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Abstract: In this study, a magnetic solid-phase extraction method was developed based on multi-wall
carbon nanotubes decorated by magnetic nanoparticles (Fe3O4) and cadmium sulfide nanoparticles
(Fe3O4@MWCNT-CdS) for trace extraction of cefixime and tetracycline antibiotics from urine and
drug company wastewater. The adsorbent features were characterized by Fourier transform infrared
spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and energy dispersive
X-ray analysis (EDX). Various effective parameters on the sorption and desorption cycle, such as
sorption time, the mass of adsorbent, pH, salt addition, and material ratio, were investigated and
optimized. The data were evaluated using isotherm models, and experimental data were well-fitted
to both Langmuir (R2 = 0.975) and Freundlich (R2 = 0.985) models. Moreover, kinetic of reaction was
agreement with pseudo-second-order (R2 = 0.999) as compared pseudo-first-order (R2 = 0.760). The
maximum adsorption capacity for tetracycline and cefixime was achieved at 116.27 and 105.26 mg·g−1,
respectively. Hence, the prepared adsorbent can be used as an alternative material for enhanced
determination of pharmaceutical substances in biological fluids.

Keywords: antibiotics removal; multi-wall carbon nanotubes; magnetic nanoparticles; cadmium
sulfide nanoparticles; adsorption equilibrium

1. Introduction

Recently, the consumption of antibiotics as medicine has increased significantly, and
their usage has grown globally [1]. Cefixime (SF) and tetracycline (TC) are two com-
monly used antibiotics that can act as potential antibacterial agents against many bacterial
infections [2]. Due to their extensive consumption, they produce a large number of phar-
maceutical residues that can easily remain in the environment. Additionally, antibiotic
residues’ long-term degradation has irreversible effects on human health and the ecosystem
and increases bacterial resistance [3]. Thus, it is essential to develop a simple and effective
method for the removal of trace amounts of residual antibiotics from wastewater samples.

Recently, traditional strategies and recent technology were combined to develop
high-performance methods for efficient removal of antibiotics from water [4], such as
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adsorption based on carbon materials (granular activated carbon, biochar, carbon nan-
otube, etc.), zero-valent iron, magnetic separation, filtration, flocculation, column-based
MIEX resin ozonation and photocatalytic process, and UV irradiation treatment [5–8]. Al-
though proposed methods have some advantages, they face some disadvantages, such
as being costly, time-consuming, tedious, consuming a large amount of organic solvent,
and non-recoverable.

Amongst the aforementioned methods, the techniques based on green and synthetic
nanoparticles are the most common approach because the nanoparticles have some sig-
nificant merits, such as being affordable and having low toxicity, easy operation, high
surface area to volume ratio, and high dispersibility [9–12]. The modification of magnetic
nanoparticles improves the dispersibility, enhances surface activity, and prevents agglom-
eration and oxidation of nanoparticles. Various materials were used to modify magnetic
nanoparticles, such as chitosan, alginate, silica, MOF, zeolite, carbon nanotube, graphene,
metal oxides, sulfide, etc. [13–17]. Carbon nanotubes (CNTs) have attracted attention in
analytical approaches owing to their special features, including a high specific surface area
of 3000 m2·g−1 [18], high susceptibility to form π–π interactions with analytes, chemical
stability, thermal conductivity, and easy surface modification [19] as well as CNTs magne-
tizing easily with iron oxide nanoparticles [20]. Furthermore, MWCNTs provide potential
benefits in adsorption approaches and have also been successfully used for antibiotics
adsorption [21,22].

Cadmium sulfide (CdS) as a soft nanoparticle (NPs) can increase the possible in-
teractions between adsorbents and antibiotics due to an enhancement in active sites for
adsorption [23]. The low-cost CdS NPs possess high surface area and synthesis through sim-
ple steps and also provide remarkable potential benefits in water decontamination [24–26].
Despite CdS NPs advantages, they tend to aggregate and form larger particle sizes; thus,
MWCNTs can prevent this restriction by strongly attaching CdS NPs to the surface of
activated MWCNTs [27,28]. This is probably due to the oxygen functionalities on ac-
tivated MWCNTs (polar surface) that conduct strong interactions with polar CdS NPs.
Furthermore, the smooth surface of MWCNTs becomes rougher by rough CdS NPs [29,30].

