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Abstract: The scaffold layer plays an important role in transporting electrons and preventing carrier
recombination in mesoporous perovskite solar cells (PSCs), so the engineering of the interface between
the scaffold layer and the light absorption layer has attracted widespread concern. In this work,
vertically grown TiO2 nanorods (NRs) as scaffold layers are fabricated and further treated with TiCl4
aqueous solution. It can be found that a thin brookite TiO2 nanoparticle (NP) layer is formed by
the chemical bath deposition (CBD) method on the surface of every rutile NR with a low annealing
temperature (150 ◦C), which is beneficial for the infiltration and growth of perovskite. The PSC
based on the TiO2 NR/brookite NP structure shows the best power conversion of 15.2%, which is
56.37% higher than that of the PSC based on bare NRs (9.72%). This complex structure presents an
improved pore filling fraction and better carrier transport capability with less trap-assisted carrier
recombination. In addition, low-annealing-temperature-formed brookite NPs possess a more suitable
edge potential for electrons to transport from the perovskite layer to the electron collection layer
when compared with high-annealing-temperature-formed anatase NPs. The brookite phase TiO2

fabricated at a low temperature presents great potential for flexible PSCs.

Keywords: brookite; nanorods; pore filling; perovskite solar cell; interfacial modification; energy band

1. Introduction

Thanks to the advantages of high absorption coefficients, broad absorption range,
tunable bandgaps and long diffusion lengths, as well as the low-cost solution-processable
method, the perovskite solar cell (PSC) is regarded as one of the most promising candidates
for third-generation photovoltaic technologies [1–8]. After intensive efforts in interface
engineering, solvent engineering, composition engineering, etc., the power conversion
efficiency (PCE) of PSCs has increased from an initial 3.8% in 2009 to 25.2%, which makes
it possible for PSCs to be applied in commercialization in the future [9–16]. A typical
perovskite solar cell is composed of an electron transport layer (ETL), light absorption layer,
hole transport layer (HTL) and counter-electrode. In addition, with the difference in the
structure of the ETL, PSCs can be divided into planar and mesoporous PSCs. Compared
with the planar structure, the mesoporous structure is most commonly used in PSCs
owing to its slight hysteresis effect, effective carrier extraction capability as well as high
stability [17–19]. A mesoporous-structure ETL contains a compact blocking layer and
a scaffold layer. More importantly, the scaffold layer has been proven crucial for high-
performance PSCs [20,21]. Thus, any changes or replacements in this layer will significantly
affect the final performance of devices.

Inorganic metal oxides, such as aluminum oxide (Al2O3) [22], zinc oxide (ZnO) [23],
zirconium oxide (ZrO2) [24], tin oxide (SnO2) [25] and titanium dioxide (TiO2) [26], as the
scaffold layer materials, are most commonly applied to extract photogenerated electrons
from the perovskite light absorption layer to the compact layer. Among all of the materials
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mentioned above, TiO2, with the advantages of simple fabrication, stable crystal structure
as well as high transparency, is widely employed in the state-of-the-art PSCs. Miyasaka
fabricated mesoporous TiO2 thin films for CH3NH3PbBr3 and CH3NH3PbI3 solar cells
and obtained a PCE of 3.13% and 3.81%, respectively [10]; Park’s group achieved a PCE of
9.7% by decreasing the thickness of mesoporous TiO2 and replacing the liquid electrolyte
with a solid electrolyte (spiro-OMeTAD) [27]. For TiO2 nanorod (NR)-based PSCs, Park
investigated different lengths of rutile TiO2 NRs, and an enhanced PCE from 5.9% to
9.4% was obtained [28]; Wongratanaphisan investigated the influence of the annealing
temperature on the TiO2 NR scaffold layer and obtained a 15.5% PCE with the TiO2 NR
layer treated with boiling water [29]. However, there is a non-negligible problem that
PSCs based on bare NRs often suffer from internal pore filling, which will result in low
light absorbance, poor interfacial transfer and unwanted carrier recombination [30,31]. To
solve this problem, Haining deposed a tiny anatase TiO2 nanoparticle (NP) layer to modify
the surfaces of NRs by the liquid phase deposition (LPD) method and obtained a PCE of
8.61% [32]; Sawanta S prepared an ultrathin atomic layer to passivate the TiO2 NRs’ surface
and obtained an enhanced PCE of 13.45% [33]. Besides the methods mentioned above,
TiCl4 treatment is an efficient way to optimize the interface between ETL and perovskite.
An nm-thick layer of TiO2 NP is formed at the surface of NRs by the CBD method in a
TiCl4 aqueous solution, which improves the interface and creates efficient charge transfer
access from the perovskite layer to ETL. However, most reports use this method with
high-temperature annealing to obtain an anatase NP layer [31,34].

