less yield of TiO2 NPs is attained [75]. It has also been reported that changes in
the temperature, ranging between 100 and 200 ◦C, have a lack of control on the size, shape,
and crystallinity of the nanotubes. Consequently, the morphology and other properties of
the formed NPs are changed, e.g., nanotubes to nanofibers [76]. The chemical synthesis
uses high temperature, high pressure, and expensive and toxic chemicals, which produce
adverse effects in certain medical applications [77].

Biological (Bottom-Up) Synthesis

The bottom-up technique involves biological synthesis via microorganisms (bacteria,
algae, fungi, and parasites), green synthesis through plants (roots, leaves, shrubs, herbs,
and seeds), and biological synthesis from derivatives (eggshell, albumin, lignin, etc.) [78].
This technique incorporates the atoms or molecules of smaller sizes that undergo reduction
or oxidation to generate NPs. These atoms or molecules aggregate biologically, without
utilizing toxic chemicals or solvents, to form NPs. These obtained NPs have negligible flaws
and defects in their surface morphology, topography, and physico-chemical properties,
such as size, shape, crystalline phase form, functional groups, structure, and texture. Above
all, TiO2 NPs produced by the biological and green routes are immensely biocompatible
and biosafe due to the lack of toxic byproducts formed [79].

Similarly, advanced research reflects the successful role of microorganisms in the
biological synthesis process because it is easy and less time-consuming. The TiO2 NPs
formed via different microorganisms are produced in high yields which are very stable,
sustainable, cost-effective, biosafe, and biocompatible. This is due to the fact that the
capping and reducing agents used are the natural enzymes and proteins present in microor-
ganisms [80,81]. Hence, biological synthesis uses different life forms and organisms from
very simple prokaryotic bacterial cells to complex eukaryotic cells such as angiosperms [82].
Different green synthesis methods utilize biological derivatives, such as the polyoxomet-
alates, polysaccharides, Tollens, and phytochemicals (phenols, terpenoids, flavonoids,
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and cofactors) present in plants, which act as capping and stabilizing mediators in order
to improve and enhance the stability of newly formed TiO2 NPs [66,83]. The biological
derivatives, such as albumin, eggshell, gelatin, lignin cellulose, starch, arginine, peptides,
polyamine, lysozyme, pomelo peel, and protamine have been used to synthesize TiO2 NPs
which are biocompatible, biosafe, and cost-effective (Figure 4).

The direct synthesis method is the most biocompatible technology used for fabricating
the TiO2 NPs without the consumption of any additional externally introduced templates,
capping, reducing agents, etc. Hence, the corresponding natural biological extracts and
their derivatives used during the synthesis process can produce a strong capping layer that
corresponds to the biocompatibility and stability of these NPs [84]. In addition, this method
produces the cost-effective, high-yield mass production of TiO2 NPs [67], which are reliable
and non-toxic because the method does not utilize high temperature, high pressure, high
energy, and toxic chemicals [85].
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Figure 4. Role of synthesis protocols on advantages and disadvantages of conventional and biological
TiO2 NPs: (a) micro-organisms, plant tissues, and natural derivatives utilized by the latest biological
synthesis; (b) chemical salts and reducing agents utilized by conventional chemical synthesis; and
(c) bulk form and reducing agents utilized by conventional physical synthesis (idea adapted from the
ref) [86,87].

The biocompatible technology of synthesis is the latest and advanced technique in
comparison to the conventional methods. The conventional methods of TiO2 NP synthesis
are costly and produce adverse effects on human health and the environment [88,89]. The
comparative differences between biocompatible and conventional TiO2 NPs are given in
(Table 1) [85,90,91].
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Table 1. Comparative differences between conventional and biological TiO2 NPs [40,51,85,90,91].

Properties Conventional TiO2 Biological TiO2 References

Nature Expensive, toxic Cost effective, nontoxic [40]

Reducing agent

Dimethylformamide, ethylene
glycol, hydrazine hydrate,

sodium borohydride, polyol,
sodium citrate, and

N,N-dimethylformamide

Biomolecules include
phenolics, polysaccharides,

flavones, terpenoids,
alkaloids, proteins, amino

acids, enzymes,
predominantly, and nitrate

reductase

[51]

Method
Stabilizer (surfactant) is added
to the first solution to prevent

the agglomeration of NPs

There is no need to add a
stabilizing agent [85]

Environmental impact

Environmental pollution is a
disadvantage of the chemical

method and the chemical
reduction methods are

energy-intensive

Synthesis carried out in
environmental conditions,

and they are safe enough and
consume no energy

[90]

Antibacterial
activity

The chemically synthesized
NPs show comparatively

lower antimicrobial activity
against pathogenic bacteria

The NPs synthesized from
biological means are showing
better antimicrobial activity

against the pathogenic
bacteria

[91]

Stability NPs are not stable NPs are highly stable [85]

Byproducts
formation Harmful byproducts formed No harmful byproducts

formed [91]

Biocompatible
coating formation

No biocompatible coating is
formed

The additional safe and
effective surface area for

interaction in the biological
environment is produced due
to the biocompatible coating
on the nanoparticle’s surface

[51]

Process Non-economical Economical [40]

Conventional and Biological Synthesis

There are multiple factors that control the synthesis of TiO2 NPs and in turn make
them suitable for medical dental applications. These significant contributing factors in-
clude the total time period, the environmental conditions, the temperature, the synthesis
protocols, the solution’s PH, the concentration of extract, and the raw materials used, as
is demonstrated.

(i) Solution’s medium pH:

Temperature is also an essential parameter controlling the synthesis of TiO2 NPs
using three methods. The highest temperature is required by physical methods (>350 ◦C),
while the chemical methodology requires temperature limits below 350 ◦C. On the other
hand, below 100 ◦C the TiO2 NPs are synthesized microbially, and plants use C or ambient
temperature. Hence, the nature of the TiO2 NPs is determined by the reaction medium’s
temperature [92,93].

(ii) Pressure:

The size and shape of biological and green TiO2 NPs are greatly influenced by the
pressure enforced on the reaction medium. It has been found that the reduction rate of metal
ions in biological and green TiO2 NPs is faster at ambient pressure due to the utilization of
natural biological agents [92,93].
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(iii) Time:

The total period for incubating the reaction medium has an immense impact on the
type, along with the quality, of the TiO2 NPs prepared by biological and green synthesis.
Additionally, other factors, including light exposure, synthesis process, and storage condi-
tions, have a great effect on the characteristics of the TiO2 NPs synthesized by these routes.
The particle aggregation occurs as a result of long-term storage, subsequently resulting in
the particle’s growth or shrinkage and enhancing its potency and shelf life [92,93].

(iv) Melting point:

The melting point of TiO2 NPs has been controlled by changes in the particle’s shape
and size, which eventually influence the properties of these NPs. This means that the
melting point of the TiO2 NPs has been reduced when the size of these NPs has fallen
into the range of the nanometer scale. The shape transformation of those TiO2 NPs which
display different configurations but have similar energy levels is quite easy. These versatile
properties further affect their multiple chemical properties [92,93].

(v) Environment:

The characteristics of TiO2 NPs are greatly influenced by the surrounding environment
as well. The single TiO2 NPs are converted into core-shelled TiO2 NPs either through
reaction with materials or absorption by materials in the surrounding environment. This
process is carried out by corrosion or oxidation occurring in the environment. The biological
TiO2 NPs are thicker and larger in size due to the formation of the coating around them [38]
that might be responsible for their potent characteristics. In a study, zinc sulfide NPs
changed their crystalline nature instantly with a change in environment from wet to dry. In
another study, cerium-nitrate NPs changed their chemical properties when peroxide was
used in their suspension medium [92,93].

3.2. Characterization Techniques of TiO2 NPs

The TiO2 NPs are characterized by their size, shape, phase form, crystallinity, sur-
face roughness, morphology, texture, topography, elemental composition, band-gap ab-
sorbance energy, and compounds and the functional groups present in them that are
the key features responsible for their biocompatibility. These standardized tools ren-
der them biocompatible and enhance their potency for utilization in medical and dental
applications (Figure 5) [79,94–96].