In this study, MNPs (Fe3O4) were doped on MWCNTs and functionalized by CdS
nanoparticles (Fe3O4@MWCNTs-CdS) for adsorption of cefixime and tetracycline, the
selected antibiotics, in wastewater samples Furthermore, MNPs help to an easy collection
of MWCNTs from a large volume of aqueous solution. MWCNTs gain high extraction
efficiency through π–π interactions with selected antibiotics and also avoid the CdS NPs
aggregation. The presence of CdS improved the adsorption efficacy by introducing various
complexation, electrostatic interactions, and H-bonding. Hence, the newly synthesized
Fe3O4@MWCNTs-CdS nanocomposite provided excellent adsorption efficiency for selected
antibiotics from wastewater samples.

2. Experimental
2.1. Reagent and Chemicals

Multi-walled carbon nanotubes (MWCNTs) (purity 80%, outer diameter 10–30 nm
and length 100 nm) were purchased from Chengdu Organic Chemicals Co. Ltd. (Chengdu,
China), Iron(II) chloride tetrahydrate (FeCl2·4H2O), Iron(III) chloride hexahydrate (FeCl3·H2O),
sodium hydroxide (NaOH), polyethylene glycol (PEG), cadmium acetate dehydrate
(Cd(CH3COO)2·2H2O), methanol (CH3OH), sodium thiosulfate pentahydrate (Na2S2O3·5H2O),
hydrochloride acid (HCl, 37%), nitric acid (HNO3, 65%), and sulfuric acid (H2SO4, 97%)
were of analytical grade and supplied by Merck Chemicals (Darmstadt, Germany). The
pharmaceutical analytical standards of tetracycline and cefixime were purchased from
Solarbio Science & Technology Co., Ltd. (Beijing, China).

2.2. Instruments

Morphological and compositional information of the solid product was studied by
field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy
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(FESEM/EDX) from TESCAN MIRA3 (Brno, Czech Republic). Fourier transform infrared
spectrometry (FT-IR) spectra were obtained with KBr pellets in the range 450–4000 cm−1

with a Bruker EQUINOX 55 FTIR spectrometer (Bremen, Germany). UV–visible absorption
spectra were recorded on RAYLEIGH UV-2601 (Beijing, China) double-beam UV–visible
spectrophotometer fitted with a tungsten lamp as the source, volume 3.5 mL quartz cuvette
cell (Fisher Scientific, Waltham, MA, USA). Various pH values were measured by WTW
Inolab 720 pH meter (Weilheim, Germany).

2.3. Synthesis of Fe3O4@MWCNT

Pristine MWCNTs NPs before magnetization (Fe3O4) were pre-treated by dispersion
in strongly acidic conditions (3:1 molar ratio) that contained HNO3 (65%) and H2SO4 (96%)
for 48 h under magnetic stirring at room temperature. Finally, activated MWCNTs were
collected and washed several times with acetone and excess distilled water and dried at
85 ◦C for 24 h [31].

Activated MWCNTs were magnetized as follows: 0.5 g of pre-treated MWCNTs was
dispersed in 50 mL distilled water under magnetic stirring. After that, 1.0 g of FeCl2·4H2O
(0.005 mol) and 0.5 g of FeCl3·6H2O (0.001 mol) were added to the solution and stirred.
The solution was heated until 50◦C, and an aqueous sodium hydroxide solution (2 M) was
added gradually at pH 10. Eventually, the mixture was stirred for 2 h, washed several times
with distilled water, and dried at 80◦C for 24 h.