In this work, brookite NPs are successfully synthesized using the CBD method with
a low annealing temperature on the surface of a rutile NR. Such engineering leads to
a good pore filling fraction and uniform perovskite film and obtains the best PCE of
15.2%. In addition, the influence of annealing temperature on the formation of TiO2
was investigated. Compared with the anatase phase formed at a high temperature, low-
temperature-fabricated brookite-phase TiO2 exhibits better carrier transport capability.

2. Experiment
2.1. Materials

PbI2 (99.99%), CH3NH3I (≥99.5%), and spiro-OMeTAD (≥99.5%) were purchased
from Xi’an Polymer Light Technology Corp. (Xi’an China) with no purification. TiCl4
(99%), N,N-Dimethylformamide (DMF, chromatographic grade, ≥99.9%), methanol (chro-
matographic grade, ≥99.9%), and isopropanol (≥99.5%) were purchased from Aladdin
(Shanghai, China). Hydrochloric acid (36.5–38.0 wt%) was purchased from Xilong Chemi-
cal Co. Ltd. (Guangdong, China). Tetrabutyl titanate was purchased from Tianjin Berens
Biotechnology Co. Ltd. (Tianjin, China). The fluorine-doped tin oxide coated glass (FTO,
6 ohm sq−1) was purchased from Opvtech New Energy Co., Ltd. (Yingkou, China).

2.2. Device Fabrication

The following procedures were all performed in a fume hood without any manipula-
tion of the ambient temperature, humidity or airflow. F-doped SnO2 glasses were etched
with Zn powder and aqueous HCl solution, and then ultrasonically cleaned with soap,
deionized water, acetone, isopropanol and ethanol in sequence, followed by a 15 min
UV–O3 treatment. The compact layer was fabricated through the chemical bath deposition
(CBD) method in 100 mM aqueous solution of TiCl4 at 70 ◦C for 30 min. TiO2 NRs (approx-
imately 400 nm) were grown on the as-fabricated substrates by a hydrothermal method,
similar to a previous report [35]. Briefly, 30 mL distilled water was poured slowly into
30 mL hydrochloric acid (36.5–38.0 wt%) solution. Then, 1 mL tetrabutyl titanate was
dropped into the mixture with constant stirring for 20 min. The mixed solution and the
as-prepared TiO2 layer were placed into a sealed teflon reactor (100 mL volume) for hy-
drothermal growth at 170 ◦C for 100 min. The samples were washed with deionized water
and dried in the air when cooled down to room temperature. Then, samples were annealed
at 450 ◦C for 30 min. For TiCl4-treated NRs, the as-prepared samples were placed into a
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0.02 M TiCl4 aqueous solution at 70 ◦C for 30 min. Then, the samples were annealed at
150 ◦C, 300 ◦C and 450 ◦C for 30 min, respectively, to obtain TiO2 NPs with different
crystalline phases. We also treated the NRs in 0.4 M TiCl4 aqueous solution at 70 ◦C for
60 min with 150 ◦C annealing to measure the phase of the NPs.