3.2.1. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
for Size and Shape

The size, shape, structure, and surface morphology of the TiO2 NPs are determined by
scanning electron microscopy (SEM), which is a basic parameter for characterizing NPs.
SEM is a powerful technique for obtaining magnified high-quality and high-resolution
images with a good depth of field to provide information about the morphology of the
TiO2 NPs [97,98]. The standardized morphological analysis tool, named the transmission
electron microscope (TEM), gives a more refined knowledge regarding the crystallographic
arrangement of the atoms, complex phase transitions, elemental composition, dislocations,
selected area electron diffraction (SAED), and defects in the TiO2 NPs [97,98].

The studies conducted by A. Mansoor et al. revealed the different sizes and shapes
of TiO2 NPs derived from Bacillus subtilis, Cassia fistula, and hydrothermal heating. These
different sizes and shapes of these NPs had a great influence in developing the cytotoxicity.
The TiO2 NPs prepared from Bacillus subtilis were purely natural, having a slightly large
size and spherical shape that prohibited their gross adsorption and absorption in the
cell surfaces coming into contact with them. Thus, these TiO2 NPs were biosafe and
biocompatible for their medical and dental applications (Figures 6a and 7a). On the other
hand, the TiO2 NPs formed by Cassia fistula and hydrothermal heating were very much
smaller in size, and the irregular shapes were easily absorbed and adsorbed in the cell
surfaces, resulting in cytotoxic reactions. Therefore, these newly formed NPs could not be
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used in nanomedicine and nanodentistry (Figures 6b,c and 7b,c) [79,99]. These NPs could
be recommended for medical and dental applications only if changes were made in the
time, pH, melting point, chemicals, substrates, high temperature, and pressure during the
synthesis protocols in future.
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Figure 5. Different characterization techniques utilized by TiO2 NPs for their particular fea-
tures: (a) X-ray diffraction pattern spectroscopy (XRD) for investigating the size, shape, and phase
form; (b) energy-dispersive X-ray spectroscopy (EDS) for investigating the elemental composition;
(c) scanning electron microscope (SEM) for investigating the size, shape, and surface morphology;
(d) transmission electron microscope (TEM) for investigating the size and shape; (e) atomic force
microscope (AFM) for investigating the surface roughness and topography; (f) Fourier transform
infrared spectroscope (FTIR) for investigating the functional groups; and (g) diffuse reflectance
spectroscope (DRS) for investigating the size, shape, and crystal type [79].
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3.2.2. X-ray Diffraction Powder Spectroscopy (XRD) for Crystalline Phases

The X-ray diffraction pattern (XRD) is utilized to investigate the crystallography and
structural arrangement of TiO2 NPs [100]. XRD is a fast and indispensable analytical tech-
nique, which is mainly used for a material’s identification, characterization, crystal content,
phase identification, quality control, lattice plane spacing, purity percentage, and epitaxial
growth of crystallites [101,102]. The XRD methods utilizing powder can easily identify the
crystalline, crystallite, semi-crystalline, and amorphous forms of materials [103]. Recently,
the role of the crystalline phases of TiO2 NPs in the medical and dental applications were
investigated by A.Mansoor et al. in 2022, where it was revealed that the mixture of the
anatase–rutile phase form state attained by the TiO2 NPs formed by the Bacillus subtilis
(Figure 8a) were the best for certain medical and dental applications as compared to those
prepared by Cassia fistula and hydrothermal heating, where only the anatase phase form
state was dominant (Figure 8b,c). This happened because of the comparatively high tem-
peratures and pressures used in the synthesis of both of the latter TiO2 NPs. As a matter of
fact, the anatase phase form state is highly thermally reactive and unstable while the rutile
phase form state is the most thermally stable and is less reactive [79,99]. Efforts should be
made to produce the rutile phase form state of the TiO2 NPs in order to induce them in the
future nanomedical and nanodental procedures.



Nanomaterials 2022, 12, 3670 12 of 41

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 43 
 

 

3.2.2. X-ray Diffraction Powder Spectroscopy (XRD) for Crystalline Phases 
The X-ray diffraction pattern (XRD) is utilized to investigate the crystallography and 

structural arrangement of TiO2 NPs [100]. XRD is a fast and indispensable analytical tech-
nique, which is mainly used for a material’s identification, characterization, crystal con-
tent, phase identification, quality control, lattice plane spacing, purity percentage, and ep-
itaxial growth of crystallites [101,102]. The XRD methods utilizing powder can easily iden-
tify the crystalline, crystallite, semi-crystalline, and amorphous forms of materials [103]. 
Recently, the role of the crystalline phases of TiO2 NPs in the medical and dental applica-
tions were investigated by A.Mansoor et al. in 2022, where it was revealed that the mixture 
of the anatase–rutile phase form state attained by the TiO2 NPs formed by the Bacillus sub-
tilis (Figure 8a) were the best for certain medical and dental applications as compared to 
those prepared by Cassia fistula and hydrothermal heating, where only the anatase phase 
form state was dominant (Figure 8b,c). This happened because of the comparatively high 
temperatures and pressures used in the synthesis of both of the latter TiO2 NPs. As a mat-
ter of fact, the anatase phase form state is highly thermally reactive and unstable while the 
rutile phase form state is the most thermally stable and is less reactive [79,99]. Efforts 
should be made to produce the rutile phase form state of the TiO2 NPs in order to induce 
them in the future nanomedical and nanodental procedures. 

 
Figure 8. XRD images of different sizes of TiO2 NPs attained from (a) Bacillus subtilis [79], (b) Cassia 
fistula, and (c) hydrothermal heating [80]. 

3.2.3. UV–Vis Diffuse Reflectance Spectroscopy 
The ultraviolet (UV) visible spectrum records the reflectance and absorbance in the 

300 nm to 800 nm wavelength range in order to investigate the alterations in the molecular 
energy levels of TiO2 NPs. Electron transfer from either π-bonded orbitals or non-bonded 
orbitals originates this form of alterations. Thus, this standard tool [104] obtains deep 
knowledge about aromatic and non-aromatic compounds, π-electron orbital systems, con-
jugated and non-conjugated peripheries, bonding and non-bonding attachments, and sat-
urated and unsaturated electronic systems in TiO2 NPs. Moreover, the UV–Vis absorption 
spectrum depicted the two characteristic peaks of TiO2 NPs in the wavelength and absorb-
ance ranges of 264 nm and 322 nm in previous studies [105,106]. The aqueous solutions 
used in UV–Vis spectroscopy are responsible for confirming the formation of TiO2 NPs 
[106,107]. The standard of the band gap energy for the NPs is 3.20 e.V, which means that 
the size of the NPs is somewhat big if the calculated value is less than the standard, but if 
the calculated value is greater than the standard, the size of the NPs is very small. Various 
researchers concluded that TiO2 NPs generated by Bacillus subtilis showed 2.7 e.V, con-
firming the somewhat big and safe size of TiO2 NPs for their employment in the fields of 
medicine and dentistry (Figure 9a). Additionally, the TiO2 NPs fabricated by Cassia fistula 
and hydrothermal heating depicted 3.6 e.V and 3.9 e.V values, which showed the ex-
tremely small size of these NPs (Figure 9a,b) [79,99]. It might be possible to control the 
large band gap energy values as compared to the standard after the advancements in the 
conventional synthesis processes. 
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3.2.3. UV–Vis Diffuse Reflectance Spectroscopy

The ultraviolet (UV) visible spectrum records the reflectance and absorbance in the
300 nm to 800 nm wavelength range in order to investigate the alterations in the molecular
energy levels of TiO2 NPs. Electron transfer from either π-bonded orbitals or non-bonded
orbitals originates this form of alterations. Thus, this standard tool [104] obtains deep
knowledge about aromatic and non-aromatic compounds, π-electron orbital systems, con-
jugated and non-conjugated peripheries, bonding and non-bonding attachments, and
saturated and unsaturated electronic systems in TiO2 NPs. Moreover, the UV–Vis ab-
sorption spectrum depicted the two characteristic peaks of TiO2 NPs in the wavelength
and absorbance ranges of 264 nm and 322 nm in previous studies [105,106]. The aqueous
solutions used in UV–Vis spectroscopy are responsible for confirming the formation of TiO2
NPs [106,107]. The standard of the band gap energy for the NPs is 3.20 e.V, which means
that the size of the NPs is somewhat big if the calculated value is less than the standard,
but if the calculated value is greater than the standard, the size of the NPs is very small.
Various researchers concluded that TiO2 NPs generated by Bacillus subtilis showed 2.7 e.V,
confirming the somewhat big and safe size of TiO2 NPs for their employment in the fields
of medicine and dentistry (Figure 9a). Additionally, the TiO2 NPs fabricated by Cassia
fistula and hydrothermal heating depicted 3.6 e.V and 3.9 e.V values, which showed the
extremely small size of these NPs (Figure 9a,b) [79,99]. It might be possible to control the
large band gap energy values as compared to the standard after the advancements in the
conventional synthesis processes.
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3.2.4. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR is the standard characterization tool that is helpful in getting the infrared spectra
of the absorption, adsorption, emission, and photoconductivity of semi-solids, gases, solids,
and liquids by determining the nature of their bonds and functional groups [97]. The
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functional group available in a TiO2 nanoparticle is recorded between 4000 and 400 cm−1