2.4. Synthesis of Fe3O4@MWCNTs-CdS Nanocomposite

To further modification of the adsorbent, the cadmium sulfide (CdS) nanoparticles
were immobilized on the surface of Fe3O4@MWCNTs. Then, 5 mmol Cd(CH3COO)2·2H2O,
5 mmol Na2S2O3·5H2O, and 10 mL of polyethylene glycol (PEG) were mixed under stirring
and heating at 60 ◦C. Then, 1 g of Fe3O4@MWCNT was added to the above solution and
stirred vigorously for 2 h, and this solution was kept in the oven at 90 ◦C for 24 h. There-
after, the obtained Fe3O4@MWCNTs-CdS was easily separated by an external magnet and
washed with excess distilled water, methanol, and ethanol. Then, the separated adsorbent
dried in the oven at 85◦C for 24 h. In the next step, the CdS nanoparticles (yellow product)
were synthesized with the same procedure without the addition of Fe3O4@MWCNTs into
the PEG solution. The characterization and surface morphology of dried CdS nanoparticles
and Fe3O4@MWCNTs-CdS nanocomposite were studied by using FTIR and FESEM/EDS.

2.5. Preparation of Samples

Wastewater from the drug company was analyzed as a model of real sample analysis.
Wastewater was collected from the vicinity of a pharmaceutical company located in Tehran,
Iran. The simulated samples were spiked by the addition of an adequate amount of
antibiotics standard solution to give a final concentration of 0.1–100 mg·L−1. All samples
were stored at 4 ◦C in the refrigerator.

2.6. Magnetic Adsorption Procedure

The experimental adsorption procedure includes subsequent steps: first, 40 mg
Fe3O4@MWCNT-CdS was added to the aqueous samples containing selected antibiotics
with different initial concentrations (0.5–10 mg·L−1). Then, the mixture was shaken on a
plate shaker (350 rpm) for 10–90 min in the different solutions’ pH range of 3–12. Then,
the adsorbent was separated from the solution by an external magnetic field that was
applied by putting a magnet on the outer tube’s wall. Residual solutions were analyzed by
spectrophotometry to measure the residual concentration of antibiotics in the solution and
removal percentage.
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3. Result and Discussion
3.1. Characterization
3.1.1. FTIR Spectroscopy

The FT-IR spectra of the activated MWCNTs, Fe3O4@MWCNT, and newly fabricated
Fe3O4@MWCNTs-CdS nanocomposite are given in Figure 1. The activated MWCNTs
spectrum (Figure 1A) shows a broad band around 3400–3900 cm−1 that is attributed to
the stretching of O-H. Peaks at 2924 cm−1 and 2849 cm−1 are ascribed to C-H stretching.
The vibrations at 1714 cm−1 and 1378 cm−1 are assigned to C=O and C-OH, respectively.
In Figure 1B, the sharp peak at 563 cm−1 refers to Fe-O stretching, which confirmed the
magnetization of MWCNT [32]. In Figure 1C, the stretching vibration of the S-H bond
appeared at 2900 cm−1, and the peaks in the range of 500–600 cm−1 correspond to metal–
sulfur bonding. Hence, the peaks at 641 cm−1 are ascribed to the vibration of the metal
sulfide (Cd-S) bands as reported for quantum dots materials [33]. Figure 1C displays
the spectra of Fe3O4@MWCNTs-CdS. In addition to all previous peaks, some additional
peaks at 1632 cm−1, 1016 cm−1, and 641 cm−1 are related to the CdS nanoparticles, which
confirms the successful coating of CdS nanoparticles onto the surface of Fe3O4@MWCNT.
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Figure 1. FTIR spectra of (A) activated MWNTs, (B) CdS nanoparticles, and (C) Fe3O4@MWCNT-
CdS nanomaterial.

3.1.2. FESEM Microscopy

Figure 2A depicts the FESEM images of the CdS nanoparticles, and the aggregation
of the CdS particles can be observed. The obtained image in Figure 2B depicts that the
CdS nanoparticles are well-anchored onto the surface of magnetic MWCNTs. Clearly,
the presence of MWCNTs avoids the CdS aggregation; hence, smaller particles were
successfully grown on the surface of Fe3O4@MWCNTs.

3.1.3. EDX Spectroscopy

The elemental composition of the prepared materials was analyzed with the energy-
dispersive X-ray spectroscopy (EDX) technique. The EDX spectra for CdS nanoparticles
and Fe3O4@MWCNTs-CdS are illustrated in Figure 2A,B. CdS spectra (EDX) clearly show
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the elements corresponding to CdS NPs, namely O, Cd, and S. In addition, EDX spectra of
Fe3O4@MWCNTs-CdS nanocomposite confirmed the presence of main elements C, O, Fe,
Cd, and S in the backbone of the adsorbent.
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CdS nanocomposite.