Next, 1.2 M PbI2 solution (552 mg PbI2 in 1 mL N,N-dimethylformamide (DMF) was
firstly dropped upon the electron transport layer (ETL) at 3000 rpm for 30 s, and then
CH3NH3I solution (30 mg/mL in isopropanol) was spin-coated onto the PbI2 layer at
5000 rpm for 30 s. The resultant perovskite film was subsequently annealed at 150 ◦C for
15 min. The hole-transporter layer was prepared by spin-coating spiro-OMeTAD solution
at 3000 rpm for 10 s onto the perovskite layer. Finally, an 80 nm Ag layer via thermal
evaporation was deposited onto the hole-transporter layer as a counter-electrode.

2.3. Characterization

The phase of synthesized samples was obtained by an X-ray diffractometer (Rigaku
D/max-2500) with a 1.5418 Å Cu Kα line. The morphology and microstructure of samples
were assessed by scanning electron microscopy (SEM, FEI Magellan 400). Atomic force
microscopy (AFM) images were measured by an XE-7 scanning probe microscope (Park
Systems, Suwon, Korea). To further demonstrate the structure of brookite nanoparticles,
transmission electron microscopy (TEM) images and high-resolution TEM (HRTEM) im-
ages were obtained by a JEM-2100F microscope. Ultraviolet–visible (UV–vis) absorbance
spectra were measured via a spectrophotometer (UV-3150 double-beam). Steady-state
photoluminescence (PL) diagrams were acquired by an HR Evolution Raman spectrometer
(excitation of 473 nm at room temperature). Photocurrent density–photovoltage curves
were measured by a Keithley 2400 Source Meter, and the simulated sunlight illumination
(AM 1.5 G, 100 mW/cm2) was provided by a 500 W xenon lamp system (CLE-S500) with a
BG26M92C laser power meter to calibrate. The active area of fabricated PSCs was controlled
by a mask at around 0.1 cm2. Serial resistance and recombination resistance were obtained
from electrochemical impedance spectroscopy (EIS) spectra using an electrochemical work-
station (ZAHNER IM6, Kronach, Germany) whose frequency range was from 0.1 Hz
to 100 kHz.

3. Results and Discussion

It is well known to all that some pores existing in the interior or interface between
the ETL and perovskite layer could result in the poor photovoltaic performance of PSCs.
Therefore, a sufficient pore filling fraction is crucial for a good PSC. Figure 1a depicts
the XRD patterns of the TiO2 NR/perovskite film and TiO2 NR/brookite NP/perovskite
film to study the effect of the brookite NPs on the crystallization of the perovskite film.
Both of the samples showed three main perovskite diffraction peaks at 14.02◦, 28.4◦ and
32.0◦, which correspond to the (110), (220) and (310) crystal faces. Compared with the
TiO2 NRs/perovskite film, the TiO2 NR/brookite NP/perovskite film presents stronger
diffraction intensity, and the full width at half maximum (FWHM) diffraction peak of
CH3NH3PbI3 is smaller than that of the TiO2 NR/perovskite sample, which reveals that
perovskite can obtain better crystallinity after NRs are treated with TiCl4. Meanwhile,
an obvious diffraction peak at around 12.7◦, which resulted from the residual PbI2 in
the perovskite film, disappeared in the TiO2 NR/brookite NP/perovskite sample. This
phenomenon indicates that TiCl4 treatment can achieve a better reaction from PbI2 and
CH3NH3I to CH3NH3PbI3. Moreover, to further identify the phases of the TiO2 NRs and
NPs, we measured the XRD patterns of bare NRs, NRs treated with 0.02 M TiCl4 and
NRs treated with 0.4 M TiCl4, which are presented in Figure 1b. As can be seen from this
figure, the rutile phase, which belongs to TiO2 NRs, can be observed both in bare NRs and
TiCl4-treated samples at the diffraction peak at 36.08◦. Expectably, there is no diffraction
peak of NPs either in the bare NR sample or NRs treated with 0.02 M TiCl4, which is
mainly owing to the low quantity of NPs below the XRD detection limits. However, when
the concentration of TiCl4 is increased to 0.4 M, there are new diffraction peaks existing
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at 25.69◦ and 40.15◦, which belong to the brookite phase. The XRD result indicates that
brookite TiO2 NPs can be obtained by the CBD method with low-temperature annealing.
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Figure 1. X-ray diffraction (XRD) patterns of (a) perovskite based on TiO2 NR film and TiO2

NR/brookite NP film; (b) bare NRs, NRs treated with 0.02 M TiCl4 and NRs treated with 0.4 M TiCl4.