in FTIR spectroscopy [86,108]. The stretching and bending peaks of the Ti–O–Ti vibration
which appear in the range of 1000–1300 cm−1 mainly correspond to the formation of TiO2
NPs in addition to other organic compounds, including nitro compounds, ethers, esters,
H-O-H bending, polyphenols, hydroxyl (OH) groups, and amide-II [109,110]. The current
research concludes that the TiO2 NPs formed by Bacillus subtilis reveal only a few functional
groups, such as O-H, C-O, and C-H (Figure 10a), whereas several functional groups such
as O-H, C-O, C-H, C=O, C-C, C=C, and C≡C were observed in the TiO2 NPs prepared
by Cassia fistula and hydrothermal heating (Figure 10b,c). These functional groups are
responsible for the development of the cytotoxicity of these NPs. Thus, the presence of a
few functional groups in the TiO2 NPs formed by Bacillus subtilis makes them the best option
to be utilized for the medical and dental fields as a result of their non-cytotoxicity [79,99].
The TiO2 NPs generated by Cassia fistula and hydrothermal heating could be modified by
using the least reactive chemicals in order to reduce the overproduction of large amounts
of functional groups that could be harmful in medicine and dentistry.
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3.2.5. Elemental Composition Analysis (EDX)

The energy dispersive X-ray spectrometer (EDX or EDS) is a versatile piece of equip-
ment used to identify the spectrum and determine the elemental composition present in
TiO2 NPs [111]. This elemental composition gives complete information regarding the
purity and performance of these TiO2 NPs [112]. In recent studies, it was observed that
TiO2 NPs prepared by Bacillus subtilis revealed a high content of titanium but a low content
of oxygen (Figure 11a). On the other hand, TiO2 NPs formed by Cassia fistula and hydrother-
mal heating depicted a large content of oxygen but a lesser content of titanium (Figure 11b,c).
The presence of large amount of available titanium in the TiO2 NPs formed by Bacillus
subtilis might have enabled them to be utilized easily in the medical and dental areas as
compared to the TiO2 NPs formed by Cassia fistula and hydrothermal heating, where the
content of titanium was too low. This imbalance between the weight% and atomic% of
titanium and the oxygen in the TiO2 NPs formed by Cassia fistula and hydrothermal heating
might be the reason for their non-consumption in medicine and dentistry [79,99]. The
volume and concentration (dose) of the chemicals must be controlled efficiently to produce
TiO2 NPs with nearly equal or a somewhat large weight% and atomic% of titanium in
comparison to the oxygen.
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3.2.6. Atomic Force Microscopy Analysis (AFM)

The most useful and popular standard tool employed to image the surface topography,
texture, and structure of TiO2 NPs is the atomic force microscope [113]. It gives entire,
detailed information about the topographic map, including the surface roughness, bumps,
ridges, and phases of these NPs [114,115]. According to the current research, the TiO2 NPs
prepared by Bacillus subtilis displayed bumps of the anatase–rutile phase form states with
minimum roughness (Figure 12a), as compared to the TiO2 NPs formed by Cassia fistula
and hydrothermal heating (Figure 12b,c) where they showed enhanced roughness with
slight or no bumps in the anatase phase form state. This minimal roughness might have
allowed the least absorption and adsorption of these NPs in the cell surfaces, thus making
them biocompatible for medical and dental applications. The maximum surface roughness
in the TiO2 NPs formed by Cassia fistula and hydrothermal heating might have allowed the
increased level of absorption and adsorption of these NPs in the cell surfaces, resulting in
their cytotoxicity [79,99]. The large amount of surface roughness present in the TiO2 NPs
formed by Cassia fistula and hydrothermal heating could be controlled by utilizing the large
amounts of stabilizing agents. These agents could be either natural or synthetic and form
a capping layer on the surface of these NPs, making them suitable for applications in the
medicine and dentistry.
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3.2.7. Characteristic Features of TiO2 NPs Dependent on Characterization Techniques

The unique physical, chemical, mechanical, and biological properties of TiO2 NPs
make them superior to their parent bulk material from which they are formed. These
ideal properties make them compatible and increase their demand in health care sys-
tems [116]. There is strong correspondence between these various properties of NPs and
their utilization in the fields of medicine and dentistry. Other important parameters include
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dimension, durability, quality, number, quantity, mass, bulk, volume, and aggregation
(Figure 13) [117,118].
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surface, crystallinity, and agglomeration state [119].

Role of Size and Shape of TiO2 NPs on Their Medical and Dental Applications

The nanometer size of TiO2 NPs provides them with a high surface energy, a large
fraction of surface atoms, reduced imperfections, spatial confinement, and reduced imper-
fections in comparison to the corresponding bulk material. At the nanometer scale, the
properties of NPs become size- and shape-dependent, which involves chemical properties
(reactivity), catalysis, thermal properties (melting temperature), mechanical properties
(adhesion and capillary forces), optical properties (absorption and scattering of light), elec-
trical properties (current), and magnetic properties (superparamagnetic effect) [120–126].
Early in 1996, Volokitin et al. [127] already confirmed that quantum size strongly influences
the thermodynamic properties of metallic origin-based NPs especially TiO2 NPs. The
confinement of movement of the electrons leads to the formation of discrete energy levels
and electric dipoles because of the smaller size of newly formed NPs. This small size of
NPs greatly influences their oxidation, reduction, and catalytic properties in a positive
manner, thus reducing cytotoxicity [128]. Thus, because of these extraordinary features the
TiO2 NPs are of great interest to the current researchers [129].

The size has been considered as one of the most important parameters responsible
for inducing the toxic effects on human health. The much smaller-sized TiO2 NPs have a
higher surface-area-to-volume ratio, with higher chemical reactivity and vice versa. Due to
the large surface area of these very small-sized TiO2 NPs, more of them are absorbed in
its surface, resulting in toxicity [130]. In an in vivo study, rats consumed two sizes of TiO2
NPs, with diameters of 20.27 nm and 250.10 nm; the study concluded that smaller TiO2
NPs have bit more of an adverse cytotoxic effect on lungs in comparison to large-sized TiO2
NPs of 250.10 nm [131]. A study conducted previously revealed a strong direct correlation
between TiO2 NPs size and level of DNA damage [117,118]. The smaller TiO2 NPs are
more easily taken up by cells, producing intense adverse effects on cell function, thereby
leading to a high level of toxicity. The reactive oxygen species (ROS) production is related
to nano-toxicity [132].
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Moreover, particle shape also plays a dominant role in determining the toxicity of
TiO2 NPs [133]. Different shapes of TiO2 NPs display different cellular uptakes, subcel-
lular localization, and production of reactive oxygen species [134]. There exists a direct
correlation between the shape of the TiO2 NPs and cytotoxicity. There are only limited
studies available that have investigated biocompatibility in cell lines. Braydich-Stolle
et al. [135] observed the effects of size and crystal structure on toxicity or mode of cell
death. In another study, Gratton et al. investigated the influence of shape on toxicity and
revealed that non-spherical TiO2 NPs (rod-shaped particles) are easier and faster to become
absorbed/adsorbed on cell surfaces, thus making them cytotoxic in comparison with other
TiO2 NP shapes (spherical-shaped particles) [136].

Role of Surface Area of TiO2 NPs on Their Medical and Dental Applications

The ratio of the surface atomic number to the total number of atoms increases greatly
as the particle size gets smaller in NPs [121]. This decrease in particle size increases the
number of atoms on the surfaces as compared to those found inside, which leads to the
enhanced chemical reactivity of these NPs [137]. As a result, the surface-to-volume ratio
of the NPs also increases, which has a significant effect on their physical, chemical, and
mechanical properties compared to those of the corresponding bulk state in the parent
material [122–126,137,138]. In addition, TiO2 NPs show increased catalytic activity as
compared to other NPs [124,126]. The reason it became possible was because the smaller
size of TiO2 NPs provides a large surface area for the catalysis to take place [126,139–142].
If the TiO2 NPs get very much smaller, then they exhibit a much greater surface area and
number of particles per unit mass, which leads to much greater chemical reactivity than is
even required [143]. This greater activity eventually increases the absorption of these NPs
in the cell lines, elevating reactive oxygen species (ROS) production [133], oxidation [144],
and DNA damage [133].