3.2. Effective Parameters
3.2.1. Material Ratio

The total removal rate of TC and SF by using Fe CNT, 5% Fe CNT-CdS, 10% Fe CNT-
CdS, 20% Fe CNT-CdS, and CdS are demonstrated in Figure 3. This diagram reveals that
20 % Fe CNT-CdS (> 90 removal rate %) has a much higher removal efficiency than other
material ratios. The high efficiency attributes to the high surface area, high porosity, and
more active sites on the adsorbent surface, resulting in faster transfer of TC and SF to react
with the adsorbent and high removal efficiency [34].
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3.2.2. Real Sample

A real sample was obtained from pharmaceutical company wastewater. The exper-
iment was conducted for un-spiked and spiked (10 mg·L−1) samples. The cefixime and
tetracycline were not detected in the un-spiked wastewater, while detection of TC and SF
in the spiked sample was conducted successfully, with a recovery percentage of 91.38 %
and 87.44 %, respectively.

3.2.3. pH Effect

pH is an important parameter affecting both analyte and adsorbent surfaces. As
illustrated in Figure 4, by increasing pH from 3 to 5, the extraction efficiency increased,
then efficiency decreased continually up to pH 11. This can be explained by analyte’s
isoelectric points (IEPs) and adsorbent potential zero charge (pHPZC). The pHPZC for
MWCNTs adsorbent and IEPs for tetracycline were reported in pH 2–4 and pH~6.3, re-
spectively [35–37]. Further, tetracycline can be found as different species at different pH,
i.e., TCH3

+ at pH < 5, TCH2
± at pH 5–7, and TCH−/TC2− at pH > 7 [38,39]. Thus, high

removal efficiency at pH 5–7 can be explained by the positive charge of analytes and
the negative charge of adsorbents that increase the electrostatic forces. Additionally, π–π
interactions and hydrogen bonding are possible between tetracycline and the adsorbent.
Cefixime is a weak acid (pKa 2.5) [40], and due to Le Chatelier’s principle, it can be found
in a neutral form in acidic conditions; thus, π–π interactions and hydrogen bonding are the
main interactions for adsorption at pH 5. However, the extraction efficiency is decreased
at low and high pH, probably due to repulsion forces between protonate/deprotonated
analytes and the adsorbent. Moreover, cefixime can hydrolyze at highly acidic and basic
pH due to lactam and amide groups [41]. Finally, the highest extraction efficiency for
tetracycline and cefixime was obtained at pH 5.
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3.2.4. Effect of Adsorbent Amount

Different mass of adsorbents in the range of 5–60 mg was carried out for MSPE
performance due to the crucial importance of adsorbent amount. The results given in
Figure 5 demonstrate that when the amount of adsorbent increased from 5 mg to 40 mg,
adsorption capacity enhanced due to excess active sites for predominate interactions.
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However, after 40 mg, analytes were not available for adsorption, and extraction was
almost constant; therefore, 40 mg was selected as the optimum amount of adsorbent [42].
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3.2.5. Salt Effect

Salt augmentation to sample solution can influence extraction efficiency. In this study,
the effect of salt concentration was investigated by the addition of different amounts of NaCl
salt in the concentration range of 0–10% (w/v) into the sample solution (Figure 6). As the
investigation represented, salt concentration up to 0.5% (w/v) does not affect the extraction
of antibiotics. By increasing salt concentration up to 0.5% (w/v), the extraction recovery
decreased slightly due to the mass transfer of analytes to the surface of the adsorbent or
interference with salt ions. In this regard, salt addition is not necessary for our experiments.
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3.2.6. Effect of Contact Time

Contact time can affect the removal efficiency, so different shaking times in the range
of 10 to 90 min were investigated. Figure 7 showed the adsorption capacity increased
clearly by increasing time in the range of 10 min to 60 min because of sufficient adsorption
sites available on the surface of the adsorbent for antibiotics. After 60 min, the absorption
remained almost unchanged owing to the occupation of active sites by TC and SF Moreover,
after 60 min, there are not probably enough analytes to occupy the active sites; thus,
adsorption efficiency is almost constant. Therefore, 60 min was selected as the optimum
time for maximum extraction.
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3.3. Kinetic Study