Figure 2a,b,d,e show the cross-sectional SEM of the TiO2 NR film, TiO2 NR/perovskite
film, TiO2 NR/brookite NPs film and TiO2 NR/brookite NP/perovskite film. The top-view
SEM images of the TiO2 NR/perovskite film and TiO2 NR/brookite NP/perovskite film are
presented in Figure 2c,f. It is obvious that TiO2 NRs grow vertically on the fluorine-doped
tin oxide (FTO). After spin-coating perovskite, some pores, as carrier recombination centers,
which will have a detrimental effect on the final performance of solar cells, can be observed
(Figure 2b). Moreover, there are some obvious “white phase” PbI2 nanocrystals existing in
the perovskite film (Figure 2c) [36,37]. As can be seen from Figure 2d, brookite NPs form
a conformal layer at the surface of the NR after treatment by TiCl4. The conformal layer
could form a barrier layer at the interface between perovskite and FTO to suppress charge
recombination [34]. After sequential two-step spin-coating of perovskite, we notice that
perovskite materials infiltrate into NRs’ interspaces, with almost no pores or PbI2 remnants
(Figure 2e,f). The SEM images prove that the growth and formation of perovskite can be
influenced by the morphology of the scaffold layer.
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Figure 2. Cross-sectional SEM images of (a) bare TiO2 NR film; (b) bare TiO2 NR/perovskite film;
(d) TiO2 NR/brookite NP film; (e) TiO2 NR/brookite NP/perovskite film; (c,f) are the top-view SEM
images of bare TiO2 NR/perovskite film and TiO2 NR/brookite NP/perovskite film.

Atomic force microscopy (AFM) was used to investigate the surface roughness of
the bare TiO2 NR film and TiO2 NR/brookite NP film, which are shown in Figure 3. The
root-mean-square (RMS) surface roughness of the bare TiO2 NRs film is 21.2 nm, which
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is smaller than that of the TiO2 NR/brookite NP film (23.8 nm). The increased roughness
could be attributed to the brookite NPs, which will form a rough surface for PbI2 to load
around the NRs and further form the perovskite layer.
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Figure 3. Atomic force microscopy (AFM) images of (a) bare TiO2 NR film; (b) TiO2 NR/brookite
NP film.

TEM and HRTEM were used to characterize the morphology and crystal structure of
the TiO2 NR and TiO2 NR/brookite NPs. As shown in Figure 4a,b, the bare NR possesses
a smooth surface with a length of around 400 nm. Moreover, the lattice fringes of bare
NRs with an interplanar spacing d = 0.324 nm, which corresponds to the (110) plane of
rutile TiO2, can be observed in Figure 4b. This pure rutile phase indicates that the NR is a
single-crystal structure with high crystallinity, which could provide direct access for photo-
generated electrons to transport from the perovskite layer to the electron collecting layer.
Apart from the bare rutile NR, the surface of the NR in Figure 4c is covered by NPs with a
thickness of 5 nm. These NPs increase the roughness of the NR and offer a nanostructured
interfacial contact between perovskite and ETL, which will promote carrier separation and
transport. In addition, we notice that, besides the lattice distances of 0.324 nm, there are
also existing lattice spacing values of 0.346 nm and 0.225 nm, which correspond to the (111)
plane and (112) plane of brookite TiO2 (JCPDS No. 29-1360) (Figure 4d). These crystalline
planes and lattice spaces demonstrate that TiCl4 treatment with low-temperature annealing
produces a tiny uniform brookite NP layer, which covers the surface of the rutile TiO2 NR.