Role of Crystalline Phases of TiO2 NPs on Their Medical and Dental Applications

Owing to the many active atoms on the surface of NPs, these NPs have specific
enhanced surface adsorption, dispersion, aggregation, viscosity of colloidal suspension,
and rheological properties [145]. Chemically, these NPs are more active and stable than
the corresponding bulk material used for their formation [146]. The three important phase
states of the TiO2 NPs are brookite, anatase, and rutile [122,123]. These crystal phases are
available in the form of octahedra with six oxygen anions surrounded by titanium cations.
The formula of these NPs is TiO6/3, which is equal to TiO2 leading to different patterns
of crystalline phase states [123]. These three distant phase form states differ in structure,
texture, size, density, volume, and refractive index [122–124]. The rutile phase form state
is well known for its high level of texture, structure, and chemical stability during the
preparation methods, but its use is rare [122–126,147]. The anatase and brookite phase form
states are meta-stable because they are thermodynamically unstable as compared to the
rutile phase form state when used in the industry [125,126]. The brookite is rarely used
in the industry because it is difficult to prepare [123]. The chemical reactivity of anatase
is the highest when compared to the other phases [148,149]. In a study, Sayes et al. [149]
reported that TiO2 NPs (80/20; anatase/rutile, 3–5 nm; 100 µg/mL) produced 6 times
higher reactive oxygen species (ROS) than rutile after UV exposure. This is because the
anatase phase state of TiO2 NPs produces ROS when exposed to ultraviolet light [149]. It is
even suggested that TiO2 anatase has a greater toxicity potential than TiO2 rutile [150,151].
In addition, Di-Virgilio et al. evaluated the impacts of the anatase phase form states
in different dose volumes, e.g., (0–300 µg/mL) on rat osteosarcoma-derived cell lines.
Eventually, they reported the formation of phagocyte vesicle-induced cytotoxicity leading
to osseointegration failure [152]. In another study, Martinez-Gutierrez et al. reported the
effect of combining (anatase and rutile) TiO2 phase form states with silver NPs. They
observed that the combination of two phases showed a superior antimicrobial activity
with reduced cytotoxicity as compared to 100% rutile TiO2 NPs due to their inherent
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properties [153]. A recent study found that TiO2 NPs with a large percentage of anatase
(anaerobic P-25 99.5% 73–85% anatase, 14–17% rutile, and 2–13% amorphous) produced
genotoxicity, mutagenicity, and cytotoxicity on human fibroblasts in different doses (such
as 10, 25, 50, 100, 250, 500, and 1000 µg/mL) to detect γ-H2AX expression [154].

Role of Dose of TiO2 NPs on Their Medical and Dental Applications

The TiO2 NPs can go directly into the liquid phase of the reaction system without
getting attached to an inert carrier that could have adversely affected their catalytic activity,
stability, and reactivity [155]. This is because metal oxide NPs, especially TiO2 NPs, show
a much higher catalytic activity than any other type of NPs due to the fact that the small
nano-size and the large surface area of these NPs support an exceptionally increased
active catalytic activity [156,157]. The dose is directly related to the degree of exposure or
concentration of the substance in the medium (such as air, food, and water). The different
dosage indicators have been used in nanotoxicology, including cm2/mL, µg/mL, µg/cm2,
and the number of particles/mL [158]. Previously, a study revealed that the cytotoxic
effects of TiO2 NPs after inhalation were more when exposed to small-sized TiO2 NPs
(20 nm diameter) with a low dose (10 mg/m3) as compared to large-sized TiO2 NPs (300 nm
diameter) with a high dose (250 mg/m3) [130]. In another study, cell viability was reduced
by 20–30% when HT29 cells were exposed to different concentrations of TiO2 (50, 100, 200,
and 400 µg/mL) for 48 h; the study concluded that these nanoparticles affect cell viability,
resulting in cytotoxicity in a dose-dependent manner [159].

Role of Surface Coating of TiO2 NPs on Their Medical and Dental Applications

The metallic NPs possess unexceptional optical properties as a result of their nano-
size ranging between 1 and 100 nm and the confinement of their electrons together with
the quantum effects, e.g., in solution form gold (Au) NPs are found as deep red and/or
black [160]. The interaction of light and the coupling between several metallic NPs, espe-
cially TiO2 NPs, induce a field enhancement in the surroundings, resulting in increased
absorption, scattering, and luminescence, thus giving them whiteness [161]. The TiO2 NPs
are considered as the cosmetically most white pigments, which can easily enhance the
aesthetics in medical and dental applications [162,163]. The (TiO2) NPs are white in color,
with the highest refractive index of 2.50 in the anatase phase form state and 2.70 in the
rutile phase form state, which is the whitest in color [122,147]. The TiO2 NPs are capable
of undergoing photocatalysis because of their dual behavior of absorbing and scattering
ultraviolet radiation against light [122–124,164].

In the cases where TiO2 NPs without surface coatings are used, they initiate the
cytotoxic reactions when they come into contact with cells and other biological materials.
The development of surface coatings on these NPs can make them non-toxic via the
utilization of surfactants. Eventually, the physical and chemical properties of the TiO2 NPs
are changed, which prohibits the cytotoxicity. The important properties in this respect are
the magnetic, electrical, thermal, and optical properties and the chemical reactivity [165,166].
Moreover, the presence of oxygen, (ozone) [166], oxygen free radicals [167], and transition
metals [144] on the surface of the initiating TiO2 NPs can lead to the formation of reactive
oxygen species (ROS), which causes inflammation. Previously, a study was carried out
which concluded that cytotoxic reactions in silica are due to reactive oxygen species and
surface free radicals [130].

The metallic NPs have higher values of hardness, plasticity, specific heat, thermal ex-
pansion, conductivity, diffusivity, and lower values of sintering temperature and shrinkage
as compared to the bulk material [155,168]. Other properties of metallic NPs, especially
TiO2, include surface plasmon resonance and superparamagnetism, which makes them
desirable as diagnostic intervention tools for medical applications [169–171].
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3.3. Significance of TiO2 NPs in Medical and Dental Platform

Previously, the utilization of other NPs such as graphene was wide because of its
versatile characteristics, including outstanding biocompatibility, physicochemical proper-
ties, and antimicrobial activity. Furthermore, it was highly conductive with a large surface
area; it was wear/friction resistant and could stabilize the NPs if used as a substrate [172].
Additionally, graphene was a material of choice for various dental applications such as in
bone grafting, tissue engineering, pulp and periodontium regeneration, dental cements and
adhesives, resins, whitening agents, dental implants collagen membranes, and biomarkers
of oral saliva. The use of graphene in dentistry resulted in enhanced positive outcomes, but
its manufacturing for industrial purposes was quite challenging and time-consuming [173].
This was an initial step that opened a gateway to the incorporation of other biocompat-
ible and cost-effective nanomaterials in the future nanodentistry. Among them, a TiO2
nanoparticle was one of the top five most common, easily available, and compatible NPs
for the industry purposes [140,174,175]. There has been a persistent rise in the produc-
tion of TiO2 NPs globally, which increases its mass production availability for different
fields [176]. Currently, TiO2 NPs are the most biocompatible, with low toxicity and low
allergic potential that makes them ideally suitable for utilization in medical and dental
applications [39,40,177,178]. The TiO2 NPs are resourceful, versatile, and adaptable be-
cause of their extraordinary functionality, increased strength, light weight [179], brightness,
resistance to UV light, high density [177,178,180], cost effectiveness, purely white color,
high corrosion resistance [181–183], long-term chemical stability, and durability [184,185].
In addition, these NPs possess high mechanical resistance, high electrical conductivity,
low thermal diffusivity, chemical stability, corrosion and wear resistance, and low thermal
conductivity. These NPs are ductile in pure form and can be easily shaped into any form
and type that makes them fatigue resistant [115].