For the evaluation of adsorption, kinetic pseudo-first-order, pseudo-second-order, and
Elovich models, as expressed in Equations (1), (2) and (3), respectively, were studied.

ln(Qe − Qt) = lnQe − k1t (1)

t
Qt

=
1

k2Q2
e
+

t
Qe

(2)

Qt =

(
1
β

)
ln(αβ) +

(
1
β

)
ln(t) (3)

where Qt is adsorption capacity at different times, Qe is equilibrium adsorption capacity,
k1 is a constant of pseudo-first-order, and k2 is a pseudo-second-order constant. α and
β (g·mg−1) are the Elovich model constant. The values of these parameters can be derived
from the slope and intercept that are displayed in Figure 8A–C. According to experimental
data as depicted in Table 1, the kinetic of reaction for TC and SF was fitted with a pseudo-
second-order model (R2 = 0.999 TC, R2 = 0.998 SF). In addition, the Elovich model was
conducted, and the low values of R2 (<0.889) demonstrate that the electron-sharing process
does not limit the kinetic. In this respect, the adsorption mechanism was conducted
through chemisorption.
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Table 1. Kinetic model constants for TC and SF adsorption using Fe-CNT-CdS.

Kinetic Models Model Constants T.C. S.F.

k1 (min−1) 0.001 0.013
Pseudo-first order qe (mg·g−1) 14.61 4.43

R2 0.732 0.699
k2 (g mg−1 min−1) 0.007 0.001

Pseudo-second order qe (mg·g−1) 37.03 29.41
R2 0.999 0.999
α 13.61 28.65

Elovich β 0.61 0.90
R2 0.889 0.872

3.4. Isotherm Study

In order to perform the isotherm models, the experimental process is conducted
by variation of initial concentrations of TC and SF at constant time. Then, the equi-
librium isotherm is plotted in Figure 9A. Hence, Langmuir, Freundlich, and Dubinin–
Radushkevich (D-R) isotherm models were utilized to evaluate the isotherm process and
prediction of the mechanism of adsorption. The linear form of these models are described in
Equations (3), (4) and (5), respectively.

Ce
Qe

=
Ce
Qm

+
1

KQm
(4)

lnQe = lnK f +
(

1
n

)
lnCe (5)

ε = RTLn
[

1 +
1

Ce

]
(6)

In these equations, Ce is the equilibrium concentration of TC and SF antibiotics. Qe
(mg·g−1) is the experimental equilibrium adsorption capacity, Qm is the maximum adsorp-
tion capacity (mg·g−1), 1/n is the empirical parameter related to the energetic heterogeneity
(average energy of sites), and K.L. and K.F. (L·mg−1) are the Langmuir and Freundlich
equilibrium adsorption constants, respectively. Kad is constant, and Qs is the theoretical
adsorption capacity of D-R model (mg·g−1), which are related to multilayer adsorption
with chemical and physical adsorption onto the heterogeneous surface. The values of the
parameters are calculated under linear plots (Figure 9B–D) and listed in Table 2. The values
of the parameters (Table 2) perform the adsorption process following the Freundlich and
Langmuir models due to high R2 > 0.91 for both models. Langmuir’s model justifies the
formation of a monolayer with physical and chemical mechanisms on the homogenous
surface of the adsorbent. In contrast, Freundlich’s model expresses the formation of multi-
layer adsorption and physical adsorption. The evaluation of experimental data shows that
the mechanism of adsorption of TC and SF on the surface of Fe-CNT-CdS is in agreement
with both Langmuir and Freundlich models. Hence, the D-R model was conducted, and
the high value of R2 (0.962 and 0.889) confirms that the adsorption pattern is following a
multilayer process.

Table 2. Isotherm models for TC and SF adsorption from aqueous media.

Models Parameters T.C. S.F.