UV–vis absorption was used to assess the absorption properties of perovskite samples
with or without brookite NPs. The resulted absorption spectra (Figure 5a) reveal that both
samples exhibit the same absorption onset (approximately 800 nm), yet the perovskite
based on the TiO2 NR/brookite NP film shows increased absorption strength, which further
verifies the better growth of the perovskite film as analyzed in SEM. Moreover, the charge
transport processes of the perovskite deposited on TiO2 NRs and TiO2 NR/brookite NP
films were examined by steady-state PL spectra, as shown in Figure 5b. The FTO/TiO2
NR/brookite NP/perovskite sample shows lower quenching than that of the FTO/TiO2
NR/perovskite sample. This means that the TiO2 NR/brookite NP structure has better
capability for electron extraction and suppresses non-radiative decay [38], which is in ac-
cordance with the SEM images and photoelectric parameters. Figure 5c depicts the optimal
photocurrent–voltage curves of PSCs based on TiO2 NRs and TiO2 NR/brookite NP ETLs
under one sun AM 1.5G irradiance, and their photoelectric parameters are summarized in
the figure. The power conversion efficiency (PCE) of bare NRs is 9.72%, with a short-circuit
current density (Jsc) of 19.18 mA/cm2, an open-circuit voltage (Voc) of 0.962 V and a fill fac-
tor (FF) of 0.52, while the TiO2 NR/brookite NP-based device shows enhanced photoelectric
performance with a PCE of 15.2%, Jsc of 21.34 mA/cm2, Voc of 1.05 V and FF of 0.67. The
enhanced Voc and FF could be ascribed to the less trap-assisted recombination. Meanwhile,
the increased Jsc could be attributed to the better infiltration and growth of perovskite
materials. To further reveal the carrier transport as well as recombination process, EIS
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measurements are carried out with a bias of 0.8 V. The Nyquist plots of two samples are
shown in Figure 5d. The equivalent circuit is inserted in the figure to fit the data, where Rs
is the serial resistance and Rrec is the recombination resistance of electrons in the interface
between perovskite and ETL. Both Rs and Rrec can be obtained by fitting the impedance
data with an equivalent circuit, and the larger semi-circle reflects higher recombination
resistance and more efficient charge transport [39]. According to Figure 5d, the Rrec of
the TiO2 NR/brookite NP sample (8203 Ω) is larger than that of the bare TiO2 NR sample
(1336 Ω), which indicates that brookite NPs have a positive influence on suppressing
trap-assisted carrier recombination.
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Figure 4. Transmission electron microscopy (TEM) images of (a) bare NR and (c) NR/brookite NPs;
and high-resolution TEM of (b) bare NR and (d) NR/brookite NPs.

Whereas other works treated the TiO2 NPs with a high annealed temperature to
obtain anatase-phase NPs, we investigated the TiO2 NRs with NPs annealed at different
temperatures to further study the influence of temperature on NPs. Figure 6a shows
the UV–vis absorption spectrum of bare TiO2 NRs and TiCl4-treated NRs with annealing
temperatures of 150 ◦C, 300 ◦C and 450 ◦C, respectively. The optical absorption ranges of
the four samples are in the ultraviolet region. Although TiCl4 treatment has little influence
on the optical absorption range of the TiO2, the absorption strength of TiCl4-treated NRs is
higher than that of bare NRs. This might be ascribed to the NPs with different annealing
temperatures affecting the phase formation of TiO2 and then further changing the band
gap. The corresponding band gap (Eg) of bare rutile TiO2 NRs and TiCl4-treated NRs with
annealing temperatures of 150 ◦C, 300 ◦C and 450 ◦C can be calculated by the Kubelka–
Munk equation [40,41], which is presented in Figure 6b. The Eg of untreated TiO2 NRs
and TiCl4-treated NRs with annealing temperatures of 150 ◦C, 300 ◦C and 450 ◦C can be
determined to be 3.22 eV, 3.17 eV, 3.20 eV and 3.19 eV. TiCl4-treated NRs with an annealing
temperature at 150 ◦C show the narrowest energy band gap, which is similar to other
reports [42].
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Figure 7a–d show the statistical values for the photovoltaic parameters of 15 indepen-
dent PSCs, which are based on the four different ETLs, and Table 1 provides their relevant
average photovoltaic parameters. According to the outcomes, the average FF, Jsc and Voc
of TiCl4-treated NR samples with different annealing temperatures are higher than those
of bare TiO2 NRs, which is mainly owing to the NRs after TiCl4 treatment possessing a
rough surface, which is beneficial for perovskite materials to infiltrate into the interspaces
of NRs and decrease carrier recombination centers [43]. However, with the annealing
temperature exceeding 150 ◦C, the performance of cells decreases. It might be attributed
to the gradual transition of TiO2 NPs from brookite to anatase, since brookite TiO2 has a
more suitable energy band structure than anatase, allowing for the more efficient transfer
of photo-generated electrons from the perovskite layer to the rutile NRs.
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Table 1. Average performance parameters of PSCs based on (A) bare TiO2 NR film, and TiCl4-treated
NR films with annealing temperature of (B) 150 ◦C, (C) 300 ◦C and (D) 450 ◦C, respectively.