The desired mechanical and physicochemical properties of TiO2 NPs in the context of
size, shape, surface texture, morphology, topography, crystalline, and phase form can be
easily attained which makes them superior when compared to other metal oxide NPs [42].
According to the previous literature, the low ion release and stability of these TiO2 NPs
additionally accounts for their biocompatibility. These NPs are capable of producing a
TiO2 layer on their surface after their accidental exposure to air, thus preventing the metal
inside these NPs from being dissolved and getting distorted. This chemically inert layer
of TiO2 plays a key role in the biosafety and biocompatibility of these NPs in the human
body [181,186,187]. Owing to these versatile features, the use of TiO2 NPs in the dental and
medical field has rapidly started to increase [182,188,189]. According to previous research,
large quantities of pure titanium in the range of about 99.5% and 0.5% of the interstitial
elements (carbon, oxygen, and nitrogen,) are even safe, biocompatible, and allergic free in
both dental and medical applications. This research concluded that even significantly more
large quantities of titanium oxide are required for any allergic or toxic reaction to arise in
humans [182].

3.3.1. Significance of TiO2 NPs as a Medical Material

The medical applications of the TiO2 NPs is illustrated in the Figure 14a.

Use of TiO2-Based Drug Delivery Systems in Cancer Therapy

The (TiO2) NPs have potential biomedical and industrial applications due to their
size, acceptable biocompatibility, lower toxicity, and cost effectiveness [190–192]. Nanos-
tructured arrays comprising nanotube walls of TiO2 involving copper and silver oxide
NPs have been used as surface coatings due to their antibacterial nature. Moreover, they
have favorable cytocompatibility and are utilized for differentiation, cell spreading, and
proliferation [193,194]. Traditional chemotherapeutic drugs have severe adverse effects
on normal cells, due to which nanotechnology has gained significant importance in the
diagnosis and treatment of cancer [195,196].
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The role of nanotechnology in cancer treatment is related to the enhancement of
therapeutic effects and the reduction in the side effects of chemotherapeutic drugs [197].
Moreover, controlled drug delivery and targeted drug release are aimed at through the use
of these NPs. Previous studies investigated the TiO2 whiskers in cells for the delivery of
drugs in cancer therapy and the synergistic effects on accumulation and internalization
of daunorubicin [198]. Similarly, a synergistic response has been observed in cell lines
involving breast cancer when the (TiO2) NPs conjugate to doxorubicin [199].

A study conducted on TiO2 nanotube surfaces containing quantum dots of zinc sul-
phide, which were studied with 5-flourouracil, revealed that it was of significant importance
as a drug delivery system [200]. The studies revealed that NPs with a modified surface
may enhance the performance of anticancer medications and lower their toxicity [195]. The
biochemical and hematological results of a study revealed better anticancer performance of
surface-altered paclitaxel affixed to TiO2 NPs and modified hydroxyapatite as compared to
pure paclitaxel [201]. Similarly, a higher accumulation of cisplatin was observed in cancer
cells when cisplatin was loaded on TiO2 NPs containing hyaluronic acid [201].

The TiO2 NPs may also serve as a photoactive carrier for drug delivery. These NPs may
be a suitable carrier for various drugs due to their stability, high surface area, possibility
for surface modification, and availability [202]. Previously, studies were carried out for
developing skin cancer treatment and light-controlled drug release by the modification
of TiO2 NPs with the help of polyethyleneimine (PEI), which may act as an agent for
targeting cancer [203]. In another study, drug delivery triggered by near-infrared radiation
was developed through the loading of DOX for the preparing of a porous TiO2 shell.
Furthermore, hyaluronic acid capping was performed, and the release of the drugs was
studied. This study also declared that at lower doses of the drug a decline in cell viability
meant that it was a promising method for therapy in cancer [204].

Colloidal TiO2 NPs that are controlled through light may be used for delivering ruthe-
nium complex to melanoma cancer cell lines. This system demonstrated a fast release
profile when an ultraviolet light was used in comparison to red light. It has been pointed
out that the destruction of cancer cells may be higher due to elevated oxidative stress when
exogenous agents are used, as the reactive oxygen species are higher in the tumor environ-
ment [205]. Apoptosis is triggered in tumor environments when reactive oxygen species
are induced, and it is an appropriate cell death type in cancers [206]. When stimulated
with ultrasonics, TiO2 NPs exhibit improved anticancer activity against various anticancer
cell lines. [205,207] In sonodynamic therapy, hydrophilized TiO2 NPs demonstrate higher
resistance to degradation and prolonged circulating time [207]. Radiofrequency as a no
noninvasive technology may help in the release of drugs from nanotechnology-based TiO2
drug-delivery systems. Drug release can be induced in titania NPs (TiO2) by transferring
radiofrequency energy through efficient thermal transducers such as gold NPs [208]. This
technique has displayed substantial capability in inhibiting human gastrointestinal and
hepatocellular cancer cells [209].

Prevention and Treatment of Infections through TiO2 Based Antibacterial Devices

With the advancements in nanotechnology, metals and metallic oxides have gained
importance in biomedical industry as they can be used as effective antimicrobial agents
due to their enhanced safety and stability as compared to organically produced antimi-
crobial agents [210,211]. Initially, TiO2 was used as a photocatalytic microbicide against
Lactobacillus acidophillus, E. coli, and Sacharromyces cerevisiae [212]. Several studies suggest
that in water the photocatalytic activity of TiO2 is effective against various organisms,
such as bacteria (Gram-positive and Gram-negative), viruses, algae, fungi, bacterial toxins,
and protozoa [213]. In water and in response to exposure from UV light the microbial
cell viability may be inhibited by a thin film of TiO2 and platinum as proven in previous
studies [212].
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Antibacterial Action of TiO2 in Orthopedic Implants

Osteomyelitis may be caused due to an infection with mostly bacteria or due to fungi.
This infection typically occurs as a consequence of the treatment with implants required in
the case of bone surgery or bone fracture. The management of this condition requires a spe-
cific and prolonged treatment with antibiotics. This infection may be prevented by the use
of implants with modified surfaces such as implants coated with TiO2 nanostructures [214].
One study revealed the antibacterial properties demonstrated by titanium-based implants
when silver-doped TiO2 nanotubes were used for the surface modification of these im-
plants [215]. This study explained that the adhesion of bacteria reduced when the surface
of the titanium-based implants was loaded with TiO2 as compared to non-coated implants.

Recently, micro-arc oxidation composites with incorporated (TiO2) were coated on
magnesium alloy, and this was presented as a biomaterial with antibacterial properties
against microorganisms such as Escherichia coli; it demonstrated sufficient bioactivity with
in vivo degradation properties and acceptable cytocompatibility for applications in ortho-
pedic surgeries [216]. Metal wires and pins are used in cases of orthopedic fractures for
the purpose of fixation. These devices are susceptible to colonization with bacteria such
as E. coli, Staphylococcus aureus, and Staphylococcus epidermidis [217]. The TiO2 coating of
these pins and wires is effective due to its photo killing activity as it influences bacteria in
comparison to the host tissue. Moreover, TiO2-coated implants and devices are biocompati-
ble and environmentally safe [218]. Moreover, osteogenic differentiation is promoted by
TiO2 NPs [219]. A study conducted on implants produced two implant surfaces (Ti-160
and Ti-120) using the electrophoretic deposition method. These treated surfaces enhanced
osteoblast proliferation and reduced bacterial colonization [220].

Antibacterial Applications of TiO2 in Hospitals and Medical Devices

In medical devices, the formation of microbial biofilms poses a challenge for the health
professionals. These biofilms are mostly formed by Staphylococcus aureus and Staphylo-
coccus epidermidis and may be the source of infection. The hospital industry may employ
TiO2 nanoparticle-coated surfaces due to their antibacterial properties and eliminate these
sources of infection as traditional methods of disinfection are not as beneficial when com-
pared to the photocatalytic methods [221]. The application of TiO2 NPs has been performed
on ceramic tile surfaces and Petri dishes, and it has been reported that the deactivation
of various microorganisms can occur in response to ultraviolet light [222]. Light-induced
disinfection can be performed in TiO2-coated catheters, and these are therefore safe to
use as biomedical equipment. A study conducted on TiO2-coated catheters revealed the
reduction in Escherichia coli after the exposure to UV light within 1 h [223]. Bactericidal
effects shown by medical tubes and silicone catheters on cells of Escherichia coli in a study
were observed [224].