Langmuir
Qm (mg·g–1) 116.27 105.26

R2 0.971 0.966
KL (min–1) 1.26 3.06

Freundlich
KF [(mg·g−1) (L/mg)]1/n 48.59 71.59

n 1.49 0.93
R2 0.935 0.985
Kad 0.025 0.024

D-R R2 0.962 0.900
Qs (mg·g–1) 72.31 51.07
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3.5. Effect of Temperature and Thermodynamic

Thermodynamic parameters such as ∆G (free energy change), K.D. = Qe/Ce (thermody-
namic constant), ∆H (enthalpy), and ∆S (entropy) can be expressed by Equations (6) and (7).
The obtained calculations from the experimental (Table 3) determined the spontaneous phys-
ical and chemical mechanism in parallel with increasing temperature (∆G < −40 KJ/mol).
Additionally, the positive enthalpy revealed the endothermic adsorption process of TC
and SF.

∆G◦ = −RTlnKD (7)

lnKD = −∆H◦

RT
+ ln

∆S◦

R
(8)
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Table 3. Different thermodynamic parameters.

Adsorbate Temp. ◦C qe (mg/g) ∆G (KJ/mol) ∆H (KJ/mol.K) ∆S (KJ/mol.K)

25 59.92 −35.23
TC 30 59.88 −34.79 −40.69 −0.018

40 59.82 −34.88
25 58.01 −27.17

SF 30 57.68 −27.24 −21.77 −0.017
40 57.03 −27.44



Nanomaterials 2022, 12, 3576 13 of 16

3.6. Reusability and Stability

The stability of the adsorbent was evaluated under a continuous adsorption-desorption
reusability process. After each adsorption process, the adsorbent was separated with an
external magnet and washed with 6 mL methanol three times. Then, adsorbent was
dried, and we proceeded to investigate their reusability for five cycles. The adsorbent was
provided appropriate stability since the removal efficiency (first cycle > 0.91 %) was not
changed significantly after five adsorption-desorption cycles (first cycle > 0.84 %).

3.7. Adsorption Mechanism

The two selected antibiotic molecules (TC and SF) possess three functional groups,
including hydroxide (-OH), amine (-NH), and carbonyl (COO-). Furthermore, Fe-CNT-
CdS adsorbent possesses various active sites on the surface, including -OH and COO-,
sulfur, cadmium, and iron oxide. The proposed functional groups of TC and SF and
active adsorbent sites (S2-, M+, π-stacking of CNTs, and O-) can attract each other. Thus,
the attraction is involved with the electrostatic interaction. Hydrogen binding and π–π
interaction occur between the antibiotic’s molecules and magnetic adsorbent.

3.8. Comparison

Table 4 reports the adsorption capacity of several adsorbents for removing tetracycline
or cefixime at different pH. According to data, the function of synthetic Fe-CNT-CdS is
superior to other adsorbents. The high performance of the current adsorbent is associated
with high porosity and functional groups on the surface, which enhance the removal
percentage of tetracycline and cefixime from environmental aqueous.

Table 4. Comparison of adsorption capacity of different adsorbents.

Adsorbent Adsorbate Qm (mg·g) pH Reference

Chitosan 10B Cefixime 37.04 5 [43]
MGO-chitosan Cefixime 30.80 8 [44]

CNT/cyclodexine/MnFeO Tetracycline 40.36 7 [45]
biochar Tetracycline 58.47 5.1 [46]

Polyelectrolyte-modified nanosilica Cefixime 10.40 4 [42]

Fe-CNT-CdS Tetracycline-cefixime 116.27
105.26 5 This study

4. Conclusions

In this study, CdS NPs were decorated on magnetic multi-walled carbon nanotubes
as novel nanocomposite (Fe3O4@MWCNTs-CdS) via a simple procedure. This nanocom-
posite was used as an adsorbent to remove cefixime and tetracycline antibiotics from drug
company wastewater and biological urine fluid. Isotherm models, including Langmuir
and Freundlich models, were investigated. The experimental data were in agreement with
the Langmuir model, which suggests a monolayer of tetracycline and cefixime onto the
adsorbent and provides adsorption capacity 116.27 mg·g−1 and 105.26 mg·g−1, which
indicates high potential adsorbent in comparison with other published works in the treat-
ment of TC and SF The kinetic mechanism was examined using pseudo-first-order and
pseudo-second-order models. The experimental data in the current study were fitted with a
pseudo-second-order model (R2 = 0.999). The proposed method is environmentally friendly
due to the lack of toxic organic solvents.
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