Sample Jsc (mA/cm2) Voc (V) FF PCE (%) PCEbest (%)

A 19.16 ± 0.61 0.947 ± 0.029 0.4987 ± 0.03 9.09 ± 0.62 9.71
B 21.57 ± 0.44 1.016 ± 0.054 0.6465 ± 0.04 14.16 ± 1.15 15.2
C 19.99 ± 0.65 0.975 ± 0.018 0.5345 ± 0.04 10.42 ± 0.51 10.93
D 20.49 ± 0.32 0.99 ± 0.019 0.5891 ± 0.04 11.98 ± 1.00 12.98

The band alignment and charge transport behavior in the TiO2 NR/TiO2 NP-based
PSCs are illustrated in Scheme 1. As can be seen, electron–hole pairs are separated in the
perovskite layer under illumination, and then electrons can transfer from the perovskite
layer to the TiO2 layer while holes transfer to HTL. For the poor performance of PSCs
fabricated on bare NRs, the rutile-phase NRs with a single-crystal structure could provide
direct accesses for photo-generated electrons to transfer. However, there are some pores that
are caused by the smooth surface of the NR, existing at the interface of the perovskite layer
and the NR layer. Meanwhile, photo-generated electrons are difficult to transfer to NRs
due to the most negative conduction band (CB) minimum of rutile TiO2 when compared to
anatase and brookite [44–46]. The above reasons will finally result in poor performance.
On the contrary, for PSCs fabricated on TiCl4-treated NRs, the existence of NPs increases
the surface coverage and thus facilitates the interfacial contact of perovskite/TiO2. In
the electron transfer process, rutile NR/brookite NP and rutile NR/anatase structures
provide an energy level cascade, which could promote electron transfer. Since brookite NPs
possess a more negative CB minimum with respect to that of anatase NPs, such an energetic
structure provides better access for photo-generated electrons to transfer from perovskite
to the CB of brookite NPs and then to the CB of rutile NRs. Therefore, the performance of
brookite NP-based PSCs compared with anatase NP-based PSCs can be enhanced.
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Scheme 1. Band alignment and charge transport behavior of PSCs based on NR and NR/NP
architectures, respectively, where R, A, B and white circles indicate rutile, anatase and brookite phases
of TiO2 and pores, respectively.

4. Conclusions

In summary, a tiny brookite NP interfacial modification layer is successfully fabricated
by the CBD method at a low annealing temperature. SEM images and PL spectra confirm
that perovskite could achieve better growth and the problem of pores causing recombination
is obviously improved; meanwhile, the rutile NR/brookite NP structure could form a
suitable energy level cascade for electrons to transfer. PSCs based on the as-fabricated
NR/brookite NP structure obtained the best PCE of 15.2% with Jsc = 21.34 mA/cm2,
Voc = 1.05 V and FF = 0.67, which are higher than those of bare NR-based devices. Such
low-temperature-fabricated brookite nanocrystals are promising for band alignment and
the cost-effective preparation of perovskite solar cells.
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