Self-monitoring devices for blood glucose in diabetes (SMBG) contain sterile needles
known as lancets. The ability to self-sterilize is an issue with these needles. These nee-
dles have previously been sterilized with gamma ray radiation that poses a drawback of
gamma ray leakage and higher cost of equipment. Therefore, the photocatalytic activity
of TiO2 NPs that provides antibacterial properties to the coated surfaces has been used
to resolve this issue. Under ultraviolet illumination, TiO2 coated lancets demonstrated
antibacterial properties to the K-12 suspension of Escherichia coli [225]. Sulphur-doped
TiO2 has also been used in medical equipment for the purpose of antimicrobial activity.
In order to control hemorrhage and infection it has been proposed that metal oxides such
as TiO2 may be incorporated into polymers. Hemostatic ability and antibacterial activity
have been enhanced previously by the use of nanocomposite films comprising chitosan
pectin containing TiO2 NPs. These could serve as basis for the production of wound
healing bandages.
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TiO2 Implants Capable of Releasing Drugs

Mesoporous surfaces can be provided to implants by combining mesoporous TiO2
with active hydrophobic or hydrophilic low molecular weight substances that promote
osseointegration by providing nano-topography on the surface. A film has been developed
that contains 6 nm-sized pores and 200 nm-thick TiO2 mesoporous film that is coated on
titanium implants. These films were previously loaded with drugs used for osteoporosis
(Raloxifene and Alendronate drugs). De novo bone growth and fixation of the implant was
observed in implants with and without the drugs. The Raloxifene drug demonstrated sig-
nificantly more favorable results, while improved bone implant fixation was revealed with
both the drugs [226]. Similarly, these mesoporous films can be used to load antibacterial
agents and elements that help in the metabolism and proliferation of osteoblast cells in the
body [227–229]. Titanium coating enhances the chemical and mechanical properties and
biocompatibility of polyetheretherketone (PEEK) implants without beam evaporation.

The TiO2-Based Biosensors

Nano-sized semiconductors have electrodes made out of TiO2 due to their large
surface area, exceptional biocompatibility, and a porous structure. TiO2 may be used as
an immobilizing matrix that reacts with carboxyl and amine groups in enzymes and helps
them in retaining the biocatalytic activity [230,231]. The TiO2-based nanocomposites have
gained interest for use in biosensors. Chitosan, with nanowires of TiO2 and graphene oxide
that have been electro-reduced and are a part of a DNA-functionalized nanocomposite,
has been utilized for detecting gene sequences in Vibrio parahaemolyticus. The interface
area in nanocomposites can be enhanced due to TiO2 nanowires [232]. Various biomarkers,
such as proteins, metabolites, DNA, lipids, RNA, etc., can be detected with TiO2-based
nano-biosensors [233]. The analytical performance and desirable sensitivity of TiO2-based
PEC biosensors have acquired interest in recent times [234]. However, the higher sensitivity
and selectively functioning of TiO2-based nano-biosensors are required through advanced
research for these biosensors to be incorporated in a clinical environment [235].

The TiO2 NPs in Sunscreens

The TiO2 NPs are excessively valuable NPs because of their potent role against the
spread of various skin cancers occurring as a result of extra exposure to ultraviolet radi-
ation [236,237]. These NPs are capable of effectively scattering the UV photons, which
increases sun protection factor (SPF-1) in sun creams and thus prevents the photo dam-
age [238–240]. Additionally, this photo-protective capability of TiO2 NPs provides aliments
in other skin diseases as well [241,242]. The United States Food and Drug Administration
(FDA) has declared the TiO2 NP-induced sunscreen safe [243] and gave it the commercial
name of Eusolex-®-2000 [244]. These sunscreens are transparent and give brightness to
the skin and are thus approved by the users [245,246]. A study concluded that TiO2 NPs
of 62.1 nm in diameter showed the maximum protection against skin cancer and other
skin diseases [247]. The European Commission’s Scientific Committee on Consumer Safety
(SCCSS) declared that 25% TiO2 NPs in the sunscreen is safe with no risk of cytotoxicity
when applied on sunburned skin or healthy intact skin [248,249]. Various other researchers
also supported the idea that the inclusion of TiO2 NPs in sunscreen lotions is totally safe
and does not penetrate deeply in the skin and thus reduces the chance of any cytotoxic
effect [250–254].

The TiO2 NPs in Anticoagulants and Wound Dressings

The significant current medical applications of TiO2 NPs include their utilization as
anticoagulant [255] wound dressings and skin tissue engineering [256–258]. The anticoagu-
lant properties of these NPs inhibit the blood clot formation in the heart and brain, thus
preventing their damage [255].
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3.3.2. Significance of TiO2 NPs as a Dental Biomaterial

The dental applications of the TiO2 NPs are illustrated in the Figure 14b.

TiO2 NPs in Orthodontics

Recently, TiO2 NPs have been introduced in dental composite resin adhesives utilized
for bonding purposes in orthodontics for increasing mechanical strength and antimicrobial
properties [230]. The different percentages of TiO2 NPs in conventional composite resin
revealed excellent antibacterial activity against S. sanguinis and S. mutans with maximum
shear bond strength to enamel in 5% by weight [259]. The TiO2 NPs are also used in
the orthodontic wires due to the increased stability, durability, biocompatibility, and non-
allergic potential [179,260,261]. The (TiO2) NPs were also used for treating the surfaces
of orthodontic wires. It was detected by the researchers that orthodontic wires without
surface coating with TiO2 NPs showed enhanced bacterial adhesion (S. mutans) in the
oral cavity in comparison to surface orthodontic wires with a surface coating of TiO2
NPs [262]. In another study, it was concluded that ceramic orthodontic brackets with a
surface coating of TiO2 NPs displayed maximum antimicrobial activity against pathogenic
bacteria (S. mutans and C. albicans) [263]. This shows the potent role of TiO2 NPs in the field
of orthodontics [264].

The TiO2 NPs in Dental Implants

Dental implants are commonly made of titanium due to its strong mechanical and
chemical properties. The dental implants made of TiO2 NPs showed both enhanced
osteogenic activity and antibacterial activity but still there are a few chances of peri-
implantitis, which can be overwhelmed by modifying the surface of the TiO2 implant
with other materials. The TiO2 NPs are the most versatile and compatible nanomaterials,
which can be used in combination with many other elements without producing any toxic
effect [265,266]. The surface modification of TiO2 implants with Zinc made it not only novel
and gave it cytocompatibility but also increased its antibacterial functions against S. mutans,
Porphyromonas gingivalis [267].

Moreover, the modification of the TiO2 implant with multilayers of TiO2 NPs enhanced
its adhesion and strength in the bone [268]. The heat-treated TiO2 implants also revealed
potent osteoblastic viability and antibacterial activity against Porphyromonas gingivalis [269].
The hydrothermally treated TiO2 implant exhibited non-cytotoxic behavior against mam-
malian cell lines and increased deposition of calcium from the osteoblast with antimicrobial
activity against methicillin resistant Staphylococcus aureus [270]. Thus, it is essential to
protect the adhesion of bacteria on implant surfaces in order to prolong their longevity,
stability, and durability by preventing infections [271–273]. The additional property of
TiO2 NPs is their strong biocompatibility with blood, which can easily allow their surface
modifications in the blood with compatible implants [274]. The nerve regeneration via
Schwann cells to dental implants occurs through HA nanocomposite ceramic coating to
the TiO2 NPs [275]. Currently, novel, multilayered (TiO2) NP-based dental implants are
being introduced for their utilization [276]. Due to the improved cell adhesion, prolifera-
tion, migration, differentiation, and high contrast wettability of TiO2 NP-based surfaces,
these NPs have become a promising approach for yielding high strength scaffolds of im-
plants [277–279]. In a study conducted previously, TiO2 NPs were grown as nanotubes on
titanium surfaces and incorporated with ZnO NPs with a diameter of 20 to 50 nm and were
bonded to the walls of the TiO2 nanotubes. These dominantly TiO2 NP-based implants pro-
vided strong antibacterial activity against S. mutans and Porphyromonas gingivalis through a
constant and slow release of zinc ions [280]. In another study, TiO2 NPs were used as TiO2
nanorod arrays (TNFRs) to form surface modified implants. The TiO2 nano-array modi-
fied Ti substrate promoted the adhesion, proliferation, and osteogenic differentiation of
human periodontal ligament stem cells. In addition, TiO2 nanorod arrays (TNRs) exhibited
superior antifungal/antibacterial properties [281,282]. The TiO2 NP-based implants coated



Nanomaterials 2022, 12, 3670 23 of 41

with the hydroxyapatite nanocomposites were also successful in providing the strong bone
tissue osseointegration [283].

TiO2 NPs in Oral Disinfectants and Mouth Washes

Dental caries or tooth decay is a common but pathogenic oral disease associated with
the dissolution of enamel and dentin surfaces of teeth because of acid-producing bacteria.
This in turn leads to white spot fabrication initially and followed finally by tooth loss.
This global problem of the tooth decaying process can be easily avoided by utilizing the
latest oral disinfectants with metal oxide NPs, as compared to chlorhexidine, which is a
conventional oral disinfectant [284]. Previously published research depicted the potent
antimicrobial activity of TiO2 NP-containing oral disinfectants against Streptococcus mutants,
which are the pathogenic species in the oral cavity responsible for the tooth decay or dental
caries [285]. Additionally, these TiO2 NP-containing oral disinfectants and mouthwashes
are helpful in preventing the formation of white spots on the teeth surfaces after the
orthodontic alignment [264].

TiO2 NPs in Restorative Materials

This success of the restorative material in dentistry is greatly dependent on its bio-
logical strength and chemical, mechanical, and physical properties [286]. The wide range
applications of TiO2 NPs in bases, composites, sealants, cements, adhesives, and lining ma-
terials displayed immensely effective antimicrobial activity. Previously, Garcia-Contreras
et al. [79,287,288], revealed that TiO2 NP-induced glass ionomer cement is a novel restora-
tive material introduced in dentistry as a result of its longevity, stability, and antimicrobial
activity against strong masticatory loads. In another study, a novel TiO2 NP-based GIC
restorative material proved to have a long shelf life with strong antimicrobial activity
against S. mutans [272]. The addition of TiO2 NPs in conventional composite restoration
gave rise to the latest nanocomposites with cytocompatibility and antimicrobial activity
against E. coli and S. aureus, which are also responsible for the origin of tooth decay or
dental caries [271]. Moreover, Ag doped with TiO2 NPs has been also used as a restorative
material due to its strong antimicrobial activity against S. aureus [289]. The addition of
different concentrations of TiO2 NPs in GIC restorative materials has a great impact on
mechanical and physicochemical properties. In a study, TiO2 NPs with a mean particle size
of about 21 nm have been incorporated into GIC restorative material to investigate its me-
chanical and physicochemical properties. In the presence of TiO2 NPs, the flexural strength,
hardness strength, compressive strength, enamel shear bond strength, and dentin shear
bond strength of the novel titanium oxide NP-based GIC significantly increased in compar-
ison to the conventional GIC restorative material [290]. In another study, the incorporation
of a combination of 2 wt% TiO2 NPs and 1 wt% of CnC in conventional GIC restorative
material enhanced the compressive strength by 18.9% and the tooth enamel shear bond
strength up to 151% when compared to the conventional GIC restorative material [291].

The TiO2, ZnO, and Ag NPs were incorporated in conventional GIC 10%wt and were
tested for their mechanical and physicochemical properties. The TiO2 NPs used in this study
had pores and thus, they were stronger than ZnO NPs and Ag NPs. The TiO2 NPs and ZnO
NPs had significantly higher compressive strength while the compressive strength of the Ag
NPs was equal to the control group of the conventional GIC restorative material [292]. The
addition of 3% (w/w) TiO2 NPs in the GIC restorative material improved the mechanical
and antibacterial properties without interfering with the release of the fluoride capacity
of GIC, which is an advantage of TiO2 NP-induced GIC [293]. The addition of TiO2
NPs significantly improved the mechanical and antibacterial activity in different previous
research performed by Elaska et al. and J. Sun et al., but only up to 3% [291,294].

Recently, research conducted by A. Mansoor et al. [79,295] confirmed that the addition
of 3 and 5 wt% TiO2 NPs into the conventional GIC significantly increased its flexural
strength and compressive strength as compared to the conventional GIC.
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The TiO2 NPs in Whitening Agents

A TiO2 nanoparticle has displayed increased aesthetics in terms of whitening in den-
tistry. In a study, TiO2 NPs were added into 3.5% of a H2O2 whitening agent that enhanced
the aesthetics of the enamel by improving its color, as compared to the conventional 3.5%
of H2O2 whitening agent without TiO2 NPs [296,297]. The TiO2 NPs with a doping of nitro-
gen have revealed antimicrobial activity with an increased whitening effect and reduced
sensitivity [298]. In addition, the mixture of TiO2/Ag NPs in H2O2 was used as a whitening
agent and then tested for its cytotoxicity through in vivo testing. The mixture of TiO2/Ag
NPs showed lesser cytotoxicity when compared to the whitening agent containing only
H2O2 [299].

In a previous study, TiO2 NPs were mixed with H2O2 and were applied in a gel to
increase the whitening efficacy of hydrogen peroxide (H2O2). Thus, in the presence of TiO2
NPs, the H2O2 concentration could be decreased to 6% with no clinical difference in the
whitening effect compared with the H2O2 of 35%, but tooth sensitivity was reduced when
the H2O2 concentration was reduced to 6% and the TiO2 NPs used [300].

The (TiO2) NPs in Acrylic Resins

The poly-methyl-methacrylate (PMMA) is the best denture base resin material used
for the construction of dental prosthesis, such as complete and partial dentures. This
PMMA is recommended because of its biocompatibility, biosafety, aesthetics, low weight,
and low cost in dental prosthesis [301]. The physical, chemical, and mechanical properties
of the dental prosthesis based on PMMA are reduced, which results in defects, includ-
ing voids, irregularities, pores, and cracks [302]. These defects reduce the mechanical
properties [303] and increase the growth and multiplication of microorganisms on these
prosthesis [304,305]. The most pathogenic microorganism that gets attached to this dental
prosthesis is Candida albicans, which can cause severe infections in the oral cavity if not
controlled [306,307]. The properties of PMMA can only be improved with the incorporation
of nanotechnology [308–310].

The (TiO2) NPs are also introduced into the PMMA of acrylic resins in order to
increase their mechanical strength and hardness. Furthermore, the addition of these NPs
revealed superior photopolymerization, biocompatibility with low levels of cytotoxicity,
mutagenicity, and genotoxicity [311]. The binding effect of TiO2 NPs in the PMMA of acrylic
resins has been immensely enhanced for the dental prosthesis [312]. This became possible
due to a strong bond formation between the carbonyl group of PMMA and the hydroxyl
group of the (TiO2) NPs, resulting in the increased physical, chemical, and mechanical
properties of these prostheses [313,314]. In addition, it also reduces the chance of the growth
and proliferation of various pathogenic microorganisms, especially Candida albicans, due
to the increased antimicrobial activity obtained with the addition of TiO2 NPs [315,316].
The TiO2 NPs are considered to be the best possible option to be added in PMMA because
of their low investigated toxicity on living cells as compared to another NPs [317–320].

The TiO2 NPs have a large spectrum of activity against microorganisms, including
both Gram-negative and Gram-positive bacteria and fungi [312]. Previously, when the ratio
of TiO2 NPs was increased in PMMA, it further improved the antimicrobial behavior of
PMMA by significantly reducing the bacterial adherence [311]. The PMMA incorporation
with the mixture of the nanofillers of TiO2 and silicon dioxide mixture had a superior
antibacterial activity under UV, which could degrade microorganisms with prolonged
exposure. This study concluded that TiO2 NPs are compatible and safe when used in
combination with other elements, metals, and alloys for dental purposes [321].

The TiO2 NPs in Oral Dentifrices

The TiO2 NPs are also incorporated in the oral dentifrices in 1–10% by weight for
prophylaxis of sensitivity and caries [322]. These NPs are employed in oral dentifrices in
the mean particle sizes ranging between 100 and 300 nm, which are easily soluble in enamel,
dentine, and cementum and thus prohibit the onset of caries and tooth sensitivity [323].
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The strong binding of organic molecules in dental tissues (enamel) to TiO2 NPs allows the
release of a small amount fluoride from oral dentifrices which gets trapped in a tooth’s
matrix. Eventually, the matrix of the tooth becomes the least soluble with the minimal
fluoride release over time [324]. In addition, the previous literature also supports the
idea that the increased binding of TiO2 NPs to dental tissues (enamel) reduces the size of
hydroxyapatite crystals of enamel, resulting in advanced hue, value, and chroma, which
maintains the color of human tooth enamel [325–327].

The TiO2 NPs in Dental Adhesives

The adhesives are the restorative materials used in dentistry with minimal interven-
tion [328]. The most commonly used adhesives in dentistry are dentin adhesives [329]. The
bond formed between the dentin adhesive and the dentin surface becomes unstable and
gets loose over time [330]. This occurs due to the collagenous, hydrophilic nature of the
dentin structure and the breakage of the strong polymeric covalent bond between them
through hydrolytic degradation. Eventually, the total failure of the adhesive bond to the
dentin surface occurs [331]. The incorporation of TiO2 NPs in adhesives to investigate their
bonding to human teeth has been carried out [332].

Recently, research incorporating TiO2 NPs in dental adhesives concluded that they
had enhanced biocompatibility with reduced solubility and water sorption when compared
to the conventional adhesives used in dentistry. Thus, the usage of these NPs is highly
recommended in currently available adhesive dentistry [333]. Another research work
elaborated that TiO2 NPs added to self-adhesive cements revealed a maximum degree of
conversion (DC) when compared to their conventional types [334]. The TiO2 NPs are also
capable of improving the mechanical and physicochemical properties of adhesives when
used as fillers [335]. Thus, TiO2 NPs are potent enough to be deployed as reinforcing fillers
in dental adhesives due to their multiple advantages [336,337].

Previously, TiO2 NPs were mixed with a light-curable orthodontic composite paste
to form TiO2 NP-based resin composite adhesives which were able to reduce enamel
demineralization and provide antibacterial properties for dental adhesive systems. The
shear bond strength and the adhesive remnant index for the nanocomposites with TiO2
NPs were similar to those of the control composite [259]. In another study, nanocarbons
containing TiO2 NPs were added together to form biomineralized adhesive material in
dentistry. The photocatalytic activity of this newly formed nano-adhesive incorporated
with TiO2 proved to interfere with the bacterial acidity and was found to have a positive
effect on tooth re-mineralization in simulated body fluids [338].

The TiO2 NPs in Dental Prosthesis (Veneers, Crowns, and Bridges)

The durability and appearance of the tooth is improved by replacing upper enamel
layers with artificial materials such as sapphire, diamond, and ceramics because of their
good biocompatibility and aesthetics. These materials are brittle and prone to fracture;
therefore, NPs are added to improve their mechanical properties [339].

Currently, TiO2 NPs are incorporated in ceramics to enhance the aesthetics and me-
chanical properties of crowns and bridges. This addition of TiO2 NPs in ceramics not
only enhanced their aesthetics but also their mechanical properties when compared to the
conventional ceramics without TiO2 NPs [179,260,261,340]. This became possible due to
the pure white appearance, fatigue resistance, light weight, low elastic modulus, biocom-
patibility, corrosion resistance, and strength [180].

Titanium is a naturally available common and pure element that shows low toxicity
and no allergic reactions when compared to other metals and elements used for dental
prosthesis, including cobalt, beryllium, nickel, iron, steel, stainless steel, chromium, etc.
Thus, TiO2 NPs are considered as biosafe, biocompatible, easily available, and cost-effective
nanomaterials to be utilized in dental prosthesis such as veneers, crowns, and bridges used
in the oral cavity [48,49,341].
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The TiO2 NPs in Scaffolds/Bone Grafting of Maxillofacial Regions

Naturally, bone is a nano-scaled material which is less than 100 nm in dimension. The
materials used for bone grafts in the maxillo-facial regions, including the face, oral cavity,
head, neck, ear, and nose, are composites composed mainly of organic compounds (mainly
collagen) reinforced with inorganic ones. The nano-crystallites show a loose microstructure,
with nanopores situated between the crystallites. This material structure will be completed
by filling the pores in the micrometer area. By following this process, a rough surface area is
formed on the boundary layer between the biomaterial and the cell, which is very important
for fast cell growth. Special features that should be included in bone graft materials are
osteoinduction, good processibility, non-sinter, synthetic, highly porous, nanostructure
form, and ability to undergo degradation by osteoclasts [342,343].

The TiO2 NPs can be used in bone grafting because of the increased strength, bio-
compatibility, low modulus of elasticity, corrosion resistant nature, and the extremely
light weight of titanium used in the graft composition as compared to other elements and
metals [180]. All these characteristics make titanium an ideal biomaterial, especially for
its insertion in the human body in the form of metal prosthesis. Moreover, titanium is the
choice of material for making internal metal plates, wires, and meshes, such as fracture
fixations, cranioplasty plates, cranioplasty meshes, cranioplasty wires, and coronary artery
stents [344–346]. Additionally, titanium meshes and scaffolds, as well as prosthesis, are
well known for nose, eye, maxilla, mandible, ear reconstruction procedures, and ossicular
replacements [261,340,347].

The TiO2 NPs in Endodontics

The titanium metal and its metal oxide alloy, commonly known as titanium oxide, are
utilized for making the maxillary and mandibular obturators, files, spreaders carvers, and
reamers [260,261]. The various dental instruments made from a combination of nickel and
titanium are considered ideal for endodontic procedures as a result of their flexibility that
makes them fracture resistant, e.g., files, spreaders, carvers, etc. [348–350].
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3.4. The TiO2 NPs: The Most Biocompatible Material for Medical and Dental Applications

The ideal oral biomaterial should exhibit good thermal, optical, electrical, biological,
mechanical, physical, and chemical properties, along with an outstanding biocompati-
bility [353]. The TiO2 NPs possess almost all the properties of an ideal oral biomaterial;
therefore, these NPs are used as antimicrobial agents, dental restorative material, dental
prosthetics; they reduce bacterial adhesion to the tooth surface and provide protection
against dental caries, bleaching agents, dental implants, and orthodontics. These TiO2 NPs
revealed a long-term effect on dental implants; the surface modification provided more
advantages such as less bacterial adhesion, improved hardness, biocompatible, low toxic
effect, chemical stability, low density, significant adsorption ability; most importantly, they
are cost-effective and have strong antimicrobial activity and enhanced mechanical proper-
ties. They also displayed extraordinary functionality, long-term stability, durability, fatigue
resistance, high mechanical resistance, low thermal diffusivity, extremely light weight,
corrosion and wear resistance, high electrical conductivity, and low thermal conductivity,
thus enhancing their stability, sustainability, and longevity. They became the most versatile,
advanced, and adaptable nanomaterials as a result of their immensely increased mechanical
strength, hardness, lightness, and white color. The TiO2 NPs display a large spectrum
of antimicrobial, antibacterial, antibacterial, antibactericidal, antiparasitic, and antifungal
activity against various pathogenic microorganisms, including Gram-negative bacteria,
parasites, Gram-positive bacteria, and fungi. The TiO2 NPs are nontoxic, and the American
Food and Drug Administration (FDA) has approved TiO2 for use in human food, drugs, cos-
metics, and food contact materials [354–359]. Previous research [48,49,115,179,312,360–370]
in the context of biosafety and biocompatibility concluded no cytotoxic effect of different
concentrations (1–20) mg/cm2 after oral administration. The larges dose of 1000 mg/kg
BW/day did not produce any toxic effect or allergic reactions on encountering TiO2. Several
studies had reported that the intake of different doses of TiO2 NPs/Kg body weight did
not lead to considerable capturing of TiO2 from GIT into the blood or different internal
organs, and it was also found that absorption from GIT into blood, urine, and other organs
was scarce.

4. Conclusions and Futures Prospects

The TiO2 NPs are safe enough to be used in advanced medical and dental applications
as a result of their biocompatibility, biosafety, and non-allergic reactions with the human
tissues. Until today, size, shape, phase form, surface morphology, coating, and topography
were considered as the significant features responsible for their biocompatibility. Current
research on TiO2 NPs has revealed that the mode of synthesis is the most important factor
responsible for the biocompatible nature of these NPs, favoring their induction in medical
and dental applications. This is due to the fact that the synthesis route can be controlled by
temperature, pressure, pH, melting point, environment, and stability of solution medium
utilized during the synthesis of these NPs. Moreover, these TiO2 NPs are cost effective and
easily available and that became the sole reason for their employment. Therefore, future
studies should incorporate the most suitable synthesis mode in order to produce biosafe,
biocompatible and ecofriendly TiO2 NPs for utilization the in latest nanomedicine and
nanodentistry.
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